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INTERACTIVE SIMULATION:
LET THE USER BEWARE!

KENNETH M. MATWICZAK

ABSTRACT

In recent years a significant amount of effort has gone into
making simulation languages friendlier for the decision-maker
and easier to use for the simulation analyst. One such area
where these efforts are beginning to show results is in the area
of interactive simulations, in which the user can observe and
modify a simulation model as it is running. However, there
are hidden perils in interpreting the results of the data output
from an interactive simulation. This paper attempts to
highlight some of these dangers, pointing out some statistical
pitfalls with the traditional end-of-run post-simulation
analysis. Some suggestions are made about the directions
future research might take to provide more meaningful and
statistically valid end-of-run results.

1. INTRODUCTION

A primary purpose of simulation modeling is to support
the decision-making process. In the past, and to a great extent
today, this meant that a person trained in the art and science of
simulation had to be called upon to conduct the simulation
study and subsequently present the interpreted results to the
decision-maker.

In recent years, great strides have been made toward
putting simulation in the hands of the primary user, the
decision-maker. Interactive graphics, animation, comprehen-
sive modeling environments, and interactive simulation
languages have all played a role in the growth of simulation as
a decision support tool.

Unfortunately, however, it does not seem that a
comparable amount of work is being done in updating the
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statistical aspects of simulation to keep pace with the rapid
changes in simulation languages and modeling environments.
With few exceptions, most simulation output is still presented
as a batch result such as the SLAM II Summary Report
[Pritsker 1986] and the SIMAN OQutput Processor [Pegden
1986). Means, variances, histograms, and plots are used to
present a compilation of the simulation data over the entire
simulation run. The impact of changes in the simulation
model structure, or its parameters, at some point prior to the
end of the run, is difficult to capture and even more difficult to
present in a succinct form.

Simulations are used to conduct experiments, the results
of which are used to support the decision-making process. As
in any other experimental process, statistical analysis plays a
key role from problem formulation to the resulting decision.

With respect to the simulation modeling process,
statistical procedures are especially key in the following areas:

- Collection and modeling of input data.

- Process modeling (e.g. service times).

- Design of the simulation experiment.

- Model validation.

- Presentation of output data.

- Sensitivity analysis.

- Interpretation of results.

- Forecasting.

- Decision-making.

There has been much research conducted in each of these
areas, some of which may not have been directed specifically
towards the simulation environment, but the results and
techniques of which can be applied to simulation. One area
that has received some attention in recent years is simulation
output data analysis [Law 1983]. Because of the stochastic
nature of most simulations, this area is critical to
understanding the dynamics of the simulation model and the
relationship of system components, correctly interpreting the
results of the simulation, and making statistically valid
decisions.

The purpose of this paper is to raise the awareness of
current, and potential, interactive simulation users, with
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respect to some of the statistical pitfalls in the interpretation
and presentation of the output of interactive simulations. It
attempts to raise some apparently neglected issues in this
regard. After establishing a baseline definition of interactive
simulation, those areas in which statistical analysis plays a role
in the interpretation of simulation output, are briefly
summarized. A simple example is used to demonstrate how
rraditional end-of-run statistics can be misleading for a
simulation model modified in mid-run. Finally, some possible
directions for future research are offered, which might address,
and redress, this potentially dangerous trend.

2. INTERACTIVE SIMULATION

The word interactive has taken on many different
meanings with regard to simulation. On the one hand,
interactive simulations are those in which the user can build or
modify a simulation model through some pre-processor
program, which guides the user through the model-building
process. These programs, such as ISIM [Hay and Crosbie
1984), use an interview approach, asking the user a series of
questions, the responses to which define the model structure
and parameters. Others, such as DYNANET [Matwiczak and
Talavage 1980] use icons and symbols which the user
assembles in a prescribed manner to represent the system
under study. The end result in either case is the same. The
interactive program assembles a model in some simulation
language, which is then executed to termination. The user
cannot interact with the model while it is running without
stopping and restarting the simulation.

