Proceedings of the 1990 Winter Simulation Conference
Osman Balci, Randall P. Sadowski, Richard E. Nance (eds.)

AN APPROACH TOWARDS DISTRIBUTED SIMULATION OF
TIMED PETRI NETS

Devendra Kumar
Saad Harous

Department of Computer Eng. and Science
Case Western Reserve University
Cleveland, Ohio 44106

ABSTRACT

We present a model of Timed Petri Nets which is more
general than known models in terms of modeling conve-
nience. The model consists of simple but fairly general
modules. This would result in simpler and more modu-
lar codes for simulation of these systems, as compared with
the known models of Timed Petri Nets. After discussing

this model, we present an approach towards its distributed

simulation. The well known distributed simulation schemes
for discrete event systems do not directly apply to these
systems due to non-autonomous nature of place nodes in
Timed Petri Nets. Moreover, in our approach we incorpo-
rate several ideas to increase the degree of concurrency and
to reduce the number of overhead messages in distributed
simulation.

1. INTRODUCTION

Petri Nets are useful for modeling parallel systems; us-
ing them synchronization among processes can be captured
in a precise and simple way. The classical model of Petri
Nets is briefly described in section 2. Essentially, in this
model the system is represented by a graph with two kinds
of nodes: places and transitions. The state of a place node
at any point consists of the number of tokens it has. An
event in the system is represented by a “firing” at a tran-
sition; any such firing would destroy some tokens and gen-
erate some tokens at certain place nodes. States of various
godes in the system determine when various transitions can

re.

In the classical definition of Petri Nets no facilities are
provided to model the duration of system activities, e.g.,
what is the duration between removal of tokens at the start
of a firing and the time when new tokens start getting gen-
erated, or when these new tokens are fully available to other
transitions in the system to determine if those transitions
can fire, etc. This makes it impossible to predict the ac-
tual times at which various events in the system would take
place (relative to the time when the system starts). More-
over, since no time constraints are placed on the system be-
havior, the model may predict that certain'events can take
place even when those events are impossible to occur due
to time constraints. Similarly, time constraints in an actual
system may dictate that certain events will never take place
concurrently, whereas the model may predict them to possi-
b}y tqke place concurrently. Therefore having the notion of
time in the model would be more informative in modeling
and simulation of systems by Petri Nets.

Several researchers have proposed various forms of ex-
tensions to the classical definition of Petri Nets in order
to capture the notion of time, e.g., [Alanche et al. 1985,
Coolahan 1983, Ramchandani 1974]. Such extended mod-
els of Petri Nets are called Timed Petri Nets. As pointed out
in [Garg 1985], it is easy to represent the behavior and to
analyze the performance characteristics of the logic of many
systems using Timed Petri Nets. Timed Petri Nets have in

428

fact been used to model and analyze many systems [Alanche
et al. 1985; Carlier et al. 1984; Chretienne 1983; Coolahan
1983; Ozsu 1985a, 1985b; Ramchandani 1974]. In partic-
ular, Timed Petri Nets are a simple and elegant tool for
representing distributed systems because of their capability
to clearly describe concurrency, conflicts fmd synchroniza-
tion among processes [Garg 1985). This is especially true
for parallel or distributed systems where the notion of time
is critical, such as embedded real-time systems. In section
3 we review the two major ways in which Timed Petri Nets
have been defined in the literature.]
In the above two approaches, time is associated with
either places or transitions, but not both. Even though the
two approaches are equivalent in the sense that a model in
one approach can be represented by a model in the ot:her
approach, this may be quite inconvenient to the user since
it would often require defining artificial places or transi-
tions in the Timed Petri Net model of an actual system.
In our model of Timed Petri Nets, we associate time with
both places and transitions, thereby simplifying the mod-
eling process in such cases. The above models for Timed
Petri Nets follow as special cases of our model. Also, we
further decompose the place or transition nodes to consist
of certain modules; these modules are not only fairly sim-
ple, but also quite general to allow for a wide variety of
ways in which time can be associated with places or tran--
sitions. Having place or transition nodes to consist of such
simple modules would result in simple and modular codes
for the simulation of these systems. The nature of a place
or transition node can be modified by simply changing one
or more of its modules without affecting its other modules.
Our model of Timed Petri Nets is discussed in section 4.

Having defined our model of Timed Petri Nets, we next
consider its distributed simulation. Distributed simulation
is a simulation where the simulator is a distributed network
of processes, where usually each process simulates a part
of the system being simulated. The communication among
these processes is via messages. In distributed simulation
there is usually no global simulation clock as in traditional
sequential simulation. Synchronization among processes is
accomplished by appending to each event message the time
of occurrence of this event.

The motivation for distributed simulation is that se-
quential discrete event simulation usually requires an enor-
mous amount of execution time. Distributed simulation is
a potential alternative to improve the performance of simu-
lation, since the various processes of a distributed simulator
could be progressing in parallel to simulate various parts of
the actual system. In Timed Petri Nets, indeed such con-
currency often exists; for example two transitions that do
not conflict with each other could be simulated concurrently
if they are both ready to fire.

In section 5 we briefly review the major distributed
simulation schemes [Chandy and Misra 1979, 1981; Jeffer-
son and Sowizral 1982] available in the literature. These

-schemes are defined for a large subclass of discrete event

systems.

D. Kumar and S. Harous

In section 6 we discuss the problems in applying these
schemes to the simulation of Timed Petri Nets and our
approach towards distributed simulation of these systems.
The most notable problem is that Timed Petri Nets do not
satisfy a fundamental assumption made in these schemes,
namely, a simulating process can autonomously predict its
output message history up to time ¢ provided it knows its
input message histories up to time ¢. In Timed Petri Nets,
if a place is connected to several output transitions, then a
token at that place may go through any one of the output
transitions. Such a place node can not autonomously de-
termine which output transition should be given the token.
Due to this conflict among output transitions of a place
node, and the inability of the place node to autonomously
resolve this conflict, these schemes [Chandy and Misra 1979,
1981; Jefferson and Sowizral 1982 do not apply to Timed
Petri Nets in a simple manner. In section 6, we discuss how
to solve this problem of non-autonomous nature of a place
process.

