Proceedings of the 1990 Winter Simulation Conference
Osman Balci, Randall P. Sadowski, Richard E. Nance (eds.)

TIME-BASED PERFORMANCE EVALUATION OF PROTOCOLS FOR DISTRIBUTED SYSTEMS:
AN ALTERNATIVE TO MESSAGE COUNTING

Phil Kearns

Department of Computer Science
The College of William and Mary
Williamsburg, Virginia 23185

ABSTRACT

Protocols for distributed systems are complex due to their intrin-
sic concurrency and asynchrony. Given two protocols for a certain
task, a systems programmer is faced with the decidedly non-trivial
task of evaluating the performance of the alternatives in a specific
system context. A scan of the literature generally results in “per-
formance evaluation” which is expressed as asymptotic worst-case
number of messages required for implementation of a protocol (or,
equivalently, asymptotic worst-case number of bits transmitted). We
contend that, in many practical contexts, such message counting is
not particularly informative. We present a performance evaluation
of two protocols for distributed first-come-first-served service. This
study utilizes GENSIM, a general purpose facility for simulating
distributed systems. The performance metric of choice is real time,
a natural metric which is easily handled by simulation but which is
only tangentially related to message counts.

1. INTRODUCTION

A distributed system consists of a group of relatively au-
tonomous computing nodes connected by links of a communica-
tions network. A computation on this system is viewed as a group
of processes which are assigned to, and executed on, the nodes. In
general, the only mechanism by which two processes may commu-
nicate is message-passing: we cannot assume the existence of shared
memory between any two processes. Further, and significantly, we
make no assumptions about the relative speeds of processes execut-
ing on the distributed system and the speed of message transmission
on the various links. There is no global physical clock accessible
to the nodes of the system. However, we do assume well-ordered
message passing between all pairs of processes: messages from a
source process to a destination process arrive in the order in which
they were transmitted.

The degree of concurrency in such a system presents a real
problem for performance analysts in that a single event and several
events simultaneously performed can take the same time. For exam-
ple, in a point-to-point network, the transmission of a single message
over a single link may be done concurrently with other transmissions
on other links. In a broadcast medium network, a single broadcast
message can be delivered physically to all nodes in roughly the
same amount of time as a single message from one node to an-
other. The degree of concurrency is a difficult statistic to produce
by analytic means. It depends on explicit, deterministic interactions
among processes. As a result, protocols for distributed systems are
often evaluated in asymptotic worst-case terms. Message counts, or
counts of the number of bits transmitted in messages, are typically
used in such analyses. We have found that worst-case analysis may
be misleading, but that, given the difficulty of expected-case anal-
ysis in the presence of asynchrony and concurrency, it is typically

441

Jeffery E. Payne

BDM International, Inc.
1300 N. 17th St. #950
Arlington, Virginia 22209

the only analysis available in the literature.

This paper presents two protocols which implement a common
facility in a distributed system. Worst-case analysis is shown to be
inaccurate in general, and a simple expected-case analysis is shown
to be pessimistic in certain network contexts. Simulations of the
protocols permit a relatively straightforward performance compari-
son to be made. An optimization of one protocol, not amenable to
worst-case or expected-case analysis, is developed and evaluated.

2. DISTRIBUTED ORDERED SERVICE

Many distributed systems are structured such that a resource is
centrally managed by a single designated process, the server for that
resource. Other processes, clients of the server, access the resource
by passing request messages to the server. Such a system, consisting
of server S and clients C; and C,, is shown in Figure 1.

A

5 S
Figure 1. Centralized Resource Management

This system passes three messages. C; sends a request for
service to S in message m;. It then sends message m; to C,. After
C, has received my, it sends a request to S in ms. In our example,
S receives mj before it receives m;. This scenario is consistent
with the well-ordered message passing assumption in that ordering
is required only between pairs of communicating processes. From
the perspective of S, two request messages have been received.
Service in the arrival order may result in inconsistent behavior of
the overall system if components of the system maintain state. The
essential cause of this potential inconsistency is m;. This message
may causally affect the computation of C,, including the nature of
the service C, requests of S in m3. We require a protocol which
guarantees that service is performed in the order in which requests
are made.