Another approach to interactive simulation is via
animation and interactive graphics. Some simulation packages
present the model in the form of an animation, either as it is
executing, as does SAINT PLUS [Micro Analysis and Design
1989}, or as a post-process, such as in TESS [Standridge and
Pritsker 1987]. SAINT PLUS allows the user to observe the
dynamics of various model parameters by means of
histograms, meters, etc. Thus, the user realizes an appreciation
for the dynamics of the simulated system and can visually
identify potential problems, such as choke points and blocking,
as the simulation is running. Some of these same simulation
packages permit the user to stop the model as it is executing,
change one or more of the model parameters, and continue the
simulation run, as described by Gilman [1985].

Finally, a third type of interactive simulation is being
manifested as a result of the work in Artificial Intelligence
(AI). The application of Al techniques and object-oriented
programming is providing for a greater scope of interaction.

An objective of marrying Al and simulation is to enable
the simulation model and database to learn from each
simulation run, user query, etc. This adds a new dimension to
the term interaction, since now the simulation is not only
interacting with the user, it is also interacting with its own
history via the model information base.

For purposes of this paper, interactive simulation is
defined to be any program in which the user can suspend
execution of the model, modify one or more parameters,
including the model structure, and resume model execution. In
this context, the interaction could be via graphics or some
other form of interrupt. The simulation eventually terminates
at some predefined time or upon meeting some specified
condition.

The benefits of interactive simulation, to both the
simulation analyst and the user, are many and may include:

- Greater control of the simulation run.

- Easier model verification.

- A better sense of the system dynamics.

- Enhanced presentation.

However, there are potential dangers hidden in the
interpretation of interactive simulation results which, if left
unheeded, could result in faulty decision-making based on
erroneous information.  Ultimately, decision-makers' con-
fidence in simulation modeling as a valid decision tool may be
shattered.
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3. STATISTICS AND OUTPUT ANALYSIS - A QUICK
SUMMARY

Many approaches to the analysis of simulation output data
have been offered over the years, depending on how the data is
characterized by the analyst. For example, see Fishman
[1978], Law [1983], Kelton [1985], or Kleijnen [1987].

Traditional parametric statistics look primarily at the data
as the results of many experimental observations, either
independent or correlated, and attempt to make inferences
based on parameters of the data, such as expected values and
standard deviations. The time series approach to output data
analysis considers the data to be a series of autocorrelated
values and attempts to summarize the simulation results as
such. Still other approaches to analyzing simulation output
have been suggested, ranging from factor screening techniques
[Smith and Mauro 1982; Bauer 1985] to percentile estimations
[Seila 1982] and other non-parametric approaches [Friedman
and Friedman 1985], to name only a few.

However, a common thread among all these approaches is
that they use a batch approach to the presentation and analysis
of simulation output data. That is, the data is analyzed as a
batch of observations obtained over the entire simulation run,
under system parameters and conditions which do not change
during the course of the simulation run.

The advent of interactive simulation, which permits
changes to model structure and parameters during execution,
complicates the analysis of the end-of-run output data, and in
many cases invalidates the statistics used to describe the
collected data. The data accumulated at the end of a
simulation run is no longer based on the same assumptions,
interactions, and distributions established at the beginning of
the run, nor can it be characterized by the assumptions and
parameters in effect at the end of the simulation. Changing the
simulation model parameters during execution gives additional
meaning to the word transient with respect simulation output
data. Assumptions about stationarity, normality, etc., become
even less relevant, but no less important, in interactive
simulation.

4. AN EXAMPLE

To illustrate the difficulty of correctly interpreting end-of-
run results of a simulation which has been changed on-the-fly,
four cases of a simple M/M/1 queue are simulated in SLAM II.
For each case, the customer interarrival times are
exponentially distributed with a mean of 1.0 time units. Each
simulation is run until 2000 customers have been serviced. In
the first and second cases, the customer service times are expo-
nentially distributed with a mean of 1.0 and 0.5 time units,
respectively. In case 3, the first 1000 customers are assigned
and exponential service time with a mean of 1.0 time units.
The second 1000 customers have service times that are
exponentially distributed with a mean of 0.5 time units. In the
fourth case, the assigned service times were reversed from case
3; that is, the first 1000 customers had mean service times of
0.5 time units, while the second 1000 customers were serviced
at arate of 1 per time unit.

Cases 1 and 2 were executed to establish a frame of
reference for the primary demonstration cases, 3 and 4. Cases
3 and 4 represent an interactive simulation which is interrupted
after 1000 parts have been serviced, the future service times
distribution is changed, and the simulation allowed to execute
to completion. Table 1 summarizes the differences between
the exponentially distributed service times for each case.