Another serious problem in applying these schemes (or
simple variations of these schemes that handle the problem
mentioned above) to Timed Petri Nets is that potentially a
large number of overhead messages may be generated dur-
ing the simulation. Overhead messages are ones that do
not represent actual events in the system being simulated,
but they are needed to ensure progress of the simulation.
In any distributed simulation of any system, overhead mes-
sages are often needed to avoid potential deadlock situations
that may arise in the distributed simulation. As discussed
in section 6, we avoid the problem of deadlock by using a
variation of ideas in [Chandy and Misra 1979]. Specifically,
we use NULL messages with a slightly different meaning
than the ones in [Chandy and Misra 1979).

The schemes discussed in section 5 are designed to be
correct for a large subclass of discrete event systems. Due
to this generality, they often result in a large amount of
overhead when directly applied to the simulation of arbi-
trary systems. In this paper, we are concerned only with
the simulation of Timed Petri Nets, and hence we exploit
special nature of these systems to develop ways of reducing
the amount of overhead and ways of increasing the degree
of concurrency in the simulation algorithm (e.g., relaxing
restrictions as to when an output message can be sent out
from a simulating process). These ideas are also discussed
in section 6.

Finally, section 7 gives concluding remarks.

2. DEFINITION OF PETRI NETS WI-
THOUT NOTION OF TIME

A Petri Net [Peterson 1981] is a graph with two types of
nodes: places and transitions. An edge (also called an arc)
exists only from a place to a transition or from a transition
to a place. No multiple edges are allowed from a given node
to another given node. If there is an arc directed from a
place P to a transition T, then P is called an input place of
transition T, and T is called an output transition of place
P. Similarly, we define an input transition of a place and an
output place of a transition corresponding to an arc from a
transition to a place. Atany moment, a place may have zero
or more tokens. Graphically, places, transitions, arcs, and
tokens are represented respectively by: circles, bars, arrows,
and dots. Figure 1 below shows an example Petri Net. Here
the places are P1, P2, P3, and P4. The transition are T1,
T2, and T3. P1is an input place of T1, and T1 is an output
transition of P1. Similarly, T1 is an input transition of P2,
and P2 is an output place of T1. At the current point, the
places P1 and P3 have exactly one token each, and places
P2 and P4 have no tokens. For an in-depth treatment of

429

Petri Nets, the reader is referred to [Peterson 1981].

Figure L. An Example Petri Net

A transition node is said to be readyif and only if there
is at least one token at each of its input places. At any mo-
ment, zero or more transitions are chosen to “fire”. Each
of these chosen transitions must be ready at that moment.
Also, for each such chosen transition, there should be an as-
sociation of input tokens (one from each of its input places)
such that no token is associated with two or more different
chosen transitions. When a transition fires, its associated
tokens at its input places are removed, and a new token
is deposited at each of its output places. (If a place is an
output place for several chosen transitions, then one token
should be deposited on behalf of each of these transitions).
The firing of a transition is instantaneous. At any moment,
the choice of transitions to fire is non-deterministic, i.e.,
the set of transitions that can be chosen to fire together
at the current moment may not be unique. For example
consider a system with only three transitions T1, T2, and
T3 which share the same input place P and have no other
input places. Also suppose currently this place P has two
tokens. Then the set of transitions that are chosen to fire
could be any two of them, or any one of them, or none of
them. (However, in general it is assumed that some reason-
able progress would be made eventually, if currently one or
more transitions are ready).

Two transitions are said to be neighbors if they share
at least one input place. Note that two neighboring transi-
tions can fire simultaneously only if each of their common
input places has at least two tokens.

3. TIMED PETRI NETS PROPOSED IN
THE LITERATURE

A Timed Petri Net is a Petri Net with time associated

An Approach Towards Distributed Simulation of Timed Petri Nets

with places or transitions or both. This time would repre-
sent the time duration of certain activities in the system,
e.g., the time duration between when a transition starts fir-
ing and when the new tokens generated by this firing have
become available at the corresponding output places, or the
time duration between when a new token has appeared at a
place node and when it is available to the output transitions
of this place to determine if they can fire. These associated
times may be deterministic or probabilistic.

Models proposed in the literature associate time with
either places or transitions, but not both. The two ap-
proaches, and the meaning of time usually assumed in these
approaches, is briefly summarized next.

3.1 Approach 1 (Time Associated With
Transitions Only)

In this approach, with each transition T a time § is
associated, called the ezecution time of transition T. The
usual meaning of this time § is that when transition T starts
firing at time t, a token is removed from each input place of
T at time t, and a token is placed at each output place of
T at time t + § [Ramchandani 1974]. Note that no time is
associated with a place node in this approach; thus when-
ever a token is placed at a place node, it is immediately
available to the output transitions of this place node.

3.2 Approach 2 (Time Associated With
Places Only)

In this approach, with each place P a time § is associ-
ated. The usual meaning of this time 6 is that when a token
is placed at the place P at time t, it remains unavailable to
output transitions of place P until time t + § [Alanche et
al. 1985; Coolahan 1983; Ramchandani 1974]. In this ap-
proach no time is associated with transitions. Thus when-
ever a transition fires, the corresponding input tokens are
removed immediately and the corresponding output tokens
are placed at its output places immediately.

3.3 Equivalence Of The Two Approaches

As discussed in [Alanche et al. 1985; Ramchandani
1974], these two models of Timed Petri Nets are equiva-
lent. Given a model in approach 1, one may arrive at an
equivalent model in approach 2 by simply replacing each
transition node T with associated time é by a serial net-
work consisting of transition T, a new place P, and a new
transition U, where the transitions T and U now have no
time associated with them and the new place P is associ-
ated with the time §. All the place nodes that existed in
the original model are now associated with time zero. As
further simplification, if § = 0 then nodes P and U need
not be created at all.