Lamport [Lamport 1978] formalizes this problem, and provides
a framework for a solution. He views a distributed program in ex-

P.'Keams and J.E. Payne

ecution as a set of events, £. That set must include all message-
passing events and others as appropriate to the application. In Fig-
ure 1 the relevant events are depicted by the solid circles on the
process time lines; they are labeled e; through e¢. Lamport further
defines a partial order on the set of events

—:EXE,

as the smallest relation such that for e,f,g € £€: @) e — fife
precedes f within the same process; (b) e — f if e is the transmission
of a message and f is the receipt of that message; and (c) if e — f
and f — g, then e — g. It is this partial order which naturally
defines “before” and “after” in a distributed system: e is before f if
and only if e — f. Events which are incomparable under the partial
order are concurrent.

Given the partial order, it is clear that e; — e4 in Figure 1.
Thus the service request conveyed in message m; is made before
the request conveyed in message m3. S needs more information
before it can decide to serve a request.

2.1 Logical Timestamp Protocol

T (e) is the logical timestamp associated with an event e € £ if
T (e) is a natural number, and fore,f € £, ¢ — f D T(e) < T(f).
Several techniques for implementing logical timestamps have ap-
peared in the literature [Lamport 1978; Ricart and Agrawala 1981].
The essence of the technique is that each processor maintains a local
integer, its local logical clock. It increments that clock between all
local events. It also appends the logical clock value at the time of a
send to the message transmitted. On receipt of a message, a process
is obligated to set its local logical clock such that it is greater than
the minimum of its current local logical clock value and the time
value appended to the message.

If the distributed system implements logical timestamps, the
protocol for distributed ordered service is relatively straightforward.
A client request must be logically timestamped. Let M =<T,i,R >
denote the composite message where T is the timestamp, i is the
index of the client making the request, and R is the request itself.
Upon receipt of M, S must assure that there is no message M’ =<
T',j,R" > in transit, where T’ < T. This may be achieved by
having § multicast a query to all C; : j # i. When a client receives
this request, it sends a timestamped acknowledgment, an ACK, to
S. The server may honor the request conveyed in M if it has the
smallest timestamp of all unprocessed requests known to S, and if
a message with a timestamp greater that T has been received from
all nodes in the system. A detailed presentation of such a protocol
may be found in [Schneider 1982].

Figure 2 shows the protocol applied to our example. The small
integers on each process line are the local logical times. The dotted
lines denote messages sent and received as part of the query/ACK
handshake. Note that when S receives ms at time 5, it cannot serve
the request since it has not received a message from C; timestamped
after 4. However, when it receives m, it may serve it immediately.

2.2 Immediate Ordered Service

In [Kearns and Koodalattupuram 1989] we present an alter-
native to the logical timestamp approach to ordered service. That
work is based on a generalized timestamp technique called vector
time [Fidge 1988a,b; Mattern 1988] . A vector time timestamp for
a system of N clients is an N-tuple of natural numbers. When a
local event of C; takes place, Ti[i], the i-th entry in C;’s vector must

442

10 m1 can be
served

46
5 m3 cannot
be served

C. S

2
Figure 2. Logical Timestamp Protocol

be incremented. If C; sends a message, T; (the current local vector)
must accompany the message data. If a client receives a message,
it must update its local vector such that each component is greater
than or equal to the corresponding component in the vector which
accompanies the message.

If we maintain vector time in the distributed system (events are
the transmission of server request messages), then the service proto-
col is somewhat simpler. The server maintains its own time vector.
The ith component of the server’s vector records the ith compo-
nent of the vector timestamp on the last request from C; which was
served. Upon receipt of a request message from C;, if any com-
ponent of the timestamp of that message, excluding the ith com-
ponent, is strictly greater than the corresponding component of the
server’s vector, then the request is deferred. Otherwise, the request
is honored immediately. A deferred request will be served when
the server’s vector is updated, as a result of other services, such
the timestamp of the deferred request is component-by-component
less than or equal to the server’s vector, excluding the component
associated with the originator of the request.

Figure 3 shows the immediate ordered service protocol applied
to the example. Note the absence of the query/ACK message pass-
ing.