In all four cases, common random number streams were
used to assign inter-arrival times and service times, so that the
order of customer arrival and assignment of service times was
consistent between all the cases. Selected results of each
model run, as extracted from the SLAM II Summary Report,
are summarized in Table 2.

Without statistical analysis, one can see that the results of
cases 3 and 4, as measured by key parameters of a queuing
system, are significantly different from each other. If either
case 3 or case 4 had been run as an isolated experiment using
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Table 1. M/M/1 Mean Service Times

Case 1 Case 2 Case 3 Case 4
Mean 1.0 0.5 1st 1000 1st 1000
1.0 0.5
1st 1000 2nd 1000
0.5 1.0
Change | No No Yes Yes
In Run

an interactive simulation language, the inexperienced decision-
maker, or inattentive simulation analyst, might be tempted to
look at the end-of-run results, assume that the simulations ran
long enough to achieve steady-state, and accept the results
within some confidence interval.

It is a simple matter to calculate the expected values and
other descriptive statistics of various measures of performance
for cases 1 and 2, assuming steady-state conditions. However,
the analysis of cases 3 and 4 is not quite as straightforward.
Several questions are raised, the answers to which, if not
addressed properly, could adversely affect the interpretation of
the summary statistics and result in subsequent decisions based
on the faulty analysis.

A most obvious question would be, "Why are the
performance measures, such as queue length and average time
in system, so different between cases 3 and 4?" Both runs
simulated 2000 customers, half of them serviced at a rate of 1
per time unit and half at 2 per time unit. The answer lies in the
answers to subsequent questions, which themselves depend on
the amount of information presented to the analyst in the
output report.

In order to properly interpret the average queue length for
those cases in which mean service times changed during the
model execution, one would need to know the status of the
queue when the service times actually changed. The queue
length, at the time of the change, effectively becomes an
arbitrary start-up condition. Many simulation models are
started with queues initially empty and idle, and are then run
for some period of simulated time to overcome these start-up
conditions, before recording data for analysis. In interactive
simulation, the length of time needed to achieve steady-state
after changing a model parameter becomes a random variable,
which depends on the status of the system at the time of the
change. Thus, in the interactive simulation, there are more
than one set of pseudo-start-up conditions to account for in the
end-of-run statistics.

Cases 3 and 4 demonstrate another question raised in
interpreting the output from interactive simulations. "When, in
simulation time, did the change occur?" the answer to this

question is easily captured as a simulation event time, but what
is the impact on the summary statistics presented at the end of
the run? In the M/M/1 system, it is reasonably safe to assume
that the change in service time occurred earlier in simulation
time in case 4 than in case 3. Why would this be important to
us? Many of the summary statistics presented at the end of a
simulation run are time-dependent. That is, their expected
value depends on how long the variable being investigated was
in a certain state over the course of the run. Average queue
length is a good example of this. Effectively, the longer a
variable is in a given state, the more weight it carries in
determining the overall average value of that variable. Queue
lengths tended to be shorter, for shorter amounts of time early
in case 4, while they tended to be longer for longer periods
initially in case 3. The result of this arbitrary weighting is to
bias the summary statistics in some manner, unless the
parameter change time is accounted for in calculating
summary statistics.

The example presented here described a simple M/M/1
queue, which in a simulation study would be only a small
component of a vastly more complex system. What would be
the impact on the other components of the system of a simple
change? Summary statistics based on observations over the
entire simulation run provide no way to measure or highlight
this ripple effect. What about the effect of changing more than
one model parameter, or even the model structure, in the
course of the simulation run? This presents a potentially huge
data capture problem, and an even more complex analysis
problem. This is especially true if the analyst is to rely solely
on the post-run summary statistics as a basis for analyzing
system performance.  Any attempt to do quantitative
sensitivity analysis of the system becomes more difficult since
much of the important information is now confounded by the
impact of changes directly on the parameter of interest and
indirectly via the ripple effect.

