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ABSTRACT

We introduce a new approach for parallel discrete event
simulation which reduces or eliminates the possibility of dead-
lock without complex time synchronization or deadlock detec-
tion protocols. Deadlock is eliminated by restructuring the logi-
cal network representing the physical system to an equivalent
network which is deadlock free. For large networks, a full
elimination of deadlock can concentrate messages too much, so
an intermediate restructuring is used to reduce and control the
possibilities of deadlock. Our empirical studies show that small
to medium size queuing networks for which previous conser-
vative methods have failed can be simulated in parallel with
efficiencies ranging from 30 to 80 percent.

1. INTRODUCTION

Studies of conservative methods of parallel discrete event
simulation have shown that the Chandy-Misra approach of either
using null messages to avoid deadlock or using deadlock detec-
tion and recovery methods do not work well for small-scale
simulations (Reed and Maloney, 1988; Fujimoto, 1988; Wagner,
Lazowska, and Bershad, 1989). Other studies have shown that
by using look-ahead information on the logical nodes, for
example by precomputing service times on a FIFO non-pre-
emptive queuing model, and with large systems where many
logical nodes of the network are assigned to each processor,
good speedup results can be achieved (Nicol, 1988). We have
developed a method for restructuring the logical network of a
message-passing simulation which eliminates any possibility for
deadlock. This method works well for small to medium scale
simulation models which have some inherent structure, models
such as are found in manufacturing applications and communi-
cations networks. For larger models, we show how our method
can be applied to reduce the scope of deadlock, thereby making
more efficient simulations possible. In some cases, the model
itself naturally has the structure required for our methods to
apply.

This paper is organized as follows. First some theorems
about deadlock free networks, first presented in (Nevison,
1990), are discussed. In the third section, these results are
applied to create deadlock free networks. In the fourth section
we review prior results from two simple examples which have
been studied by different investigators with disappointing results
for the Chandy-Misra approach to conservative parallel simul-
ation. In the fifth section, our methods are applied to these
examples. The empirical results of our study of these two
example are given in the sixth section, with comparison to the
previous work. In section seven we summarize our conclusions
and discuss future directions of this research.
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2. CLOSED LOOP SYSTEMS

Nevison (1990) proves that certain simulation networks can
be made deadlock free. In this section those results are review-
ed and we show how any network can be restructured to be
deadlock free but provide an equivalent simulation. First some
definitions.

We represent a phenomenon to be simulated in terms of
physical processes and communications between those processes.
For example, in a manufacturing system, the processes could be
different steps in the manufacturing process, stages of transport
of items or parts between manufacturing cells, or storage facili-
ties. The communications between those processes would
represent the parts or items which move through the system or
communications such as orders for parts which also move
through the system. The simulation model is based on a logical
network of processes which mirror the physical system but
which also may include additional structure for coordinating the
simulation.

The types of process node which we work with in this
paper include the following (some of these are from Reed and
Maloney, 1988):

Server Holds a part or parts for a simulated delay
representing a step in manufacturing or
other process. May include routing cal-
culation. Always single input, single output.
Match Receives two or more different kinds of
message and holds them until a complete
set is matched, before sending out the group
or a single message in their stead. Used to
simulate the manufacture of an item from
two Oor more parts.

Linear Node Refers to any node with a single input
channel and single output channel such as a
server or match.

Fork Receives messages from a single input,
sends to multiple outputs according to
routing information in the message.

Join

Multiple inputs, single output. Serves to

bring message streams together.

Transfer Serves as both a fork and join in one node.

Transfer Pair  Refers to a Join - Fork pair with only linear
nodes on the path from the join to the fork.
We also need the concept of a Closed Loop for a transfer
or a transfer pair. A closed loop consists of an input link and
an output link on a transfer such that every message which
leaves from the output returns to that input, and vice-versa
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(with the possible exception of messages in the system at
startup time). A Closed Loop system is one in which all
multiple routing links occur in transfers or transfer pairs and all
inputs and outputs to transfers or transfer pairs are paired into
closed loops. An Almost Closed Loop system is one in which
each transfer can have at most one input and one output which
are not in closed loops, and these particular links cannot be part
of any cycle in the system.
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Figure 1. A Flexible Manufacturing System

The flexible manufacturing system shown in Figure 1 is an
example of a closed loop system which occurs directly from
the representation of the physical system (except that transfers
in the system act as delays as well as routing nodes). Each
item, either a work-in-progress tray or a parts tray, moves to
the right along the horizontal spine and on its return trip is sent
up one of the vertical branches to a manufacturing station.
WIP routes through all four stages on one vertical branch while
parts go to only the one where they are used. Completed items
and empty parts trays are routed to the right where they are
replaced in the system by fresh parts. Thus although different
items follow different routes, at each transfer the closed loop
condition is satisfied. This example is taken from (Winters,
1988).

