Proceedings of the 1990 Winter Simulation Conference
Osman Balci, Randall P. Sadowski, Richard E. Nance (eds.)

DISTRIBUTED SIMULATION: NO SPECIAL TOOLS
REQUIRED

Frank Paterra
C. Michael Overstreet
Kurt Maly

Department of Computer Science
Old Dominion University
Norfolk, Virginia 23529-3915

ABSTRACT

In this paper the authors present a toolkit of C language
functions that can be linked with SIMSCRIPT programs to pro-
vide the data communication primitives necessary for distributed
simulation. The authors’ test case is discussed and some tim-
ing data are presented. Additionally metrics used to determine
the applicability of the server model decomposition for particular
simulations are discussed.

1. WHY DISTRIBUTE SIMULATIONS

Computer simulations are often computationally intense tasks
requiring long runs in order to obtain useful results. The run-
time requirements of a simulation model can be a problem both
during model development and validation and while performing
production runs of the simulation.

The development of computer models to simulate real world
objects is a well understood problem and number of tools exist to
aid the model developer [Gimarc 1989]. Often times, the initial
runs of a simulation model provide more questions than answers
and the focus of study is changed. This results in an evolutionary
process for model development, with refinements directed at dif-
ferent attributes as the object or its environment becomes better
understood. These refinements often increase the complexity of
the model.

As the model is evolving, many runs may be needed to better
understand the object and to verify the correctness of the simu-
lation. The runtime requirements of complex models can greatly
increase the time needed to develop and verify a model.

Once a model has evolved to the point that production runs
are being made, runtime requirements again come into play. Of-
ten the output from each run may only provide a single data
point for a graph. A study may then require multiple runs of the
simulation, differing only in input values.

Complementary to the problem of long, computationally in-
tensive, runtimes is the fact that many times other computers are
sitting idle and can provide basically free processor cycles to the
simulation. In an effort to utilize some of these free cycles, much
research has gone into developing algorithms for performing a sin-
gle simulation run on a number of loosely coupled, cooperating
Processors.

Distributing a simulation program among cooperating pro-
cessors introduces some difficult problems. Principal among these
are the identification of an effective decomposition of the simu-
lation program, and enforcing synchronization among processors
to insure that the simulation is being executed correctly. The

423

use of tightly coupled functions and dependence on shared data,
common in simulation programs, makes these problems acute to
distributed simulation.

A comprehensive treatment of the processor synchronization
and model decomposition problems can be found in [Fujimoto
1989; Jefferson 1987; Cota and Sargent 1986]. The problem of
processor synchronization is more easily solved in very tightly
coupled processors that support very high speed communication,
though it is still difficult [Kaudel 1987; Jones et al. 1989]. It is
not our intention to address these problems in this paper, but
rather to select an effective decomposition and synchronization
scheme that will be used to demonstrate distributed simulation
using our communication toolkit and standard simulation and
operating system tools.

High performance scientific workstations sharing a local area
network (LAN) are becoming common. Since shared memory is
not available and message passing among workstations in the
network is slow, a decomposition of the simulation task is only
likely to to be effective if messages are infrequently passed among
workstations. It is up to the modeler/programmer to find a ef-
fective decompositions gien these constraints. This toolkit has
been developed with this environment in mind.

2. MODEL DECOMPOSITION

The model decomposition most easily supported by the tools
described in this paper is to distribute some special types of
model components, here called servers and receivers, on differ-
ent machines. The term server is borrowed from object oriented
design: a component is a server submodel if it can be represented
as only sending to other model components.

This decomposition can be thought of as a collection of data
servers and and receivers with no cycles. With no cycles synchro-
nization becomes easier and the problems with deadlock such as
that described in [Bagrodia et al. 1987] are avoided. This is
an easy and usually useful decomposition for complex, tightly
coupled models, because the extensive data interaction among
the model’s parts are not interfered with. Other, potential more
effective decompositions are outside the scope of this paper.