Similarly, given a model in approach 2, one may arrive
at an equivalent model in approach 1 by simply replacing
each place node P with associated time & by a serial net-
work consisting of place P, a new transition T, and a new
place Q, where the places P and Q now have no time associ-
ated with them, and the new transition T is associated with
time 6. All the transition nodes that existed in the original
model are now associated with time zero. As before, the
obvious simplification can be made when § = 0.

4. OUR MODEL OF TIMED PETRI
NETS

As an overview, in our model the above two approaches
to defining Timed Petri Nets are generalized in two import-

430

ant ways:
1. We associate a time é; with each place and each
transition node 7 in the system.

2. the time §; associated with a place or transition
node is no more a simple delay, but rather in
our model arbitrary queuing mechanisms can be
associated with this time §é;.

Our model is discussed in detail next. Each place node
consists of three subnodes as shown in Figure 2, and de-
scribe below.

1. The first subnode is called a Pmerge process.
A Pmerge process has one or more input lines,
and one output line. Whenever a token arrives
along one of its input lines, it sends it out via
its output line after zero delay. If occasionally
two or more tokens arrive at the same time,
they are sent out simultaneously via the output
line after zero delay. This process is almost the
same as the merge process defined in [Chandy
and Misra 1981; Kumar 1989b], which is often
used in queuing networks; the only differences
are that (i) a Pmerge process can possibly have
only one input line whereas a merge process has
two or more input lines, and (ii) if several to-
kens arrive at the input of a Pmerge process
simultaneously, then they are sent out as sepa-
rate tokens, rather than as a single, composite
token as in case of simultaneous input messages
at a merge process (obviously, the two views are
equivalent, but at the simulation level they may
result in different simulation code and different
simulation messages, if the simulation messages
are to closely match the messages in the model).

2. The second subnode is an arbitrary queue pro-
cess with the associated service time &;. The
queue may be defined in several different ways.
For example, it may be a FCFS queue with a sin-
gle server with service time §;, or a FCFS queue
with infinite number of servers with service time
é;, etc.

3. The last subnode is a place node with no time
associated with it, as in the usual Petri Nets
without association of times. In our model we
call this node (or process) a zero-place process.

|l

Queue

Pmerge

Zero—place

Figure 2. Subnodes in a Place Node

~ The transition node in our model is also broken down

into three subnodes as shown in Figure 3. These subnodes
are described below.

1. The first subnode is a transition node with

no time associated with it, as in the usual

Petri Nets. In our model we refer to this

process as a zero-transition process. Note

that it has only one output line; thus it

generates only one output token in firing.

D. Kumar and S. Harous

54

The second subnode is an arbitrary queue pro-
cess defined in the same way as above in the
context of a place node.

3. The last subnode is a Tfork process which is
slightly different from the fork processes defined
in [Chandy and Misra 1981; Kumar 1989b]. A
Tfork process has one input line, and one or
more output lines. Whenever a token arrives
along its input line, it sends out an identical
copy of that token along each of its output lines
without any time delay. (In contrast, a fork pro-
cess would send its input to only one of the out-
put lines).

—1

Z
<

Tfork

Zero-transition Queue

Figure 3. Subnodes in a Transition Node

In our simulation we will assume that the moment a
zero-transition process T becomes ready, it will fire imme-
diately unless the other zero-transitions chosen to fire at
that moment make it impossible for T to fire at that mo-
ment (i.e., if T has an input place P such that all the to-
kens at P have become associated with other chosen transi-
tions). Thus, for example, we preclude a scenario where
a zero-transition would simply keep idling (i.e., not fir-
ing) even when it is ready and has no conflicts with other
transitions. Also, several assumptions similar to [Chandy
and Misra 1979] are needed to ensure progress and ter-
mination of the simulation, we skip these details here.

Our model of Timed Petri Nets offers several advan-
tages over the other models discussed in section 3:

1. Generality, and Modeling Convenience: The
model has more expressive power because the queue pro-
cesses that are part of various place or transition nodes
could be arbitrary. A queue process may follow any of the
job scheduling disciplines and it may have any number of
servers. In contrast, the two models of Timed Petri nets de-
fined in section 3 assume, in effect, a FCFS discipline with
infinite number of servers (which is the same as a delay
process that simply delays an input job by the time §).

Note that in our model if we restrict the queues to
follow only the FFCFS discipline with infinite number of
servers, then our model becomes equivalent to the previ-
ous two models. However, even with this restriction our
model is still more convenient to use since in the previous
two models one has to define artificial place or transition
subnodes to represent an original node which has time as-
sociated with it. In our model, to represent any node with
an associated time, one needs to create three subnodes such
that one of these subnodes is the same Petri Net node with-
out an associated time, and the other two subnodes are
simple and often familiar queuing processes. Thus creating
or interpreting a Timed Petri Net in our model would be
intuitively simpler.

2. Modularity: In our model of Timed Petri Nets, a
node consists of simple subnodes that capture various as-
pects of behavior of that node. For example, the timing

431

aspects are delegated to simple queuing processes and the
logic of a zero-place or a zero-transition subnode does not
have to deal with timing issues. The zero-place process does
not have to deal with the issue of merging input tokens ar-
riving along various input lines. The zero-transition process
does not have to know where the output tokens generated
in firing will have to be placed. Such modularity does not
exist in previous definitions of Timed Petri Nets. For exam-
ple, in the approach that associates time with a transition,
the logic of when to start firing, when to create output to-
kens, where to place output tokens — is all combined in a
single process.

Due to this modularity, our model offers several advan-
tages. It simplifies the simulation code (in either sequen-
tial, distributed, or parallel simulation). Simple changes in
the system being modeled would result in relatively simple
changes in its model and the code simulating that model.
For example, if the queuing discipline to be followed by a
node is to be changed then only the corresponding queue
process and its code needs to be changed, not the pro-
cesses zero-place or zero-transition. Similarly, if the out-
going edges from a transition are changed then only the
code for the corresponding Tfork process would change.