2.3 Performance Comparison

We have presented two alternatives for providing ordered ser-
vice to a centralized resource in a distributed system. A natural
question is how the two protocols differ in terms of performance.
The logical timestamp protocol, hereafter abbreviated LTP, requires
shorter messages in that a single integer suffices as a timestamp
as opposed to a vector of N integers. Shorter messages result in
faster message transmission. Although the immediate ordered ser-
vice protocol, 10S, does produce longer messages due to the longer
timestamps, it avoids the query/ACK interaction between S and all
of the clients on every service request. If a distributed computation
generates n; server requests and n. client-to-client messages, then a
worst-case asymptotic analysis of the number of integers passed in
messages in order to implement each protocol is:

LTP: O(n) + O(Nn), and

Time-Based Performance Evaluation of Protocols for Distributed Systems: An Alternative to Message Counting

|)

3
[1,1] m3 served
[1.0] m1 served

[0.0]

m3 deferred

(1.0] - gloo

1.0]

> S

Figure 3. Immediate Ordered Service Protocol

10S: O(N(ne + ny))

In these terms, IOS is clearly inferior to LTP. We contend, how-
ever, that this analysis is simplistic, particularly if one is interested
in performance metrics which are time-based. Response time and
resource utilization are two important such metrics. Further, op-
timizations which accommodate expected behavior are simply not
amenable to worst-case analysis. It is at this point that the analyst
is faced with a choice: analytic performance evaluation which is
likely to be intractable or simplistic, given the asynchrony and con-
currency in the system, or simulation. In this paper we describe our
simulation approach to this problem.

In order to get a feel for the quantitative nature of the relative
performances of LTP and IOS, we develop a “back of the envelope”
analysis. Service at S is assumed to be instantaneous. The time
required to transmit a message of length / from any node to any
other is a+ [: there is a network acquisition latency of « time
units, and a message is propagated from sender to receiver at the
rate of 1 integer per unit time. Let /; be the mean length, in integers,
of a server request message, and /. is the mean length of a client to
client message.

Our performance metric of interest is the real time expended in
message passing. This is a direct indicator of the overhead imposed
by a protocol. Let T; denote the total real message passing time of
the distributed computation under 1I0S, and T, is the real time of
message passing under LTP. We may show that

Te=nlle+14+a)+n(ls+1+ a)+2n(2+),

and
Ti=n(l;+ N+ a)+n(ls+ N + a).

The expression for T, assumes that the multicast of N — 1 queries
and the return of the ACKs requires as much time as a single round-
trip message transmission. We also assume that a query or an ACK
is conveyed in a message data field which is one integer long. Thus
T, is likely to be quite optimistic. The reader is referred to [Kearns
and Koodalattupuram 1989] for a more detailed derivation of these
quantities.

The condition under which IOS outperforms LTP is T; < Ty.
Letting

p = ngne,

443

we may establish that T; < T, for networks in which there are N
clients, where

p2a+5) +1
N <N (ap)= ————.
<N'(a,p) P

N* may be viewed as a threshold: a system with more than N*
clients should use LTP instead of IOS in order to reduce the real
time overhead associated with ordered distributed service. Figure 4
shows the predicted thresholds for specified values of « and p.

0=100.0

103

102

N*(a.0)

10!

100

Figure 4. Predicted Network Size Threshold

Figure 4 is illuminating in that it stands in contradiction to the
asymptotic worst-case integer counting described above. It gives us
some preliminary indication that IOS may, in fact, be a worthwhile
protocol for ordered service. This indication is the principal motiva-
tion of a detailed simulation-based performance evaluation of I0S
and LTP.

We emphasize that the domain in which IOS is predicted to be
superior to LTP is not unrealistic. For a value of & near 1000 and p
near unity, immediate service is superior to logical timestamps for
networks of up to about one thousand nodes. In local area networks,
we expect the physical transmission of an integer to require about 10
psec. In 4.2bsd Unix systems, the sendmsg kernel call is the user-
level mechanism by which a process transmits a datagram. The CPU
time expended on a VAX-11/750 during an execution of sendmsg
has been measured as roughly 10 msec [Cooper 1985]. Since the
execution time of sendmsg would be a component of @, we may
infer that a value of p near 1000 would not be unusual for distributed
systems consisting of hosts connected by a medium-speed local area

* network.