Nevison (1990) proves that a closed loop system, or an
almost closed loop system with guaranteed replenishment on the
non-closed input, which has only one transfer can be made to
run deadlock free with an appropriate guard on the closed
loops. The simplest guard, which is sufficient, is the count
guard. A count guard is a counter for each closed loop on the
transfer which is incremented whenever a message goes out that
loop and decremented when one comes in. The transfer must
check every input before sending a message out to guarantee
correct time order of messages. But when the count on a loop
is zero, the transfer need not wait on that loop. If the transfer
is not zero, then the message will always return eventually, so
that loop cannot cause deadlock. In the case of match nodes,
the count must include checking for all the types of message
which are needed to release a message to return, but the idea is
the same.

In a logical network with more than one transfer and no
match nodes, deadlock can occur only if there are messages on
two or more transfers which cause a mutual blocking condition.
This is shown in Figure 2. Deadlock cannot occur because of
other nodes on the system. Again, with match nodes, things
are a bit more complicated, but deadlock can again be reduced
a situation where the essential interaction is between two or
more transfer nodes.

The consequence of these results is that if we can restruc-
ture the logical network for a simulation to one which gives an
equivalent simulation but which forms a single transfer closed
loop system, then that logical network is deadlock free. Con-
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item 1

item 2

Figure 2. Deadlock Between Two Transfers

sequently no time synchronization protocol whatsoever is
needed other than the logic for the guards on the transfer.
Empirical work shows that this can result in very efficient
parallel simulations.

In some situations it is profitable to replace the count
guards on the closed loops by more the complicated rime
guards. In addition to keeping track of how many messages
are out on a closed loop, a time guard keeps a record of either
a definite or an estimated next arrival time from that loop. The
time is derived from whatever look-ahead information is avail-
able from the linear nodes on the loop. For example in a non-
preemptive queuing system, the service times can be calculated
one step ahead and piggy-back around to the transfer on the
previous message, giving the transfer the information needed for
an exact next arrival time. With this information, checking an
input loop can be delayed until that projected time. In the case
where exact times are not available, estimated times which are
lower bounds can be used, as when there is a known minimum
delay around a loop. The tradeoff on whether the more compli-
cated logic of a time guard is worth it depends on the traffic in
the system and the amount of real time delay (calculation time)
which messages encounter on the loops.

3. RESTRUCTURING NETWORKS

The key new result in this paper which enables us to take

advantage of the results discussed in Section 2, is that any
logical network with no source or sink nodes which is built
from the nodes described in Section 2 can be restructured into
one which does an equivalent simulation but is deadlock free.
This is quite simple: we only need to pull all the fork, join,
and transfer nodes together into one transfer node. Every seg-
ent in the original network which consists of a sequence of
linear nodes starting and ending at a fork, join or transfer node
becomes a closed loop off the single transfer node which
remains in the modified network. Consequently we have a
closed loop system and the results cited above apply.
We discuss how some of these might be handled below.
However, many networks which arise in applications in fact are
highly structured and have few distinct linear segments, so the
few loops are reproduced by this restructuring.

Two examples from the literature which yield good results
are the central server network shown in Figure 3, with the
restructured version shown in Figure 4, and the eight cluster
network shown in Figure 5, which reduces to the single transfer
network in Figure 6.

This aggregation of routing nodes may seem to create a
"hot spot" in the network, and for large and highly intercon-
nected networks it does. In each of the restructured networks
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Figure 4. Restructured Central Server Network with I/O

we have added a node labeled IO to indicate how the input and
output are added to the system. In Section 5 we discuss our
simulation results for these two models.

The eight cluster network begins to be large for this tech-
nique to work well, as all the traffic comes through the one
transfer point. In cases such as this and in larger examples, we
can use our technique to simplify the network without com-
pletely eliminating the possibility of deadlock. For example,
the eight cluster network might be restructured as shown in
Figure 7. Here, there can be a deadlock of the type shown in
Figure 2 between two of the three transfers. However, this
type of deadlock can be avoided by using null messages be-
tween the transfers only. In order to advance time efficiently,
these null messages should use as much look-ahead information
as can be made available at the transfer. In this way, we have
a network where the synchronization messages are limited in
scope and relatively simple to handle, in contrast to using null
messages which would circulate throughout the original network.
Consequently, a parallel implementation of this system should
yield good speedups.

