Proceedings of the 1990 Winter Simulation Conference
Osman Balci, Randall P. Sadowski, Richard E. Nance (eds.)

SIMULTANEOUS EVENTS AND DISTRIBUTED SIMULATION

Bruce A. Cota
Robert G. Sargent

Simulation Research Group
Syracuse University
Syracuse, New York 13244

ABSTRACT

In this paper we examine the handling of simultaneous e-
vents in distributed simulation. We study the ordering relation
that a distributed simulation implicitly enforces on simultane-
ous events. We then give an algorithm that can be used to as-
sign priorities to processes so that the ordering relation enforced
by a distributed simulation can also be enforced in a sequen-
tial simulation. The motivation for this is that if distributed
implementation and a sequential implementation of the same
simulation were being developed, it would be necessary for the
two implementations to handle simultaneous events in the same
manner.

1. INTRODUCTION

It is well known ([Zeigler 1976; Som and Sargent 1989]) that
some tie-breaking rule is required in a sequential discrete event
simulation to ensure that the results of the simulation (that
is, the data collected from the simulation) are well defined if
simultaneous events occur. These tie-breaking rules are usually
defined by having the modeler assign priorities to specific com-
ponents of the model ([Zeigler 1976]) or to different kinds of
events ([Som and Sargent 1989]).

In a distributed simulation ([Jefferson 1985; Misra 1986]),
events may be simulated in parallel or in a different order than
in a sequential simulation, but the results of a distributed sim-
ulation are the same as the results of a sequential simulation.
In [Misra 1986], there is a brief discussion of the fact that sim-
ultaneous events must be simulated in correct order. An exam-
ple is given in which the simulation of one event influences the
simulation of a second, simultaneous event, and it is observed
that the simulation will not be correct unless the first event
is simulated before the second event. It is then stated that a
distributed simulation will simulate the events in correct order
because “distributed simulation is based on the dependency or-
der”. It is also observed that, in a sequential simulation, it is
necessary to store “additional facts” with entries in the event
list in order to ensure that simultaneous events are simulated
according to the dependency order. We are therefore lead to
ask what additional facts need to be stored with each entry in
order to ensure that a sequential simulation will have the same
results as a distributed simulation based on the same model.

There is an important reason for answering this question. If
we were to develop a distributed implementation of a simulation
language and a sequential implementation of the same language
we would need to ensure that simultaneous events were han-
dled exactly the same way in both implementations. We would
also need to answer this question if we were using a sequential
simulation to validate or to evaluate a distributed simulation
algorithm.

In this paper we study the handling of simultaneous events
in distributed simulation, and we show that, under the assump-

436

tions on model structure that are usually required for distributed
simulation, the dependency order can be enforced in a sequen-
tial simulation by using a particular assignment of priorities to
processes in the simulation model. We begin in section 2 by
introducing some basic concepts and terminology pertaining to
sequential simulation and simultaneous events. In section 3 we
discuss the handling of simultaneous events in distributed simu-
lations and show that it is equivalent to a particular assignment
of priorities to processes. In section 4 we give an algorithm that
can be used to make this assignment of priorities to processes
before a simulation begins. Of course, this cannot be done if
new processes are created during the simulation. Therefore, in
section 5 we describe how this assignment of priorities might
be made dynamically in a simulation in which processes can be
created and destroyed. Finally, in section 6, we summarize.

2. BASIC CONCEPTS AND TERMINOLOGY

A discrete event simulation can be viewed as the simula-
tion of a sequence of events, which are instantaneous changes in
the state of the system being simulated. Each event occurs at
some point in time and, in a sequential simulation, events are
simulated in order according to the times at which they occur,
so that if one event occurs at an earlier time than a second e-
vent, the first event is simulated before the second event. In a
distributed or parallel simulation, events may not be simulated
in this sequence, but the results of the simulation — that is, any
data collected from the simulation — are as if the events had
been carried out in this sequence.