It might be useful and convenient for the analyst to simple
average the changed parameters over the length of the
simulation and use this average in calculating the summary
statistics, such as taking a weighted average of the two service
time distributions used in the example. Since simulation
models represent a stochastic process, this would be neither
easy nor desirable. It is not easy for the reasons cited above
with respect to start-up conditions and time-weighted
averages. It is not desirable because the order in which the
changes to the model are made also becomes important, as
evidenced by the differences between case 3 and case 4 results.
By predetermining the order of the changes, the user is
artificially inducing a determinism and correlations into a
random process, which must also be taken into account in any
analysis.

5. SO WHAT?

If the eventual goal of ongoing simulation research efforts
is to put simulation into the hands of the decision-maker, then
it is important that we, as simulation developers, analysts, and
researchers, ensure that the simulation tools being used are
relatively easy to use, understandable, and, above all, provide
the user with (statistically) valid information and results.

Table 2. Summary of M/M/1 Queue Simulations

CASE AVG MAX
# Q-LENGTH  Q-LENGTH
1 17.75 45
2 0.403 7
3 10.02 39
4 7.88 45

AVG SRVR AVG TIME
WAIT TIME UTILIZATION IN SYS
17.39 0.98 18.4
0.394 0.494 0.89
9.78 0.742 10.5
7.72 0.731 8.4
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Interactive simulation, and the marriage of Al and simulation,
are making great strides toward more understandable
simulations that are easier to use. However, we also need to
ensure that the results presented to the user at the end of the
simulation, or at any point in the run, are meaningful and
statistically valid if far-reaching decisions are to be based on
the simulation results.

One possible simple solution might lie in modifying the
type of summary information presented at the end of a
simulation run. This information might include the times and
types of changes made during the course of the model run.
Presenting these simple events and data may at least be enough
to highlight the fact that the summary statistics need special

interpretation. It would then be up to the user to determine the -

impact of the changes.

Another potential solution might be to analyze the
simulation data as the simulation is running, accounting for
parameter changes as they occur. Most simulation languages
already do this by virtue of their data collection and storage
techniques and statistical calculations. = However, these
routines need to be modified in several ways. One mod-
ification might be to change how the summary statistics are
presented, to include presenting pre- and post-change statistics.
This may be extremely cumbersome and result in lengthy
summary reports with numerous bits and pieces of data. Most
likely, it would also require increased data storage capability.
Again, it would be up to the user to account for an pseudo
start-up conditions, determine if, and when, steady-state had
been achieved, and decipher the information that is presented.

A second approach to modifying existing programs may
be to program the statistical routines in the simulation
language to automatically account for induced correlations or
to make allowances for the changed parameters. This infers
the ability to determine, at the time of the change, how far
down time the change ripples, and what the statistical impact is
on subsequent parameters. This would possibly require a
significant increase in data storage and retrieval capability to
retain the necessary historical information. The logic involved
in implementing this analysis would not be trivial, resulting in
significant additions to already large problems, or at least
program modifications that may not yet be cost effective. This
alone implies a need to incorporate Al techniques in the data
analysis and presentation routines.

The final solution may lie in combining simulation and
statistics with AI techniques. Again, not a simple task. There
has been some success in applying Al to simulation analysis,
for example Reddy, et al. [1986] and Matwiczak [1990]. The
use of a "physicist" object in ROSS [MacArthur et al. 1985] is
an example of how the user can tailor the simulation program
to calculate only those statistics of interest. Within this object,
the programmer can encode the logic need to account for
transient analysis or interactive model changes. But this, too,
still puts the burden on the simulation user to determine what
logic is need for each simulation and how to account for any
ripple effects. Although this is a step in the right direction, it
still is some distance from putting simulation directly into the
decision-makers' hands.

Another effort in the application of Al techniques to the
analysis of simulation results is in Reddy et al. [1986]. Their
Knowledge Based Simulation system (KBS) is an object-
oriented simulation system that uses Al logic techniques to
achieve user-specified goals. Already programmed into the
logic are modules that will rate a scenario on how well it
achieves specified goals, perform a causal path analysis,
and/or perform a user-specified rule-based diagnosis. Thus,
KBS seems to point a way to including transient analysis and
reporting the impact of dynamic changes in interactive
simulations. However, work still needs to be done to ensure
that the simulation results summary is meaningful to the
decision-maker, while remaining statistically valid. The
potential still exists to make the analysis of simulation output
data more transparent to the user and present the results in
more useable form.