5. REVIEW OF DISTRIBUTED SIMU-
LATION ALGORITHMS

Borrowing terminology from [Chandy and Misra 1979},
in the following a system to be simulated is called a physical
system (in our case it is a Timed Petri Net). The physical
system consists of a network of physical processes (or pps for
short) - in our case the pps are the subnodes defined above.
Each physical system is simulated by a distributed simulator
called a logical system. A logical system is a collection of
logical processes (or Ips for short), each one simulating a
corresponding physical process.

Deadlock is a major problem in designing an algo-
rithm for distributed simulation. Several algorithms for
distributed simulation have been developed [Bryant 1977;
Chandy and Misra 1979, 1981; Jefferson and Sowizral 1982;
Peacock et al. 1979a, 1979b]). These algorithms use over-
head messages to ensure progress of simulation.

The different distributed simulation algorithms avail-
able in literature are divided mainly into 3 classes depend-
ing on the method used to handle the deadlock problem
— these methods are (i) deadlock avoidance, (ii) deadlock
detection and recovery, and (iii) rollback. In the first two
methods, a logical process will not progress until it is sure
that it is safe to do so. On the other hand, in the third
method, the process progresses with the assumption that
its input messages are correct and have arrived in the right
order at the input port, until it detects that a message has
arrived out of order — then it rolls back to an earlier state
in order to correct the above assumption. Below we briefly
summarize these three methods.

Avoidance methods: The algorithms which are
based on the avoidance approach [Bryant 1977; Chandy
and Misra 1979; Peacock et al. 1979a] require that a pro-
cess sends out some kind of control message along the out-
put lines indicating an estimate of the lower bound on the
time stamp of its next event message. These overhead mes-
sages allow the receiver processes to advance their clocks,
thereby preventing deadlock from occurring. For example,
in the scheme proposed by [Chandy and Misra 1979] dead-
lock is avoided by using overhead NULL messages. A NULL
message (t,NULL) sent from Ip 7 to Ip j informs Ip j that
no further messages would be sent on line (7,j) up to time
t. The receiving Ip would update the input history and
advance the input line clock accordingly.

Deadlock detection and recovery methods:
[Chandy and Misra 1981] presents a distributed simulation

An Approach Towards Distributed Simulation of Timed Petri Nets

scheme based on deadlock detection and recovery. In this
scheme, a distributed algorithm proposed in [Dijkstra and
Scholten 1980] is used for deadlock detection. Deadlock
is broken in a distributed manner by determining “next
message” to be sent in the logical system. Determining
“next message” is similar to determining “next event” in
the event-list mechanism in sequential simulation.

Rollback method: The Time Warp simulation
method [Jefferson and Sowizral 1982] attempts to improve
performance of distributed simulation by developing a new
scheme based on the assumption that most of the messages
will arrive in the right order. An lp will process the mes.
sage it has on hand assuming that no message will arrive
in the future with an earlier time stamp. Later, if a mes-
sage with earlier time stamp arrives, it will roll back to an
earlier state. During this rollback phase, one or more antj-
messages will be generated to inform other processes about
this rollback and thus to put back the simulation on the
right track.

The number of overhead messages is usually large. For
a detailed survey on distributed simulation schemes, we re-
fer the reader to [Misra 1986]. Since the publication of this
survey, several new works have appeared. In particular,
[Reed 1983, 1985; Reed et al. 1988] points out some nega-
tive performance results regarding the schemes in [Chandy
and Misra 1979, 1981]. Several researchers have looked into
variations of the gencral purpose schemes or distributed
simulation of specific classes of systems, e.g., [Lubachevsky
1989; Fujimoto 1989).

. APPROACH TOWARDS DIST-
6 lcl)II]JB%TED SIMULATION OF TIMED
PETRI NETS

As in [Chandy and Misra 1979, 1981] each pp (physical
process), i.e., a subnode, is simulated by a corresponding
logical process (or lp). We assume infinite input buffers
at the input port of any Ip. Also, we assume that each
communication line in the logical system is FIFO (first-in-
first-out) with arbitrary but finite communication delays,
and error free. An lp can send out a message whenever it
has one without waiting for the receiver Ip to be ready to
receive it. Messages sent on a line are stored at the input
port of the receiver in the order they are sent. Later the
receiver Ip receives them in FIFO order for any given line.
In the following discussion, it is assumed that whenever a
message is sent {from an Ip i to an Ip j, the corresponding
communication line does exist.

Note that the actual events in the system are the gener-
ation, removal, or transfer of various tokens in the system.
More specifically, the events are: (i) the transfer of a token
from the input of a Pmerge or queue process to its output,
(i) the firing of a zero-transition, i.e., removing input to-
kens and generating an output token, and (iii) removal of a
token from input of a Tfork process and generation of corre-
sponding output tokens. In addition to the corresponding
event messages, we will need various overhead messages.
Next we discuss the various kinds of problems that one has
to consider in the distributed simulation of these systems,
and our approach to handle them.

6.1 How To Handle Non-Autonomous
Nature Of A Zero-place

To start with, we first point out a basic problem in
applying the well known distributed simulation schemes
[Chandy and Misra 1979, 1981; Jefferson and Sowizral 1982]
for the distributed simulation of these systems. Consider

432

the system shown in Figure 4.

Pl P2 ®P3

Figure 4. To Show Non-Autonomous Nature of Place
Nodes

Here, we have two transitions T1 and T2 in the sys-
tem. As shown in the figure, P1 and P2 are input places
of T1, and P2 and P3 are input places of T2. Suppose
the corresponding zero-place lps P1, P2 and P3 currently
hold one token each with time stamps equal to ti, t,
and t3 respectively where t, <t; and t, <t;. If t; <ts
then the corresponding zero-transition pp T1 would fire,
but if t3 <t; then T2 would fire. (If t;=t, then the
choice between the two transitions is arbitrary). There-
fore, a process simulating the zero-place P2 cannot decide
on its own as to whether to give out its token to transi-
tion T1 or to transition T2. This violates the assumption
used in the schemes [Chandy and Misra 1979, 1981; Jef-
ferson and Sowizral 1982] that a simulating process can
autonomously determine its output message histories un-
til time ¢ if it knows its input message histories until time ¢.