A sequential discrete event simulation typically maintains
a list of events called the event list, and events in the event
list are called pending events. The simulation of an event may
change the event list by adding, or scheduling, pending events,
and by removing, or “canceling”, pending events. Each pending
event is said to be scheduled to occur at some particular point
in time. The time at which a pending event is placed in the
event list is said to be the time at which the event is scheduled.
The time at which a pending event is scheduled to occur must
be greater than or equal to the time at which the event was
scheduled. The pending event that is scheduled to occur at the
earliest point in time is called the nezt event. The simulation
is carried out by repeatedly removing the next event from the
event list, advancing the simulation clock to the time at which
the next event is scheduled to occur, and simulating the next
event.

Two or more pending events may be scheduled to occur at
the same point in time. Such events are said to be simultaneous.
Some tie-breaking rule is needed to decide which of any set of
simultaneous events is simulated first. The most common way
to do this is to use some rule that assigns a priority to each
event. When there are two or more simultaneous events, the
event with the highest priority is defined to be the next event.

B.A. Cota and R.G. Sargent

In general, a model needs a tie-breaking rule in order to be
well defined. However, as discussed by [Misra 1986] and by [Som
and Sargent 1989], the order in which a set of simultaneous e-
vents occur does not always effect the results of the simulation.
When the order in which two simultaneous events is simulated
does not effect the results of the simulation, the pair of events
is said to be independent. If a pair of simultaneous events is not
independent, then the pair is said to be dependent.

Note that a tie-breaking rule gives an ordering on each pos-
sible set of simultaneous events in the simulation. We refer to
this ordering as the tie-breaking ordering. For example, if pri-
orities are assigned to events, then one event precedes a second
in the tie-breaking ordering if and only if the first event has a
higher priority than the second event. However, if a pair of e-
vents in a set of simultaneous events are independent, then those
two events need not be related under the tie-breaking ordering.
That is, neither event need precede the other under the order-
ing. Thus, for example, independent events may have identical
priorities. In general, for a model to be well defined, we need a
tie-breaking rule that defines an ordering on every possible set of
simultaneous events that relates every pair of dependent events
in that set.

3. DISTRIBUTED SIMULATION

In a distributed simulation, different components of a sys-
tem are simulated in parallel. Each component is typically re-
ferred to as a physical process and the simulation of each com-
ponent is referred to as a logical process. We subsequently use
the term process to refer to a component of the model that cor-
responds to a physical process. Each event in the simulation is
assumed to be a state change in exactly one physical process
and is simulated by exactly one logical process, but an event
may cause messages to be sent to other processes as described
below.

In a distributed simulation, events within each logical pro-
cess are simulated in order according to the times at which they
occur. Simultaneous events from the same process can there-
fore be handled in any of the ways that simultaneous events are
handled in a sequential simulation (by assigning priorities to
events). However, in a distributed simulation, evens from dif-
ferent processes may be simulated out of order or in parallel. As
mentioned by [Misra 1986), a distributed simulation implicitly
uses the “dependency order” as a tie-breaking rule to determine
which of a set of simultaneous events is simulated first. In this
section we show that this dependency order can be enforced in
a sequential simulation by using a particular assignment of pri-
orities to processes in the model.

In this paper, we discuss tie-breaking rules that are based
on the assignment of priorities to processes. An assignment of
priorities to processes can be used for any set of simultaneous
events from different processes. We assume that some “local”
tie-breaking rule has been given for each process that can be
used to determine which of a set of simultaneous events from
that process. This might take the form of an assignment of “rel-
ative” priorities to events within that process. Note that it is
straightforward to combine an assignment of priorities to pro-
cesses with “local” tie-breaking rules. We can do this by using
the hierarchical approach to tie-breaking rules of [Zeigler 1984].
Given a set of simultaneous events from different processes, we
first select the process with highest priority from among those

processes whose events are in the set. We then use the process’s

437

“local” tie-breaking rule to select an event from that process as
the next event.