3. SIMULATION METHODOLOGY

GENSIM [Payne and Kearns 1990] is a general network sim-
ulation facility which models a distributed system at the level of
nodes and virtual links between those nodes. Networking consid-
erations at or near the physical layer are not handled in GENSIM.
Instead, attributes such as link latency, link transmission speed, link
error probability, and a distinction between broadcast networking
and point to point networking are supported. Essentially, GENSIM

P. Kearns and J.E. Payne

takes the place of the network in that application code which uses
message passing to implement the distributed protocol interact with
the simulator as opposed to the actual networking interface provided
by a host operating system.

In our simulation studies, a distributed computation was char-
acterized by three parameters:

o p,
o A, the per-node mean message transmission rate, and
o N, the number of clients.
A network link between node i and node j is characterized by:
o aj, the link-specific transmission latency,
o &, the link-specific error probability, and
o T, the link-specific propagation rate (integers/sec).

The above quantities are specified as parameters to a run of a simula-
tion under GENSIM. On a given message transmission from a client,
p determines the relative frequency with which a server message is
generated as compared to a client message. If a client message is
to be sent, the destination is equally likely to be any other client
process. For this study, A is fixed at 100 messages per second per
node (a heavily loaded system). ¢;; = « is independent of i and ;.
We assume a fault-free system. 7;; is independent of i and j and is
1.25x 10 byte/sec. N, p and arare parameters of our study. A more
general set of simulations are described in [Payne 1989]; however,
those results do not differ markedly from what is presented in this

paper.
4. RESULTS

Given the indication that the average-case real time delay im-
posed by IOS may be less than that imposed by LTP, we constructed
a series of simulation experiments which test that indication in the
presence of more realistic system assumptions. We emphasize that
the plots of in Figure 4 show the behavior of an analytically derived
N*(a, p). The plots in this section present the results of our suite
of simulation experiments.

4.1 Broadcast Network

Our initial experiment is conducted in the context of a broadcast
network. A broadcast network is characterized by the fact that only
a single message may be in transit at any time. Network access is,
in effect, a critical section implemented in hardware. For various
values of N, a, and p, simulations of IOS and LTP were replicated
1000 times. On a given replication, 500 requests were serviced. The
output of each simulation was the total real time of the synthetic
distributed computation. The real time outputs were processed to
obtain a 95% confidence interval of the difference (time for LTP
minus the time for I0S) between the two sets of times. If the
95% confidence interval is a range which is strictly positive, then
we are 95% confident that IOS outperforms LTP for a given set
of parameters. If one plots the minimal value of N for which the
95% confidence interval is strictly positive for a given value of &
and p, a graph virtually identical to Figure 4 results. This is not
totally unexpected in that a broadcast medium network restricts the
degree of concurrent operation in the system. In fact, many of the
assumptions which we made in deriving the analytic value of N~
actually hold in this domain.

444

4.2 Point-to-Point Network

We next turn our attention to an environment in which more
concurrency is possible: a point-to-point network in which each
link may be active simultancously. A set of simulations, similar to
those described in the previous section, was done. The results are
presented in Figure 5. The compression of the lines towards higher

103 —
462fo
=
//e/://o
P
2 L /ly
10 T//
R /P
Q Il
$ KEY:
2 I o p=0.01
P I 0 p=0.1
x ,O=1.0
100 I + p=10.0
J & p=100.0
oL
10 1 Il 1 1 1 L [l 1]
0 100 200 300 400
o

Figure 5. Point-to-Point Network (Heavy Load)

values of N is expected, and is due to the increased concurrency
in the system. Several messages in transit on separate links cost
only as much, in real time terms, as does a single message. It is
interesting to note that all of the lines are tending to lie along the
asymptote

PllrgnoN (e,p) =2a+ 5.

In some sense, the concurrency achieved through the use of multiple
links drives the performance of the system towards the optimal.
Figure 6 shows the same point-to-point network under a lighter
load: A is one message per second per node. The reduced load
results in less opportunity for concurrent message passing and an
attendant degradation in performance.