These tools are based on a producer/consumer approach.
Each consumer keeps a local inventory of data objects which
have been created by a producer. When the consumer’s inven-
tory gets low, it “reorders” a new batch of data objects from the
appropriated producer so that new objects should arrive before
current supplies are exhausted. In addition, each producer pre-
pares an inventory of data objects so that it should be able to
respond immediately to resupply requests.

F. Paterra, C.M. Overstreet, and K. Maly

The goal with this approach is to allow computational tasks
to be performed concurrently on different workstations but to re-
quire only infrequent communication among them. The approach
also recognizes that in most LANSs, the overhead and time delays
of sending a small amount of data from one workstation to an-
other is almost the same (up to the limits of the maximum packet
size allowed) of sending a large amount of data.

If data provided by the servers require considerable compu-
tation, significant parallelism can result since the required com-
putation can be distributed to other workstations. If the model
is decomposed in such a way that no data cycles are present,
no possibility of deadlock exists and processor synchronization is
particularly simple.

The type of model decomposition required to benefit from
these tools is probably not achievable for all models, but our ex-
perience is that the decomposition is possible frequently enough
to make the approach and the tools worthwhile.

3. DISTRIBUTED SIMULATION WITH STANDARD
TOOLS

In this paper we describe a toolkit of functions that allows
distributed simulation to be carried out in a loosely coupled,
general purpose, workstation environment without the use of
special purpose operating systems, programming languages, or
hardware.

The particular environment for which this software was de-
veloped contains a collection of Sun workstation computers con-
nected via an ethernet LAN. These are very loosely coupled
UNIX workstations with no shared memory and only commu-
nicate via a shared bus (the ethernet LAN). SIMSCRIPT was
selected as the simulation language because of its wide use in the
simulation community. All processors cooperating in the sim-
ulation run programs written in SIMSCRIPT and call external
functions for processor communication.

The processor communication functions are provided via the
UNIX Interprocess Communication (IPC) functions described in
the Unix Programmer’s Manual. These functions are standard
with the BSD UNIX operating system and allow communication
among processes both within the same computer and those re-
siding on separate computers. Because the IPC functions are
designed to provide communication among a large number of
varying processor types, a significant amount of overhead is in-
herent with data communication. This could be reduced by writ-
ing replacement functions that only provide for the needs of this
simulation decomposition, however a design goal was to use as
little custom software as possible.

4. THE TOOLKIT

The toolkit consists of a collection of functions, written in
the C language and linkable with SIMSCRIPT programs. The
basic functions provided by the toolkit are interprocess data com-
munications and sufficient processor synchronization to allow a
simulation to be decomposed into a collection of data servers and
receivers.

To use these tools, one must first determine what in their
model can be thought of as a source or generator of precom-
putable data objects. In order for an object to bhe precomputed,
no information about current simulation state or access to vari-
ables not local to the generator should be required. The most ob-
vious precomputable object is random numbers, however, more

complex objects may be precomputed based on the simulation
model at hand. Once the data sources have been identified, the
simulation is written as usual, except that the identified source
objects are written as separate SIMSCRIPT programs. This re-
sults in the simulation being implemented as data generator pro-
grams and a simulation program. Two C language functions
must be called by both the simulation program and the genera-
tor program to install the communications interrupt handler and
to identify each of the generators participating in the simulation.
Each of the SIMSCRIPT programs must also contain a function
that the C routine calls to transfer generated data to and from
SIMSCRIPT variables. The SIMSCRIPT and C functions are

described below.

C Functions
o inst_int(host,mode)

— char *host - The name of the host running the receiver
program

— char *mode - Must equal “server” or “receiver” for the
server and receiver programs respectively.

This is a C routine that is called by both the receiver and
server programs. Called only once, and before any of the
link server function described below, this function opens
a socket for reading, installs the communications interrupt
handler, and initializes the variables used to maintain the
server information.

link_server(server,host,mode)

— char *server - The name of the server being identified

— char *host - The name of the host where the server
resides

— char *mode - Must equal “server” or “receiver” for the
server and receiver programs respectively.