To avoid the above problem, one has to use certain over-
head messages among the neighboring zero-transitions and
their input zero-places so as to determine which transition
should fire next. We take the following approach. When a
token is available at a zero-place Ip i with time stamp ¢, it
sends a message tokavail(t) to its output zero-transitions.
These zero-transition Ips will communicate with each other
to determine if and when one of them fires. When a zero-
transition j fires, it sends a grabbed message to all its input
zero-places and to all its neighboring zero-transitions, and
simulates its firing. Each zero-transition that receives a
grabbed message from the zero-transition j comes to know
that the corresponding tokens at input zero-places shared
with jhave been grabbed, and therefore it assumes that any
such token is no longer available. (It is possible that this
zero-transition has not yet received the tokavail(...) mes-
sages corresponding to some of these input tokens; it has
to remember for future that indeed these tokens have been
grabbed). Once a zero-place 7 gets the grabbed message, it
would work for its next available token if any, as before.

How do the neighboring zero-transitions determine
when and which one of them fires? When a transition u has
a tokavail(...) message from each of its input zero-places,
it needs to know whether it would be ready to fire before
its neighbors (or at the same time, as discussed below). To
this end, for each zero-transition Ip i we define CT;, its log-
ical clock, as follows. (As a convention in this paper, we
use a subscript 7 to refer to the value of a local variable or
a quantity known locally at a process 7). Intuitively, CT;
represents the earliest time known to the zero-transition Ip
¢ when it can possibly fire. Let CP;[k] be the minimum
time when input zero-place k would have a token available
next, as known at zero-transition i. Thus if zero-transition

D. Kumar and S. Harous

i has received a message tokavail(t) from zero-place k, then
it would set CP;[k] to t. (Later, we will see NULL mes-
sages that also affect the value of CP;(k]). The value of
CT, for any zero-transition i is defined to be the maximum
value of CP;[k] over all its input zero-places k. Obviously,
if zero-transition ¢ has received tokavail(...) messages from
its every input zero-place and if CT; <CT; for its every
neighboring zero-transition j, then zero-transition pp i will
fire at the time CT; (i.e., the zero-transition Ip ¢ will fire
with time stamp CT;). What if CT;=CT; for one of the
neighbors j7 We break the tie in this case by comparing
the ids 7 and j. In other words, we first define a total or-
dering among ordered pairs of numbers by (z,y) < (u,v)
if and only if (i) z < wor (ii) 2 = v and y < v. Then
we require that a zero-transition ¢ will fire if it has received
tokavail(..z messages from its every input zero-place and if
<(C

(CTs,2) T;,7) for its every neighboring zero-transition
J-

How does a zero-transition i know about the clock val-
ues CT;? One possibility is that each zero-transition i

transmits its current CT; value to all its neighbors, when-
ever this value changes. However, that may cause too
many such overhead messages, since they are being sent
even when the receiver Ip does not need them. Therefore,
we use a “demand-driven” strategy — whenever i has to-
kens at each of its input zero-places, it sends a message
request(CT;) to all its neighbors. Any zero-transition j that
is a neighbor of ¢ keeps a variable CT,[7] that remembers
the clock value of i as is currently known at j. For nota-
tional simplicity, we use the expression CT;[j] to be the
same as CT;. On receiving the message request(CT;) from
i, j would update CT;[]. Subsequently, j would send a mes-
sage answer(CT;) to 7 whenever (currently or later) j finds
that (CT;[j],7) >(CT;[:),7). At most one such answer(...)
message is sent from j to i for a given request. (As a minor
optimization, if 7 already knows that CT;[;] >CT;[i], then
it does not have to send a request message to j).

6.2 1How To Handle The Deadlock Prob-
em

Another important problem one has to deal with in
any distributed simulation in general, is the possibility of
deadlocks. To see the possibility of deadlocks in our case,
consider the Timed Petri Net shown in Figure 1. (The times
associated with nodes, and the queuing disciplines are not
shown in the figure. Also, each node is assumed to consist
of the corresponding subnodes as discussed in section 4).

Suppose at time zero, the zero-place nodes P1 and P3
have a token. After the firing at T3 suppose zero-place P4
has a token at time 10 available for the zero-transition T1.
Obviously at time 10, transition T1 should fire. However,
following our approach above, T1 would send a message re-
quest(10) to zero-transition T2. T2 would not send back
any answer(...) message to T1 since it has no informa-
tion from P2. Obviously there will be a deadlock cycle
{zero-transition T2— entire place node P2— entire transi-
tion node T1— zero-transition T2}.

To resolve the deadlock problem, we use a slight varia-
tion of NULL messages defined in [Chandy and Misra 1979].
In our approach, a NULL message on a line with time stamp
t means that the next message on this line will have a time
stamp greater than or equal to t. To understand the use
of NULL messages in our approach, consider again Figure
1 where a token is available at the output of zero-place P1
at time zero, and at the output of zero-place P4 at time
10. In our approach, the zero-transition T1 would send out
a message NULL(10) to its output queue Ip. The queue Ip
would subsequently send out a message NULL(10+4;) to its
Tfork process where 8, is the service time of the correspond-
ing queue pp. This would be followed by a NULL(10 + &)

433

message sent to Pmerge P2, a NULL(10 + ;) message to
queue P2, a NULL(10 + é; + 6;) message to zero-place P2
where 6, is the service time of queue pp P2, and finally a
NULL(10 + é; + 8,) message to zero-transition T2. At this
point the zero-transition T2 updates its value of CT[T2] to
be 10 4 é; + 6, and sends a message answer(10 + 6, + 6,)
to zero-transition T1. Using assumptions similar to those
in [Chandy and Misra 1979], we will have §; + §, > 0, and
therefore the zero-transition T1 will fire.