Throughout the rest of this paper, whenever we refer to sim-
ultaneous events we are referring to simultaneous events from
different processes. Similarly, when we refer to tie-breaking
rules, we are referring to tie-breaking rules to be used on sets of
simultaneous events that are all from different processes.

Distributed simulation requires algorithms that synchronize
logical processes in a way that ensures correctness. Most work
in distributed simulation is based on the algorithms discussed by
[Jefferson 1985] and/or those discussed by [Misra 1986]. These
algorithms are based on a particular paradigm of simulation
(discussed in detail in [Misra 1986]), in which logical processes
communicate only by sending timestamped messages. In this pa-
per, we discuss the handling of simultaneous events in distribut-
ed simulations based on this paradigm. The handling of sim-
ultaneous events in different kinds of distributed and parallel
simulations are discussed by [Cota and Sargent 1989] and [Cota
and Sargent 1990].

In the paradigm of simulation discussed by [Misra 1986},
processes communicate through message passing. Every mes-
sage is sent by an event and the time at which that event occurs
is said to be the time at which the message is sent. When a
message is sent, the message is assigned a timestamp that is
greater than or equal to the time at which the message is sent.
We assume that the sending of a message with timestamp ‘¢’ to
process ‘P’ causes an event from P to be simulated at time ¢
(which may do nothing more than process that message).

As described by [Misra 1986], a distributed simulation will
give the same results as a particular sequential simulation. The
sending of a message in the distributed simulation corresponds
to the scheduling of an event in a sequential simulation. The
time at which the message is sent is the time at which the event is
scheduled, and the timestamp of the message corresponds to the
time at which the event is scheduled to occur. The correctness
of the distributed simulation is ensured by simulating events
according to the dependency order, which means that whenever
the simulation of one event can influence the simulation of a
second event, the first event is simulated before the second e-
vent. (In the Time Warp algorithm of [Jefferson 1985], events
may be simulated out of dependency order, but whenever this
happens at least one of the events is “rolled back” and simulated
again according to the dependency order, so that the results of
the simulation are as if events were simulated in dependency
order.)

In this section, we say that an event ‘e’ causes a second e-
vent, ‘¢”, if e sends a message that causes €/, or if there is some
sequence of events, ‘(e1,...€,)’, such that e causes e;, for each
1: 1 <i<n-—1e; causes €41, and e, causes ¢’. Suppose that
an event ‘e;’ from process ‘P’ and an event ‘e;’ from process ‘P’
both occur at time t. Then these two events are independent
unless e; (for i = 1or2) either sends a message with timestamp
t to P; (for j = lor2, j # 1) or causes an event that sends a
message with timestamp ¢ to P;.

In order to ensure that the simulation progresses, distribut-
ed simulation algorithms generally require certain conditions on
the structure of the model to be satisfied. For example, [Jeffer-
son 1985] assumes that whenever a process sends a message, the
timestamp of that message is greater than the time at which
the message is sent. This ensures that any two simultaneous
events from different processes are independent. In this case,
no tie-breaking rule is needed to ensure that the model is well

defined.

)

Simultaneous Events and Distributed Simulation

[Misra 1986] assumes that a model meets a weaker condi-
tion. To explain this condition, we define a cycle of processes
to be a sequence of processes, ‘(Py, ... P,)’, such that for each
t: 1 <4< n, P; can send messages to P,y and P, can send
messages to P;. P, is said to be P,’s successor in the cycle,
and for each 7 : 1 <7 < n, P, is said to be P;’s successor in
the cycle. [Misra 1986 assumes that in every cycle of processes,
there is at least one process, ‘P;’, such that whenever Py sends
a message to its successor in that cycle, the timestamp of that
message is greater than the time at which the message is sent.
When a model meets this condition, [Misra 1986] refers to the
model as having the predictability property. We assume in the
remainder of this paper that every model has the predictability
property.