DeVries (1990) recommends a similar approach to reducing
the number of null messages needed in a network, although his
paper does not include any empirical results.
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Figure 5. Eight Cluster Network

Figure 6. Eight Cluster Network Restructured with I/O

4. PREVIOUS WORK

Chandy and Misra showed that a system of null messages
could be used to implement deadlock free parallel simulations
of networks under very broad conditions. They also discussed
the alternative of deadlock detection and recovery. (Chandy and
Misra, 1981) More recently, several researchers have tested the
Chandy and Misra methods on parallel computers for a variety
of different networks. For the most part these tests have been
disappointing. In both (Reed and Maloney, 1988) and
(Fujimoto, 1988) the authors conclude that for the types of
models which they tested, the conservative methods do not yield
good speedups, largely because the cost of either null messages
for deadlock avoidance or of deadlock detection and recovery
schemes outweighs the potential parallelism which can be
realized. Reed and Maloney included the central server network
and the cluster networks which we discussed above and for
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Figure 7. Eight Cluster Network Restructured with
Three Transfer Nodes

which we have empirical results. They concluded that even
with artificial computation loads inserted, by adding busy waits
to the servers in the simulation, in order to emulate a higher
computation to communication ratio than a simple queuing
model would have, the Chandy-Misra methods did not produce
good speedups. Since they measured speedup against a single
processor version of the best parallel algorithm, rather than the
standard event scheduling algorithm, these results are especially
negative.

Fujimoto had more mixed results. He concluded that in
cases where there was a high message load, reasonable speed-
ups could be obtained, but in other cases the parallel techniques
did not work well. Wagner, Lazowska, and Bershad had better
results in their experiments (Wagner, Lazowska, Bershad, 1989).
By using look-ahead techniques that were particularly appro-
priate to the shared memory architecture which they used, they
obtained very good speedups for a variety of cases. However,
their results show an anomaly which also occurred for Reed and
Maloney: as the spin delay is increased to emulate higher
computation times on each server, the speedup for the simula-
tion peaks and then decreases significantly. This occurs for the
central server model in (Wagner, Lazowska, Bershad, 1989) and
is partially explained by the structure of the model, as they
point out. But the decrease, especially with high message
loads, goes beyond these structural effects. In (Reed and
Maloney, 1988), the decrease in speedup for high spin times is
not adequately explained. We shall show that for our model
the effect of spin times is precisely what one would expect in
terms of the model structure and the computation to communi-
cation ratio: in both the models which have been tested, the
speedup improves with higher spin delays.

5. TEST CASES

We use both the central server model and the cluster model
to test our methods. Both of these were tested by (Reed and
Maloney, 1988) with poor speedups reported and the central
server model was tested by (Wagner, Lazowska, Bershad, 1989)
with good results, but with something of an anomaly for
increased spin delays. In both of these studies we do not have
true speedup values, since they compared parallel implementa-
tions to a parallel algorithm (deadlock detection and recovery)
running on a single processor. Our base for speedup is an
event scheduling implementation using a doubly linked list with
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middle pointer, searched from the top or bottom according to
which half the event should go into. McCormack and Sargent
(1981) have shown that this algorithm performs very well for
short event lists such as we have for these examples. In addi-
tion to giving speedup values for parallel implementations, we
also give the results for the parallel version running on a single
processor. Since these values are always less than one, the
speedup values would be significantly better if the same
methodology as Reed and Maloney or Wagner et. al. were used.
Both models use servers with exponential service times,
mean time 1 unit with simulation runs for 10,000 time units.
In the central server model we also used simulated delays of 1,
3, 3 on the server and two disks respectively, in order to ba-
lance the load across processors (since the central server sees
three times as many messages as each of the disks). The
branching at the one fork in the central server model is done
with equal probabilities, just as it is in both the studies referred
to above. (See Figure 3.) Two cluster models were tested: one
with four clusters of two servers each, as shown in Figure 8
and restructured in Figure 9; the other with eight clusters as
shown in Figures 5 and 6. In the cluster model the branching
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Figure 8. Four Cluster Network

follows the Reed and Maloney model, a probability of 1/2 of
recycling on the same cluster and equal probabilities for each of
the other clusters. In both models, we compute the next des-
tination on the server and the transfer is purely a routing
mechanism, not an addressing node. If the fork nodes in either
of these models were to have simulated delays, these could
easily be built into our model as well. Since they do not, the
single transfer network which we derive is fully equivalent to
the original model in each case.

Simulation runs for various loads, the number of jobs in the
system, were done. In addition, we added artificial spin delays
to the servers to emulate higher computation loads which would
be found in some simulation applications. In both our models,
the typical simulation statistics for each queue are kept, namely:
total time spent in the queues, busy time for the servers, and
number of customers or jobs served. Thus we are able to
calculate statistics such as average wait, average queue length,
and utilization for each server.