Parametric statistical analysis is proving difficult to
implement with Al techniques because of the amount of
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human interaction often involved [Gale 1986]. However,
Exploratory Data Analysis (EDA) [Tukey 1977] and non-
parametric techniques, when coupled with Al techniques,
might have applications in simulation output data analysis.
Improvements in computer processing capabilities and storage
technology can only facilitate solutions to the problem of
transient data analysis of interactive simulations.

6. CONCLUDING REMARKS

It would seem counter-productive and contrary to the
ultimate goal of placing valid, usable simulation tools directly
in the hands of the decision-maker if we required the
simulation program user to make special allowances in his or
her model, write additional code, or artificially limit the
experimental changes to the model. The user should not be
required to expend this added effort just to capture all the
necessary information about a model changed "on-the-fly", or
to conduct a statistically valid analysis and data interpretation.
There should be a way to relieve the user of these burdens and
yet instill confidence that the results presented at the end of the
simulation run are meaningful, complete, and statistically
valid. .

As an area for future research, the presentation and
analysis of interactive simulation output appears to be fertile
ground. The research being conducted in the application of
Artificial Intelligence techniques to simulation modeling and
statistical analysis provides a vehicle for potential solutions.
Until then, let the user beware!
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experimental design, and preparation of input data would
provide a great service to simulation modelers. During model
development and execution, many simulation languages provide
interactive software with the characteristics previously described,
but at the back end of simulation projects, there is again little
assistance for detailed experimental design, run-length planning,
and analysis of results.

If new approaches and software are developed for
supporting the complete simulation process, many more
successful simulation studies will be carried out. This is the
charter in "Interactive Simulation" that faces simulation software
developers.

|‘ DEBORAH A. DAVIS

The use of interactive simulation, in which a person
(modeler or other user of the simulation model) is able to
examine and change simulation parameters during an executing
simulation run, has been a great boost to the growing popularity
of computer simulation. However, "let the user beware" should
be stamped across the logo of simulation software, as there is
strong potential for misuse of this capability. Also, simulation
software vendors need to investigate development of interactive
software to support other tasks encompassed by simulation
studies.

Interactive simulation is a great aid to the modeler in
debugging and validating a model and in training personnel who
will operate a system, especially when concurrent graphical
animation immediately displays the effects of interactive model
changes. Short, interactive runs also may be helpful in paring
down the number of system alternatives to be fully evaluated.

However, interactive simulation runs also have inherent
dangers, especially regarding the interpretation of results of
replications in which the system was modified during the final
experimentation phase of a simulation project. In particular, once
a model has been deemed complete (i.e., bug-free and
appropriate to its purpose), the temptation to continue to play
with system settings and to attempt to analyze the results of
these runs is aggravated by the ease with which these changes
can be made.

During final experimentation and analysis, interactive
changes to simulation models should not be made. Once a model
and its supporting data have been verified, making interactive
changes to system parameters runs the risk of introducing new
bugs by specifying the wrong information or making changes at
the wrong time. Also, any experiment should be reproducible
with the software used to perform the initial runs; interactive
changes introduce a new variable in the ability to reuse a
simulation model to verify past analysis or to analyze new
alternatives.

Finally, while the term "Interactive Simulation” usually
refers to interaction with a simulation as it executes, I would
like to see both the attitude toward simulation studies and the
capabilities built into simulation software take a broader
approach to user interaction.

Many simulation packages provide interactive model
building and model execution, but provide little support for other
aspects of simulation projects. In the model preparation phase,
there is little commercial software support. Interactive software
to assist in formulation of a conceptual model, preliminary
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Simulation is a complex decision support process that
involves a range of activities. These activities include:

- Problem formation,

- Model conceptualization,

- Data collection,

- Model building,

- Verification,

- Validation,

- Analysis,

- Documentation, and

- Implementation.

All of these activities require interaction. In recognition
of this need, simulation support systems, such as SLAM II with
TESS and SLAMSYSTEM, have been developed. These
support systems have made significant use of interactive
technology. Data can now be statistically as well as visually
characterized, and models can be graphically developed, visually
verified and validated, concurrently animated, interactively
analyzed, and creatively documented.