We say that process ‘Py’ can immediately influence process
‘P’ if Py can send a message to P, with timestamp equal to
the time at which that message was sent. Thus, a model has
the predictability property, if and only if there is at least one
process in every cycle of processes that cannot immediately in-
fluence its successor in that cycle. Suppose that we construct a
directed graph in which each vertex represents a process from
a given model specification and in which there is an edge from
process Py to process P, if and only if P, can immediately influ-
ence P,. If a model has the predictability property, there are no
cycles in this graph. In that case, this graph defines a partial,
asymmetric ordering on processes. (That is, for any two distinct
processes, either one process precedes the other under the order-
ing, or the two processes are unrelated under the ordering, but
there is no pair of processes such that each process precedes the
other.) We refer to this ordering on processes as the influence
ordering. Note that if two processes are unrelated by the influ-
ence ordering, then any pair of events from those two processes
is independent.

The reason for defining the influence ordering is that in order
for the simulation of an event ‘e;’ from process ‘P;’ to have any
effect on the simulation of an event ‘e;’ from process ‘P,’, e;
must either have a smaller time of occurrence than e, or P,
must precede P; under the influence ordering. This follows from
the fact that in order for the simulation of e; to have any effect
on the simulation of e,, €; must cause a message with timestamp
less than or equal to ‘¢’ to be sent to P,, where t is the time at
which e, is scheduled to occur. If e; occurs at time ¢, then the
message must also have timestamp ¢, and so P, must precede P,
under the influence ordering.

Because of this, we can enforce the dependency ordering
on simultaneous events in a sequential simulation by enforcing
the influence ordering on processes. That is, we can enforce
the dependency ordering on simultaneous events in a sequen-
tial simulation by simulating simultaneous events from different
processes in order according to the influence ordering on the
processes to which those events belong.

Note that the use of the influence ordering as a tie-breaking
ordering actually gives a stronger ordering on simultaneous e-
vents than that given by the dependency ordering. That is,
event e; from process P; and event e, from process P, may be
independent even if P, precedes P, under the influence ordering.
In that case, the use of priorities based on the influence ordering
forces e; to be simulated before e, even though they are actually
independent. Since the two events are independent, however,
they may be simulated in either order and so the correctness of
the simulation is not effected.

438

4. STATICALLY ASSIGNING PRIORITIES TO PRO-
CESSES

In this section, we give an algorithm that can be used to
assign priorities to processes in such a way that whenever one
process precedes a second process under the influence ordering,
the first process is assigned a higher priority than the second pro-
cess. However, this algorithm must be used to assign priorities
to processes before the simulation begins, and so the algorithm
cannot be used if new processes may be created during the sim-
ulation. The situation where processes are created dynamically
during the simulation is discussed in section 5. We also note
that in order to use this algorithm, we need to determine, at the
start of the simulation, which processes can immediately influ-
ence which other processes. Finally, we make the (reasonable)
assumption that there are only a finite number of processes in
the model.

We define the influence diagram of a model to be a graphical
representation of the influence ordering, in which processes are
vertices and in which there is a directed edge from one process to
a second process if and only if the first process can immediately
influence the second process. Note that the influence diagram
is an acyclic directed graph and that one process precedes a
second process under the influence ordering if and only if there
is a directed path from the first process to the second process
in the influence diagram. In this case, we say that the first
process is a predecessor of the second process. If one process
can immediately influence a second process, then we refer to the
first process as an immediate predecessor of the second process.

We define the depth of any vertex ‘v’ in an acyclic directed
graph to be one plus the length of the longest path to v from any
vertex with no immediate predecessors in the graph (that is, a
vertex with no entering edges). Thus, for example, a vertex with
no immediate predecessors has depth one. Note that a vertex
has depth d if and only if all of its immediate predecessors have
depth less than or equal to d—1 and at least one of its immediate
predecessors has depth d — 1.

If we consider a priority of one to be the highest possible
priority, and a priority of two to be the second highest priority,
etc., then we can assign a priority of one to all processes with
depth one in the influence diagram, since those processes have no
predecessors under the influence ordering. Since all immediate
predecessors of processes with depth two have priority one, we
can then assign a priority of two to all processes with depth
two. Similarly, we can assign a priority of d to all processes with
depth d in the influence diagram.