In general, in our approach a zero-transition i would
send out the message NULL(CT;) to its output queue pro-
cess when its CT; value is greater than the time component
of the last message sent to this queue process. On receiving
a NULL(t) message from an input zero-place k, the value of
CP;[4] is updated to t, and CT; is updated to t if t is greater
than the current value of CT;. A zero-place Ip receives and
sends NULL messages in the obvious way. However, after a
zero-place Ip has sent out tokavail(...) messages for a token
in hand, it will not send out any further tokavail(...) or
NULL(...) message until that token has been grabbed.

Other processes receive and generate NULL(...) mes-
sages in the obvious way similar to that in [Chandy and
Misra 1979; Kumar 1989]. In particular, note that a queue
process may generate an output NULL(...) message even
without receiving a corresponding input NULL(...) mes-
sage. The number of NULL messages can be reduced
by incorporating a few simple strategies, e.g., (i) if an
input NULL message is followed by another input mes-
sage then ignore this NULL message, and (ii) do not send
out a NULL(t) message on an output line if the previ-
ous message sent on the line has time component = t.

Note that the meaning of NULL message in our ap-
proach is a bit different from that in [Chandy and Misra
1979]. In [Chandy and Misra 1979] a NULL message on a
line with time stamp t means that the next message on this
line will have time stamp “strictly greater than” t, whereas
in our approach it will be “greater than or equal to” t. To
understand the motivation why we chose to define NULL
messages with a different meaning, consider again Figure 1
where a token is available at the output of zero-place P1
at time zero, and at the output of zero-place P4 at time
10. In the approach of [Chandy and Misra 1979], the zero-
transition T1 cannot send out a NULL(10) message (since
it does not know whether it would fire at time 10); it would
have to choose a time t<10 and send out a NULL(t) mes-
sage. If this chosen t is too small, i.e., if t + 6; + 6, < 10
where 6, and §, are the service times at the queues at T1
and P2, then deadlock will not get resolved.

In general, in our simulation we do not require that two
successive messages tokavail(...) or NULL on a given line
carry strictly increasing time component (which is required
in [Chandy and Misra 1979]). This has several advantages:
(i) It makes coding easier, since in the approach of [Chandy
and Misra 1979] if a Pmerge process receives several input
tokens with the same time component (on the same or dif-
ferent input lines), then it has to combine them together
into a single composite token message. Thus all Ips have to
deal with composite token messages. In our approach any
message involving tokens would carry information about
only one token, and therefore these Ips would deal with one
input token at a time, simplifying the code. (ii) It is some-
what more efficient, since more information is being carried
in NULL messages as discussed in the previous example.

6.3 Further Considerations In Our Ap-
proach

Note that in a direct application of [Chandy and Misra
1979], a transition would look at all its input and out-
put lines and then advance its clock value to the mini-
mum of the line clocks. Input message histories known

An Approach Towards Distributed Simulation of Timed Petri Nets

beyond this clock value are ignored in the computation of
the output messages. This approach would normally gen-
erate too many NULL messages. For example, consider a
zero-transition which has two input lines. Suppose that
it receives a token message with time stamp 10 on line 1,
and a NULL message with time stamp 5 on line 2. In the
approach of [Chandy and Misra 1979], the zero-transition
Ip in this case will send out a NULL message with time
stamp 5. Suppose next it receives a NULL message with
time stamp 7 on line 2. Then it will send another NULL
message with time stamp 7. Similarly, more NULL mes-
sages would be sent if more NULL messages arrive on line
2 with time stamp less than 10. On the other hand, in our
approach the time clock of the process simulating a zero-
transition is advanced to the mazimum clock of the input
lines. Thus, after receiving the token message with time
stamp 10 on line 1 and the NULL message with time stamp
5 on line 2, the zero-transition Ip will advance its clock to
time 10 (and not to time 5 as in the approach of [Chandy
and Misra 1979]) and will send out a NULL message with
time stamp 10. Subsequently, on receiving the NULL mes-
sage with time stamp 7 on line 2, no further NULL message
will be generated. Thus our approach of using mazimum of
input line clocks reduces the number of NULL messages.

Our approach of using the mazimum of input line clocks
also increases the degree of concurrency. For example, if a
zero-transition has received an input token on each of its
input lines, with time stamps 10 and 5 respectively, and if
it has no conflict with its neighbors, it can go ahead and
fire with simulation time 10. In the approach of [Chandy
and Misra 1979] this Ip would have to wait and receive more
messages until the clock value of the second input line also
reaches time>10. This would be inefficient and would also
make the code more complex since now more messages must
be sent, received, and explicitly stored by the receiver Ip for
the second line.

Similarly, in {Chandy and Misra 1979], there are other
unnecessarily rigid rules as to when an Ip is allowed to
send or receive tuples. In particular, an /p sends a tu-
ple on a line only when the line clock for that line be-
comes minimum among all clock values of all the lines ad-
jacent to the Ip. This can obviously affect the degree of
concurrency. For example, consider a delay pp that pro-
cesses incoming jobs in the FCFS order [Kumar 1989b]
which received a tuple (10,m) and sent out a tuple (15,m).
Suppose next it receives a tuple (13,m). Now this lp is
not allowed to process and send this job until the in-
put clock becomes 15. This affects the degree of concur-
rency between this Ip and the Ip connected to its output.

Also, the scheme [Chandy and Misra 1979)] is based on
the synchronous message communication of Hoare’s CSP
[Hoare 1978]. This can cause a minor performance degra-
dation when implemented on an asynchronous system.