This C routine is called by both the receiver and server
processes to identify the services that are being used in this
simulation. The function creates a record of the identified
server’s information, opens a sending socket for the server,
initializes the list of messages to that server as null, and
adds the server to the list of participating servers.

o request(service,command)

— char *service - The name of the service being requested

— int command - A command to be sent to the server.
This command integer is not examined by the toolkit;
it is completely definable by the model and server de-
velopers.

This C routine is called by the simulation module to re-
quest more data items from a server. After the request
is sent, control is return to the simulation software. When
the requested data are received, the simulation code will be
interrupted and the toolkit makes a call to a user provided
accept_data routine, described below.

424

Distributed Simulation: No Special Tools Required

SIMSCRIPT Functions

¢ accept_data given service, data, length

— service - Text variable containing the name of the ser-
vice supplying the data. This field is used to route
data to the correct inventory.

— data - Memory for objects created. This memory
space will be formatted by the server to hold the data
in the correct SIMSCRIPT format.

— length - The length in bytes of the data area.

The accept_data function is called by the C routine that
performs the socket reads when new data arrives. Because
the arrival of data causes an interrupt to be serviced and
this function is called during that interrupt, the code may
be executed at any time; this function has an impact on
the simulator’s use of pointers or indices to the inventory
of data.

fill request given service, data, yielding length

— service - Text variable containing the name of the ser-
vice being requested.

— data - Memory for objects being created. This is un-
formatted memory and can be interpreted and filled
according to the objects being requested.

— length - Integer variable returning the length in bytes
of the data to be supplied.

This SIMSCRIPT function is the server complement to the
accept data function. When a request for objects is received
by the communications handler, this function is called to
fill the request. As before, because the communications are
interrupt driven, this function can be called at any time.

After the receiver code has been moved to a separate pro-
gram, additional SIMSCRIPT code is needed in the receiver pro-
gram to manage the remotely generated data. This additional
code keeps track of the available inventories of remotely gener-
ated data, placing requests for additional data when the local
inventory falls below some threshold. How this threshold is cal-
culated is discussed in a later section.

The receiver program may itself be a data source. An exam-
ple is the generation of simulation data that are sent to additional
programs that provide statistical analysis and summary reports
or to other servers for graphical display.

5. TIMING DATA AND MODEL DECOMPOSITION
CONSIDERATIONS

Message passing overhead must be considered when design-
ing any type of distributed processing. To decide if any speedups
can be expected for a simulation using the server model decompo-
sition, some analysis for message passing times verse local com-
putational costs should be performed. The following definitions
are used to perform this analysis.

e CIO - Overhead induced by servicing a communications
interrupt. This includes the time required to transfer data
from the communications buffer to a SIMSCRIPT variable.

e CSO - Overhead induced by actively sending a message to
another server.

425

o CTT - Time for a command message to travel between two
hosts.

o DTT - Time for a data message to travel between two hosts.
e MST - Minimum time required to supply data objects.

e OS - Order size. The number of items shipped in each
order.

® ECR - Expected consumption rate for generated items.
¢ REQ - Time required to send a request to the server.
¢ REC - Time required to send objects to the receiver.

¢ LCT - Local computational time required to generate one
data object.

¢ RGT - Remote generation time. The time required by the
server to generate the values. This value is determined by
OS and LCT.

¢ TBO - Time between orders.

Actively sending a request for more data objects incurs the
expense of building a message and placing it on the communica-
tions medium. Receiving a message requires that the communi-
cations interupt be serviced and the received data be transfered
from the communications meduim to a buffer. With this in mind
we can define REQ and REC to be

REQ = CSO + CTT (1)
REC = CIO + DTT 2)

To determine values for MST, the values of REC and REQ
must be considered as well as how much of the requested data
can be precomputed between request orders. The total time re-
quired to compute data objecs to fill an order is LCT % OS.
Because the server computers can work between orders, some of
the computation may be done in the time between the orders.
The amount that can be precomputed depends on the LCT and
T BO, described by the relationship

(LCT * max((0OS — TBO/LCT),0) (3)

Using this, M ST can be described by equation 4. This is
the equation used when constructing table 4.