An algorithm that sets the priority of each process equal to
its depth in the influence diagram is given in figure 1. We refer
to this algorithm as the depth finding algorithm. The depth find-
ing algorithm requires a list, ‘Ly’, of all processes in the model
specification, and uses an integer counter associated with each
process. The first loop in the algorithm initializes the integer
counter of each process to equal the number of processes that
can immediately influence that process. A new list, ‘L,’ is then
constructed that contains all processes that cannot be immedi-
ately influenced by other processes.

The main body of the depth finding algorithm is contained
in the second loop. At the beginning of each iteration of the
loop, the list L; contains all processes that have not yet been
assigned priorities and all of whose predecessors have depth less
than : in the influence diagram. This is true at the beginning of
the first iteration of the loop because no process in L; has any
predecessor. This remains true because processes are placed in

B.A. Cota and R.G. Sargent

Let L be a list of all processes in the model
Initialize every process’s counter to 0

For each P € Ly do
For each P’ that P can immediately influence,
Add one to P”s counter

Let L, be the list of all processes whose counters equal 0
Letz =1

Repeat until L; = 0
Let Li+1 =0
For each P € L; do
For each P’ that can be influenced by P do
Subtract one from P’’s counter
If P”’s counter is zero
Then add P’ to L4y

Set P’s priority to 7 and remove P from L;

Increment ¢

If any process has not been assigned a priority
Then the influence ordering is not acyclic.

Figure 1. The Depth Finding Algorithm

Ly, only during the k* iteration of the loop, and processes are
placed in Ly, only when all of their predecessors have depth
less than or equal to k in the influence diagram.

Because of this, on each iteration of the loop every process
in L; can be assigned priority i. The body of the loop there-
fore assigns a priority to each process, ‘P’, in L; and removes P
from L;. However, before removing P from L;, the counter as-
sociated with each process that can be immediately influenced
by P is decremented.

When the counter of any process reaches zero, then all of
that process’s immediate predecessors have been assigned a pri-
ority, and so have depth less than or equal to ¢. The process
is therefore placed in L;y,. At the end of each iteration of the
loop, ¢ is incremented.

The loop is repeated until L; is found to be empty at the
beginning of the i** iteration. If the influence ordering is acyclic,
then at this point every process has been assigned a priority. To
see this, suppose that, at the beginning of a loop, L; is found
to be empty and a process has not yet been assigned a prior-
ity. Then that process’s counter must be greater than zero (or
it would have been placed in a list) and so that process must
have an immediate predecessor that has not yet been assigned
a priority. That immediate predecessor must also have an im-
mediate predecessor which has not yet been assigned a priority.
We can continue finding immediate predecessors that have not
yet been been assigned priorities indefinitely. Since there are
only a finite number of processes, we will eventually find a cycle
in the influence ordering. Therefore, if the influence ordering is
acyclic, then when L; is found to be empty every process must
have been assigned a priority.

It would not be difficult to use this algorithm manually to
assign priorities to processes in a given simulation model. How-
ever, it might also be desirable to automate the assignment of
priorities to processes. This would probably require some kind
of static analysis of the model to determine which processes
can immediately influence other processes. We are also lead to
ask how computationally expensive the depth finding algorithm

439

would be compared to the computational expense of the simu-
lation.

The time required by the depth finding algorithm is propor-
tional to, at most Nk, where ‘N’ is the total number of processes
in the model and where ‘k’ is the maximum number of processes
that any one process can immediately influence. To see this, first
note that every process appears in L; for at most one value of 7,
and appears in L; exactly once. The main loop is repeated once
for every non-empty L;. On the i** iteration of the main loop,
the outer for-loop (“For each P € L;”) is repeated once for ev-
ery process in L;. Thus, the outer for-loop is repeated at most
once for every process in the model specification. Furthermore,
on every iteration of the outer for-loop, the inner for-loop is re-
peated no more than k times. Thus, the time required for the
depth finding algorithm is proportional to, at most, Nk.