The simulation process has been improved through the use
of these simulation support systems. Creative ideas have been
produced that would have otherwise never been generated.
Errors of omission and commission have been identified that
would have otherwise gone undetected.  Profound and
meaningful system experiences have been felt that would have
otherwise been missed. Significant and complicated cause-and-
effect relationships have been discovered that would have
otherwise gone unnoticed. Results have been implemented with
more certainty than would have otherwise been possible.

With these benefits, however, come reasons for concemrn.
Most of this concern is rightfully centered around execution and
analysis.  Inconsistent decisions, myopic judgements, over
reaction to transient behavior, over emphasis of a single run,
over promotion of subjective based analyses, nullification of
standard statistical procedures, and inability to implement are
some of the reasons behind this concern.

This is not to say that interactive modeling and analysis
should be abolished. On the contrary, it should be judiciously
used and encouraged. Simulation has gained added strength
through its use. The challenge is to leam how and when to use
this medium to better the decision making process.
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DANIEL T. BRUNNER

L B——

Traditionally, simulation modeling has been viewed as a
technique to be used in support of the decision-making process.
New tools for interactive simulation, including both interactive
model builders and interactive experimentation environments,
allow modeling to become an integrated part of the design and
decision-making process instead of a detached analysis tool. Is
this a dangerous trend?

The traditional view of simulation projects includes
phrases like "gather the data" and "present the results." This
assumes that the analysts performing the simulation "study"”
operate in a cleanly detached fashion from the system designers
and decision-makers. Thanks to interactive tools, which are
generally easier to learn than simulation languages, this
distinction is blurring. Analysts are working more closely with
design groups. Sometimes the designers themselves become the
simulation "analysts." (We use the term "designers" broadly, to
include anyone who makes design recommendations or decisions
about the current or future operation of a system.)

Unfortunately, the designers are often completely
untrained in simulation. In fact, the attraction to interactive tools
may arise because no one in the group knows how to use
traditional simulation software. Sometimes no one has even had
a single simulation class in school! In the case of interactive
simulation experimentation, designers may not care about the
statistical implications of changing a model in mid-experiment
because they may not be schooled in statistical analysis of output
in the first place. They are more interested in looking at visual
queues or point estimates of throughput or utilization and in
performing quick (yet sometimes effective) simulation
experiments by trial-and-error.

Clearly this represents an erosion of the effectiveness of
simulation as it has been practiced traditionally. "“Results," if
examined at all, will be somewhat less reliable.  The
designer-turned-analyst might not possess the knowledge to
perform a detailed simulation study, or the experience to
recognize when one is required. Also, the important operational
knowledge gained from the step-by-step process of doing a
detailed simulation study -- arguably more important than final
quantitative results in any simulation project -- is diminished,
although this effect may be offset by the increased involvement
of the designers.

Given this scenario, the future is hardly bleak for
simulation. For one thing, traditional simulation is far from
dead. Managers are increasingly aware of the benefits of
performing detailed simulation studies that include accurate
modeling of process flows and control logic, and can recognize
situations where interactive tools might fall short. On the
interactive side, it is the simulation profession’s responsibility to
recognize the emerging designer-oriented user community and
continue to promote, enhance, and successfully apply simulation
within it. As an example, the profession should seek to expand
university course offerings and industrial training in discrete
event simulation in design-related fields such as mechanical and
electrical engineering.

Can the profession help overcome the often-cited problem
of invalid statistics in an interactive experimentation
environment? The penalty imposed may not be as severe as
once thought. An uneducated user will be unconcerned about
statistics from the start, and an educated one ought to know the
difference between interactive "fiddling” - which has its place
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-- and formal experimentation. Tool builders could still assist
both types by suppressing all automatic statistical output
following any interactive change. There may not be much
difference between unused statistics, bad statistics, and no
statistics, but most would agree that bad statistics are the worst
of the lot.

Interactive simulation presents problems in many other
areas as well. Unless the interactively built model is properly
formulated (a problem area), is based on good input data
(another problem area), and is properly verified and validated
(this will probably be done partly or mostly through animation,
which is effective but not rigorous), then whatever
experimentation is performed will be of little value and might
well be dangerously misleading. Through education and better
software tools, these problems can be addressed. A little
simulation knowledge goes a long way.