MST = REQ+REC+(LCT*max ((0S — TBO/LCT),0) (4)

Clearly the relationships below must hold or it will always
be faster to compute the objects locally.

0S > MST « ECR (5)
0S* LCT > CIO + CSO (6)

In many cases, unless LCT (the required to computing the
data locally) is significant, OS must be large to make this ap-
proach feasible. Practically speaking, since for most simulations
the actual consumption rate can vary, OS *« LCT should be sig-
nificantly larger than CIO 4+ CSO.

In order to assist in determining the potential effectiveness
of using this approach for distributed simulation, some timing
data were collected for LCT, CIO, CSO, DTT, and CTT. The

F. Paterra, C.M. Overstreet, and K. Maly

variable ECR is model dependent and, with the other variables
fixed, OS can be determined.

Timing data for message passing among Sun workstations
connected via ethernet networks was collected. The times re-
quired for message passing are not significantly affectéd by mes-
sage length as long as messages are less than the maximum packet
length for the ethernet (1500 bytes). Messages were passed be-
tween processors that resided on the same physical network and
those on separate networks, connected via a bridge. As can be
seen below, messages that had to go across bridges took twice
as long as those that stayed on a single network. All data were
collected when the network was lightly loaded. Tables 1 and 2
show the collected communication times for command and data
packets respectively. Table 3 gives the average message times and
throughput rates. Times are given in seconds/byte and through-
put is given in bytes/second. These values are need to compute
useful order sizes and were used to construct table 4. This table
is discussed below.

Table 1. Command Packet Times (100 Byte Packets)

Number Single Net Bridged Nets
of Packets (seconds) (seconds)
100 1 3

500 5 9

1,000 9 23
5,000 45 112
10,000 87 206
50,000 435 944

Table 2. Data Packet Times (1000 Byte Packets)

Number Single Net Bridged Nets
of Packets (seconds) (seconds)
100 2 3

500 8 20

1000 16 33
5,000 79 171
10,000 156 332
50,000 793 1,721

Table 3. Average Times for Command and Data Packets

Packet Size Average Time (sec.) Throughput (bytes/sec)
Intra-net Inter-net Intra-net Inter-net

100 0.000087 0.000194 11,400 5,100

1,000 0.000015 0.000034 63,000 29,000

To obtain values for the variables LCT, CSO, and CIO, the
UNIX prof command was used. This is a standard UNIX tool
that profiles executable code and generates reports on number
of times each function is called, time spent during each call, and
total time spent in the function during program execution. For
more information on the prof command see the Unix User’s Man-
ual.

6. EXAMPLE

As an example, consider the generation of normally distributed
random numbers. The machines used are Sun 3/60 workstations
with 8 megabytes of memory. LCT was found to be 0.1 ms; the
CSO and CIO were both 0.025 ms. Table 4 shows values for OS
with corresponding ECR values.

Table 4. Example Performance Data

ECR OS Orders RGT TBO MST
(minute) (seconds) (seconds) (seconds)
100,000 50 2,000 0.005 0.030 0.014
100 1,000 0.010 0.060 0.020