Let ‘e’ be the average number of events to be simulated for
each process. e is likely to be very large if every process exists
throughout the simulation, and so e is likely to be much larger
than k. It seems reasonable to assume that the time required for
the simulation is approximately proportional to Ne. We there-
fore conclude that the cost of using the depth finding algorithm
at the beginning of a simulation is not significant compared to
the cost of the simulation. That is, using the depth finding
algorithm to statically assign priorities to processes before the
simulation begins would not significantly slow down the simula-
tion.

5. DYNAMICALLY ASSIGNING PRIORITIES TO
PROCESSES

We now discuss how the influence ordering could be en-
forced in a sequential simulation when processes can be created
and destroyed during the simulation. We assume that whenever
a process is created, it can be determined which processes can
immediately influence that process and which processes can be
irhmediately influenced by that process. We must first extend
the definition of ‘immediately influence’. If P, can create a pro-
cess that can send a message to P, with timestamp equal to the
time at which the process is created, then an event from P; that
occurs at time ¢ can cause a message to be sent to P, that has
timestamp ¢. In that case, we would need to assign a higher
priority to P, than to P,. Therefore, we extend the definition
of ‘immediately influence’ given in section 3 by stating that, in
such cases, P, immediately influences P;.

Since processes are created and destroyed during the simu-
lation, the influence ordering may change during the simulation.
Neither [Jefferson 1985] nor [Misra 1986] discuss simulations in
which proceses can be created and destroyed. However, it seems
likely that if a distributed simulation algorithm requires a model
to have the predictability property, then in order to use that
distributed simulation algorithm with a dynamic model (that is,
one in which processes can be created or destroyed) that model
must have the predictability property at all times. However, it
might be possible for the influence ordering to change in such a
way that a process that is, at one time, a predecessor of a second
process is, at a later time, a successor of that process. Thus, if
priorities are assigned to processes at one point during the sim-
ulation, they may have to be changed later in the simulation.

The most obvious way to dynamically assign priorities to
processes is to use the depth finding algorithm given in sec-
tion 4 to assign a new priority to each process whenever a new
process is created. This would increase the cost of creating a
new process, ‘P’, by an amount proportional to Npkp, where

Simultaneous Events and Distributed Simulation

‘Np’ is the number of processes in existence when P is created
and where ‘kp’ is the maximum number of processes that any
one process can immediately influence when P is created. Note
that kp < Np so that Npkp < N2. The cost of using the depth
finding algorithm whenever a process is created therefore de-
pends on the number of processes that exist when each process
is created. This number depends entirely on the model, but it
seems likely that using the depth finding algorithm whenever a
process is created would significantly slow down the simulation
if the total number of processes created is large.

A better approach might be to assign priorities to processes
only when simultaneous events are actually encountered during
the sequential simulation. So long as simultaneous events are
relatively rare, this would not significantly slow down the simula-
tion. However, if simultaneous events occur relatively frequently,
the overhead of assigning priorities to processes could again be
significant.

A third approach to assigning priorities in a dynamic simu-
lation is to assign a priority to each process as it is created, but to
avoid re-assigning priorities to all processes whenever possible.
The rest of this section is devoted to a discussion of how this
could be done.

We use the term priority value to refer to the numeric value
of the priority assigned to a given process. Recall that if one
process has a smaller priority value than a second process, the
first process is considered to have a higher priority than the
second process. We also refer to the processes that exist at
the beginning of the simulation as the initial processes. At the
beginning of the simulation, priorities must be assigned to initial
processes using the depth finding algorithm.