4.3 The Sparse Vector Technique

The obvious optimization of IOS involves reducing the length
of the vector timestamps by sending only a list of those compo-
nents which have changed since the last communication between
two nodes. Specifically, if fewer than N/2 vector components have
changed since the last message from a source to a destination, a list
of pairs of integers is sent in place of the vector timestamp. The
first integer in each pair denotes a component index; the second is
the new value of that component. If at least N/2 components have
changed since the last communication, then the entire vector times-
tamp is passed in the message. As such, we can do no worse that
the full vector approach. Of course, this technique does not change
the asymptotic analysis in the least. In the worst-case, the sparse
vector approach is worthless—it is the average case under realistic
loading which interests us. Through a set of GENSIM simulations,
we produce the plot of Figure 7.

Time-Based Performance Evaluation of Protocols for Distributed Systems: An Alternative to Message Counting

103
F

102 |

N*(a,p)
<

10" I

=
b+ xO0N
N

0572
(@)

i

ReRoReReokel

100 -

0 100 200 300 400

Figure 6. Point-to-Point Network (Light Load)

300L Full
250 p=0.1
® 200
[}
5 p=1.0
< 150 Pl
S
S

100 PR = — - 5 p=0.01
’e

50

Figure 7. Sparse Vector Size

This plot, derived in the context of a heavily loaded point-to-
point network, shows the size of the sparse vector as a function of
p and N. The value of « has little impact upon this plot [Payne
1989], and its value is unity in the plot presented. Each point in
the plot was produced by one replication of a simulation in which
100,000 requests were served. The point is the average size of the
sparse vector over all messages passed in the simulation. Clearly,
extreme (large and small) values of p are handled quite well by the
sparse vector technique. It effectively reduces the size of vector
timestamps to a fraction of what they would normally be. Hence, it
reduces the effective “size of the network” proportionately, making
IOS even more attractive.

5. CONCLUDING REMARKS

It is disturbing that the development of many protocols for

445

distributed systems is based upon a performance metric which is
the asymptotic worst-case number of messages required to imple-
ment the protocol. We have shown that such analysis may be of
little practical worth, resulting in false conclusions about the rel-
ative performance of competing protocols. We have also shown
that expected-case analysis of time-based metrics may be quite pes-
simistic when a high degree of concurrent activity is possible in
the system. Simulation offers a straightforward means of acquiring
reasonable expected-case time-based metrics. The use of GENSIM
to structure set of simulations produces metrics which argue con-
vincingly in favor of IOS over LTP for most reasonably small and
reasonably fast networks. Conventional analysis does not permit
derivation of this intuitive result.

ACKNOWLEDGEMENTS

This research was supported in part by the National Science
Foundation through grant CCR-8705603.

REFERENCES

Cooper, E.C. (1985), “Replicated Distributed Programs,” In Pro-
ceedings of the Tenth ACM Symposium on Operating Systems
Principles, 63-78.

Fidge, C.J. (1988a), “Partial Orders for Parallel Debugging,” In Pro-
ceedings of the ACM SIGPLANISIGOPS Workshop on Parallel
and Distributed Debugging, 130-140.

Fidge, C.J. (1988b), “Timestamps in Message-Passing Systems
Which Preserve the Partial Ordering,” In Proceedings of the
Eleventh Australian Computer Science Conference, 56—66.

Kearns, P. and B. Koodalattupuram (1989), “Immediate Ordered
Service in Distributed Systems,” In Proceedings of the Ninth In-
ternational Conference on Distributed Computing Systems, 611—
618.

Lamport, L. (1978), “Time, Clocks, and the Ordering of Events
in a Distributed System,” Communications of the ACM 21, 7,
558-565.

Mattern, F. (1988), “Virtual Time and Global States of Distributed
Systems,” Technical Report, University of Kaiserslautern, Kai-
serslautern, FDR.

Payne, J.E. (1989), “Ordering Events in a Distributed System: A
Performance Evaluation,” M.S. Thesis, Department of Com-
puter Science, The College of William and Mary, Williamsburg,
VA.

Payne, J.E. and P. Kearns (1990), “GENSIM: A Simulator for Dis-
tributed Protocols,” In Proceedings of the 1990 Summer Simu-
lation Conference, to appear.

Ricart, G. and A.K. Agrawala (1981), “An Optimal Algorithm for
Mutual Exclusion in Computer Networks,” Communications of
the ACM 24, 1, 9-17.

Schneider, F.B. (1982), “Synchronization in Distributed Programs,”
ACM Transactions on Programming Languages and Systems 4,
2, 125-148.