In summary, our approach differs from [Chandy and
Misra 1979] in several ways: (i) Handling non-autonomous
nature of a zero-place process and conflict resolution among
neighboring zero-transitions, (ii) Use of NULL messages
with slightly different meaning, and not requiring strict
chronology of time-stamps on a line, which would make
coding simpler and would be more efficient, (iii) The time
clock of the process simulating a transition is incremented
to the mazimum clock of the input lines, resulting in less
number of NULL messages, more concurrency, and simpler
code, (iv) An Ip is allowed to send messages whenever pos-
sible, rather than having to wait for inputs simply because
the current output line clock is higher than the minimum
of input line clocks, (v) Message communication in the logi-
cal system is assumed to be asynchronous, and (vi) Infinite
input buffers are assumed at the input port of any Ip, to
provide higher degree of concurrency.

434

7. CONCLUDING REMARKS

In this paper we presented a model of Timed Petri Net
and an approach towards its distributed simulation. In
this model time can be associated with either a place or
a transition or both. The model consists of several simple
modules (i.e., the processes Pmerge, queue, zero-place, zero-
transition and Tfork) resulting in modular code for simu-
lation. This modularity makes it easy to modify the code
in the future. Also our model is fairly general in the sense
that the queue processes can be defined in many ways.

As mentioned earlier, the distributed simulation
schemes of [Chandy and Misra 1979, 1981; Jefferson and
Sowizral 1982] do not apply to the simulation of these sys-
tems directly. We presented an approach for the dlstpbuted
simulation of these systems. In this approach, neighbor-
ing transitions communicate with each other to determine
which of them grabs a token that arrived at a common in-
put place. The possibility of deadlocks is avoided by using
a slight variation of the idea of NULL messages as proposed
in [Chandy and Misra 1979]. We exploited special proper-
ties of Timed Petri Nets to reduce the number of NULL
messages and to increase the degree of concurrency, as dis-
cussed in section 6.

REFERENCES

Alanche, P., K. Benzakour, F. Dolle, P. Gillet, P. Ro-
drigues, and R. Valette (1985), “PSI: A Petri Net
Based Simulator For Flexible Manufacturing Sys-
tems”, Lecture Notes in Computer Science 188, 1-14.

Andrews, G.R. and F.B. Schneider (1983), “Concepts and
Notations for Concurrent Programming”, ACM Com-
puting Surveys, 15, 1.

Baik, D. and B. Zeigler (1985), “Performance Evaluation
of Hierarchical Distributed Simulators”, 1985 Winter
Simulation Conference Proceedings, 421-427.

Bhargava, B. (1982), “Performance Evaluation of the Op-
timistic Approach to Distributed Database Systems
and its Comparison to Locking”, Proceedings of the
2nd International Conference on Distributed Comput-
ing Systems, Miami, FL, 508-517.

Bryant, R.E. (1977), “Simulation of Packet Communica-
tion Architecture”, M.S Thesis, Department of Com-
puter Science, Massachusetts Institute of Technology,
Boston, MA.

Bryant, R.E. (1984), “A Switch-Level Model and Simula-
tor for MOS Digital Systems”, IEEE trans. on Com-
puters, C-33, 2, 160-177.

Carlier, J., P. Chretienne and C. Girault (1984), “Mod-
eling Scheduling Problems with Timed Petri Nets”,
Advances in Petri Nets, 62-82.

Chandy, K.M. and J. Misra (1979), “Distributed Simu-
lation: A Case Study In Design And Verification of
Distributed Programs”, IEEE Transactions on Soft-
ware Engineering 5, 5, 440-452.

Chandy, K.M. and J. Misra (1981), “Asynchronous Dis-
tributed Simulation Via a Sequence of Parallel Com-
;})(L)l;ations”, Communications of the ACM 24, 4, 198-

Chandy, K.M. and J. Misra (1984), “The Drinking
Phllosophers Problem”, ACM Transactions on Pro-
gramming Languages and Systems, 6, 4, 632-646.

Chretienne, P. (1983), “Les Resaux de Petri Temporises”,
These d’etat, University de Paris VI, Paris, France.

Coolahtan, J.E. (1983), “Timing Requirements for Time-
Driven Systems Using Augmented Petri Nets”, IEEE
Transactions on software Engineering 9, 5, 603-615.

Davidson, D. and P. Reynolds (1983), “Performance Anal-
ysis of Distributed Simulation Based on Active Log-
ical Processes”, 1983 Winter Simulation Conference
Proceedings, 267-268.

D. Kumar and S. Harous

Dijkstra, E.W and C.S. Scholten (1980), “Termination
Detection for Diffusing Computations”, Information
Processing Letters, 11, 1.

Fujimoto, R.M., J.J. Tsai, and G.C. Gopalakrishnan
(1988a), “Design and Performance of Special Purpose
Hardware for Time Warp”, Proceedings of the 15th
Annual Symposium on Computer Architecture, 401-
408.

Fujimoto, R.M. (1988b), “Lookahead in Parallel Discrete
Event Simulation”, Proceedings of the 1988 Interna-
tional Conference on Parallel Processing, 34-41.

Fujimoto, R.M. (1989), “Time Warp on a Shared Memory
Multiprocessor”, Proceeding of the 1989 International
Conference on Parallel Processing, 242-249.

Gafni, A. (1988), “Rollback Mechanisms for Optimistic
Distributed Simulation Systems”, I'n Distributed Sim-
ulation, Society for Computer Simulation, 61-67.

Garg, K. (1985), “An Approach to Performance Specifica-
tion of Communication Protocols Using Timed Petri
Nets”, IEEE Transaction on Software Engineering,
11, 10, 1216-1225.

Hoare, C.A.R. (1978), “Communicating Sequential Pro-
cesses”, Communications of the ACM, 21, 8, 666-777.

Groselj, B. and C. Tropper (1987), “Pseudosimulation:
An algorithm for distributed simulation with limited
memory”, Int. J. Parallel Programming, 15, 5, 413-
456.