Let D = |(Pmax — Pmin)/(do + 1)}, where ‘pray’ is the largest
possible priority value, ‘pmin’ is the smallest possible priority
value, ‘do’ is the greatest depth of any initial process in the
influence ordering, and ¢|z]’ is the greatest integer that is less
than or equal to z. The priority value of every initial process is
multiplied by D. This should be done to leave as much room as
possible between consecutive priorities so that priorities may be
assigned to as many newly created processes as possible. [D/2]
(the least integer greater than or equal to D/2) is then added
to each priority. This leaves as much room as possible to assign
priorities to newly created processes that have higher or lower
priority than any initial process.

Whenever a process ‘P’ is created during the simulation, P
must be assigned a priority. This is to be done by computing the
greatest priority value, ‘p;’, of any of process that can immedi-
ately influence P, and the least priority value, ‘p,’, of any process
that can be immediately influenced by P. Note that the time
required to compute p; is proportional to the number of pro-
cesses that can immediately influence P and the time required
to compute p; is proportional to the number of processes that
P can immediately influence. If p; < p; and py < |(p2 — p1)/2),
then we assign priority |(p; — p1)/2) to P. (Recall that lower
numeric values correspond to higher priorities.) This ensures
that P has lower priority than any process that can immedi-
ately influence P and has higher priority than any process that
it can immediately influence.

If, however, p; > ps, then the influence ordering has changed
(due to the creation and destruction of processes) and there is
no way to correctly assign a priority to the new process relative
to the priorities that have been assigned to existing processes. If
p1 = [(p2 — p1)/2], then even if p, > p,, there is no integer value
between p, and p; that can be assigned as a priority to the new

440

process. In either case, all priorities must be recomputed using
the depth finding algorithm. We then multiply those priorities
once again by D = [(Pmax — Pmin)/(dmax + 1)], where ‘dmax’ is
the maximum depth of any process in the new influence ordering,
and add |D/2] to each priority. We are then ready to continue
the simulation and assign priorities to new processes as they are
created.

6. SUMMARY

We studied the handling of simultaneous events in distribut-
ed simulation and concluded that the results of a distributed
simulation are the same as those of a sequential simulation in
which a particular assignment of priorities is used to resolve time
ties. We described this assignment of priorities and gave an al-
gorithm that can be used to compute these priorities before the
simulation begins. This would be necessary, for example, if a
sequential implementation and a distributed implementation of
the same language were being developed, or if a sequential sim-
ulation were being used to validate or to evaluate a distributed
simulation of the same model. In that case, some mechanism
would be needed to ensure that the two implementations han-
dled simultaneous events in exactly the same way. Finally, we
showed how to dynamically assign priorities to processes in a
simulation in which processes can be created and destroyed dur-
ing the simulation, and we discussed the costs and the limita-
tions of this method.

ACKNOWLEDGMENT

This work was partially supported by the CASE (Computer
Applications and Software Engineering) Center at Syracuse Uni-
versity, Syracuse, New York.

REFERENCES

Cota, B. A. and R. G. Sargent (1989), “An Algorithm for Par-
allel Discrete Event Simulation Using Common Memory,”
In Proceedings of the 22nd Annual Simulation Symposium,
A. Rutan, Ed. ACM, 23-31.

Cota, B. A. and R. G. Sargent (1990), “A New Version of the
Process World View for Simulation Modeling,” CASE Cen-
ter Technical Report no. 9003, Syracuse University, Syra-
cuse, NY.

Jefferson, D. R. (1985), “Virtual Time,” ACM Transactions on
Programming Languages and Systems, 7, 3, 198-206.

Misra, J. (1986), “Distributed-Discrete Event Simulation,” 4CM
Computing Surveys, 18, 1, 19-65.

Som, T. K. and R. G. Sargent (1989), “A Formal Development
of Event Graphs as an Aid to Structured and Efficient Sim-
ulation Programs,” ORSA Journal on Computing, 1, 2, 107-
125.

Zeigler, B. P. (1977), Theory of Modelling and Simulation,
Wiley, New York.

Zeigler, B. P. (1984), Multifacetted Modelling and Discrete Event
Simulation, Academic Press, London.