500 200 0.050 0.300 0.068

1,000 100 0.100 0.600 0.128

5,000 20 0.500 3.000 0.608

10,000 10 1.000 6.000 1.208

200,000 50 4,000 0.005 0.015 0.014
100 2,000 0.010 0.030 0.020

500 400 0.050 0.150 0.068

1,000 200 0.100 0.300 0.128

5,000 40 0.500 1.500 0.608

10,000 20 1.000 3.000 1.208

300,000 50 6,000 0.005 0.010 0.014
100 3,000 0.010 0.020 0.020

500 600 0.050 0.100 0.068

1,000 300 0.100 0.200 0.128

5,000 60 0.500 1.000 0.608

10,000 30 1.000 2.000 1.208

400,000 50 8,000 0.005 0.007 0.014
100 4,000 0.010 0.015 0.020

500 800 0.050 0.075 0.068

1,000 400 0.100 0.150 0.128

5,000 80 0.500 0.750 0.608

10,000 40 1.000 1.500 1.208

500,000 50 10,000 0.005 0.006 0.014
100 5,000 0.010 0.012 0.020

500 1,000 0.050 0.060 0.068

1,000 500 0.100 0.120 0.128

5,000 100 0.500 0.600 0.608

10,000 50 1.000 1.200 1.208

600,000 50 12,000 0.005 0.005 0.014
100 6,000 0.010 0.010 0.020

500 1,200 0.050 0.050 0.068

1,000 600 0.100 0.100 0.128

5,000 120 13 0.500 0.500 0.608

10,000 60 1.000 1.000 1.208

Two points can be made from table 4. First, when the order
size is small, the communication overhead for transferring objects
from the server to the receiver becomes significant. In table 4,
when the ECR was 400,000 and the OS was less than 500, the
TBO was greater than the MST. This means that the consumer
had to wait for the producer. Even in this case a speedup is
possible because the LCT * OS is greater than MST - TBO.

(0.0001 + 100) > (0.020 — 0.015) (7

426

Distributed Simulation: No Special Tools Required

Secondly, when the ECR becomes very large, the remote
server cannot keep up with the ECR, the receiver will be forced
to wait for the server to generate numbers. This can be seen
in table 4 for all values where the ECR was 500,000. If the
time spent waiting is significantly less than what is required to
compute the values locally, then the server decomposition still
provides speedup.

7. CONCLUSION

The toolkit that we have developed can be used to develop
distributed simulation applications without having to invest in
new environments or training. SIMSCRIPT and the UNIX op-

erating system are widely available, allowing easy access to these
tools. The toolkit is composed of 650 lines of C code and requires
about approximately 50 lines of additional SIMSCRIPT code per
server/receiver pair to be added to the simulation model. The
user of these tools need only be concerned with three C func-
tion calls and two SIMSCRIPT routines, so the complexity of
the simulation program is not significantly affected.

Use of these tools is most likely to be beneficial in models
that can be decomposed into components in which information
flow among processors is not cyclic. An example of a simulation
model which could benefit from these tools would be a that of
a communication network protocol that requires simulated data
traffic packets described by a number of time independent com-
plex attributes. Other uses include distributed statistical analysis
procedures and graphical displays.

The authors will be glad to provide either printout or e-mail
copies of the tookit on request.

ACKNOWLEDGMENTS

This work was supported in part by CIT under grant INF-89-
002-01, by NASA under grant NAG-1-908, and Sun Microsystems
under RF596043.

REFERENCES

USENIX Association (1987), Unix Programmer’s Manual - Sup-
plementary Documents 1.

USENIX Association (1987), Unir User Manual.

Bagrodia, L.R., K.M. Chandy, and J. Misra (1987), “A message-
based approach to discrete-event simulation,” IEEE Trans-
actions on Software Engineering, 13, 6, 654-665.

Cota, B.A. and R.G. Sargent (1986), “Concurrent Programming
in Discrete Event Simulation: A Survey,” Technical Report,
Syracuse University, Syracuse, NY.

Fujimoto, R.M. (1989), “Parallel discrete event simulation,” In
Proceedings of the 1989 Winter Simulation Conference, E.A.
MacNair, K.J. Musselman, and P. Heidelberger, Eds. IEEE,
Piscataway, NJ, 19-28.

Gimarc, R.L. (1989), “Distributed simulation using hierarchical
rollback,” In Proceedings of the 1989 Winter Simulation
Conference, E.A. MacNair, K.J. Musselman, and P. Hei-
delberger, Eds. IEEE, Piscataway, NJ, 621-629.

Jefferson, D. (1987), “Distributed simulation and the time warp
operating system,” ACM SIGOPS.

427

Jones, D.W., C.C. Chou, D. Renk, and S.C. Bruell. (1989), “Ex-
perience with concurrent simulation,” In Proceedings of the
1989 Winter Simulation Conference, E.A. MacNair, K.J.
Musselman, and P. Heidelberger, Eds. IEEE, Piscataway,
NJ, 756-763.

Kaudel, F.J. (1987), “A literature Survey on Distributed Dis-
crete Event Simulation”