Jefferson, D.R. and H.A. Sowizral (1982), “Fast Concur-
rent Simulation Using The Time Warp Mechanism,
Part I: Local Control”, Technical Report, The Rand
Corporation, Santa Monica, CA.

Jefferson, D.R. Jefferson and H.A. Sowizral (1985), “Fast
Concurrent Simulation using the time Warp mecha-
nism”, in Distributed Simulation 1985, The 1985 So-
ciety for Computer Simulation Multiconf., San Diego,

A

Jeﬂ'erso;l, D.R. (1985), “Virtual Time”, ACM Transac-
tions on Programming Languages and Systems 7, 3,
404-425.

Joyce, J., G. Lomow, K. Slind, and B. Unger (1987),
“Monitoring Distributed Systems”, ACM Transac-
tions on Computer Systems, 5, 2.

Kravitz, S.A., R.E. Bryant, and R.A. Rutenbar (1989),
“Massively Parallel Switch-Level Simulation: A Fea-
sibility Study”, 26** ACM/IEEE Design Automation
Conference, 91-97.

Krishnamurthy, M., U. Chandra, and S. Sheppard (19853),
“Two approaches to the implementations of a dis-
tributed simulation system”, Proceedings of the 1985
Winter Simulation Conference, San Francisco, CA,
435-443.) .

Kumar, D. (1989a), “Systems Whose Distributed Sim-
ulation Requires Low Overhead”, 8'* Annual IEEE
International Phoeniz Conference on Computers and
Communications, Scottsdale, Arizona. }

Kumar, D. (1989b), “Correctness Proof of a Distributed
Simulation Scheme”, First Annual IEEE Symposium
on Parallel and Distributed Processing, Dallas, Texas,
49-56.

Kumar, D. (1989¢), “An Approximate Method to Predict
Performance of a Distributed Simulation Scheme”,
18" International Conference on Parallel Processing,
St. Charles, IL, 259-262.

Kumar, D. (1990), “An Algorithm for N-Party Synchro-
nization Using Tokens”, 10** International Conference
on Distributed Computing Systems, Paris, France.

Lamport, L. (1978), “Time, Clocks, and the Ordering of
Events in a Distributed System”, Communications of
the ACM, 21, 7, 558-565.)

Lonow, G. and B. Unger (1982), “Process View of Simula-
tion In ADA”, in 1982 Winter Simulation Conference,

435

77-86.

Lubachevsky, B.D. (1987), “Efficient parallel simulations
of asynchronous cellular arrays”, Complez Systems, 1,
6, 1099-1123.

Lubachevsky, B.D. (1988), “Bounded lag distributed dis-
crete event simulation”, Proceeding of the 1988 SCS
Multiconference,19, 3, 183-191.

Lubachevsky, B.D. (1989), “Efficient Distributed Event-
Driven Simulations of Multiple-Loop Networks”,
Communication of the ACM, 32, 1, 111-123.

Madisetti, V., J. Walrand, and D. Messerschmitt (1988),
“WOLF: A Rollback Alogorithm for Optimistic Dis-
tributed Simulation Systems”, 1988 Winter Simula-
tion Conference Proceedings.

Misra, J. (1986), “Distributed Discrete-Event Simula-
tion”, ACM Computing Surveys 18, 1, 39-65.

Ozsu, M.T. (1985a), “Modeling and Analysis of Dis-
tributed Database Concurrency Control Algorithms
Using an Extended Petri Net formalism”, IEEE
Transactions on Software Engineering, 11, 10, 1225-
1240.

Ozsu, M.T. (1985b), “Performance Comparison of Dis-
tributed vs. Centralized Locking Algorithms in Dis-
tributed database System”, In Proc. 5th Interna-
tional Conference on Distributed Computing Systems,
Eds. IEEE, Piscataway, NJ, 254-261.

Ozsu, M.T. (1987), “Distributed Simulation using Petri
Nets”, 19th Annual Summer Conference On Com-
puter Simulation, 3-8.

Peacock, J.K., J.W. Wong and E.G. Manning (1979a),
“Distributed Simulation Using A Network of Proces-
sors”, Computer Networks 3, 1, 44-56.

Peacock, J.K., J.W. Wong and E.G. Manning (1979b),
“A Distributed Approach To Queuing Network Sim-
ulation”, in Proc. {th Berkeley Conf. on Distributed
Data Management and Computer Networks, Berkeley,
CA, 237-259.

Peterson, J.L. (1981), “Petri Net Theory and Modeling of
Systems”, Prentice-Hall.

Ramchandani, C. (1974), “Analysis of Asynchronous Con-
current Systems by Petri Nets”, Technical Report 120,
MAC, MIT, Boston, MA.

Reed, D.A. (1983), “ A Simulation Study of Multimi-
crocomputer Networks”, Proceedings of International
Conf. on Parallel Processing, 161-163.

Reed, D.A. (1985), “Parallel Discrete Event Simulation:
A Case Study”, Record of Proceedings: 18th Annual
Simulation Symposium, 95-107.

Reed, D.A., A.D. Malony, and B.D. McCredie (1988),
“Parallel Discrete Event Simulation Using Shared
Memory”, IEEE Transactions on Software Engineer-
ing, 14, 4, 541-553.

Reynolds, P. (1982), “A Shared Resource Algorithm for
Distributed Simulation”, Proceedings of the 9th Inter-
national IEEE Architecture Conference, Austin, TX.

Sauer, C.H. and E. A. MacNair (1983), Simulation of
Computer Communication Systems, Prentice-Hall,
Inc., Englewood Cliffs, NJ.

Schneider, F.B. (1982), “Synchronization in Distributed
Programs”, ACM Transactions on Programming Lan-
guages and systems, 4, 2, 125-148.

Seitz, C.L. (1985), “The cosmic cube”, Communication of
ACM, 28, 1, 22-23.

Wieland, F. and D. Jefferson (1989), “Case Studies in Se-
rial and Parallel Simulation”, Proceeding of the 1989
International Conference on Parallel Processing, St.
Charles, IL, 255-258.