Our study was carried out on a network of T414 trans-
puters. Each transputer is a high speed RISC microprocessor,
with integer speeds slightly faster than an Intel 80386 (both
running at 20 MHz)(Stiles, 1989). In addition, the transputer
has been optimized for the parallel language Occam 2, based on
Hoare’s CSP (Hoare, 1979). Each transputer has four high
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Figure 9. Restructured Four Cluster Network

speed (20 Megabits per second) bidirectional IO links which are
connected to other transputers to form the network. In our
study both the event scheduling version and the parallel ver-
sions were coded in Occam 2. Because the T414 transputers
do not have numeric coprocessors the floating point calculations
are done in software, adding to the computation load. The
transputer network is hosted by an MS-DOS microcomputer.

For each model the network
was connected to match the
logical network as closely as
possible. The empirical results
for the central server include
parallel versions running on
one, two, three, and four pro-
cessors, as shown in Figures 10,
11 and 12. The four cluster
model is run on nine pro-
cessors, one for each server and
one for the transfer and 1/O,
and the eight cluster model is
run on Seventeen processors.
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6. EMPIRICAL RESULTS

For the central server we have a series of results indicating
speedup values for one to four processors with the parallel code
as measured against the event scheduling algorithm. These are
plotted for a range of load values from 1 to 40, which shows
how the speedup increases with higher message densities. The
load is the number of jobs in the simulated system. In all
cases, of course, a single message means the whole simulation
is serial, so the parallel versions show the same running time as
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the single processor parallel version. In all cases the speedup

reaches a saturation point and levels off, showing the critical
number of messages for keeping the nodes processing the
servers constantly busy. The results for this model are shown
in Figures 13 through 16.
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In Figure 13 we see that for no spin delay, even two pro-
cessors capture most of the parallelism, and that the maximum
speedup, for four processors, levels off at about 1.6 with a load
of 8. The second graph, Figure 14, adds a 1.5 msec. delay to
the servers each time they execute. In this case, as Wagner et
al. observed, the maximum speedup should be about 1.67, since
the central server has three times the load of the other two
servers. We see that even two processors achieve most of this
t;Zotential speedup, and the fourth processor adds nothing signi-
icant.

In the third graph, in Figure 15, we use a spin delay three
times as large for the peripheral servers, so the potential load
for each logical server node is equal. For two Processors, we
cannot expect anything more than a 1.5 speedup, since with the
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static allocation of the network, one of the nodes has twice the
load of the other. Three nodes achieve all the rest of the
speedup available, which still only just over 1.5. This is due to
the nature of the model and the fact that the logical nodes are
statically assigned to processors. Although the computation
load is balanced among the three logical nodes, the simulated
traffic is not balanced. The simulation statistics show that the
average queue length is 0.16 on the two peripheral servers.
This means that when the transfer sends them a job, it is
usually the only one there. Consequently, when using a count
guard, as we are for this series of experiments, the transfer
must wait for that job to return before it can process another
message. This sequentializes the computations on the peripheral
servers, resulting in lower parallelism and speedup. This ex-
ample demonstrates how the structure of the model can limit
the speedup available.

Figure 16 shows the graph for the model with both the spin
delay and the simulated service times in balance. Since the
simulated loads are balanced, as the number of messages in-

creases, the likelihood of serialization observed before dimin-
ishes, and the model approaches the maximum possible speedup
of three. The peak speedup is 2.4 for three processors, an
efficiency of 80%.

These speedup results are much better than those given in
(Reed and Maloney, 1988) and compare quite well to those in
(Wagner, Lazowska, Bershad, 1989).
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The results for the four cluster model run on nine pro-
cessors is shown in Figure 17. The eight cluster model run on
seventeen processors is shown in Figure 18. The results show
two chief characteristics: In both cases the speedup for the
model with no real delay is very low, demonstrating the "hot
spot” effect of pulling all routing into a single transfer node.
Second, for both models the speedup increases as the real delay
is increased and is quite good for a real delay of 10 ms per
server. This indicates that this method would work well for
models with a large computation to communication ratio on
each node. The models yield efficiencies of 80% and 56%
respectively for the highest loads tested.

In both the central server model and the cluster models,
there is no anomalous decrease in speedup as the real delay is
increased, as has occurred in other methods (Reed and Maloney,
1988; Wagner, Lazowska, Bershad, 1989).
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7. CONCLUSIONS

We have shown that any logical network can, in principle,
be restructured to a network which produces an equivalent
simulation but is deadlock free when run in parallel in a con-
servative fashion. This enables us to simulate small to medium
models in parallel with deadlock free logical networks, thus
achieving very good speedups.

For larger systems, our method of restructuring should
enable us to produce networks in which deadlock avoidance
mechanisms can be used without the effects of flooding the
system with null messages which has been observed in previous
studies. We currently are developing simulations of larger
models to test this hypothesis. Our restructuring technique can
be used to advantage along with other conservative methods to
help make large scale parallel simulations more effective.
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