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ABSTRACT

One way to think about the process of building a simulation
model is to classify the modeling into two (probably overlapping) ac-
tivities. Structural modeling involves setting up the basic physical
and logical structure, without bothering with specifics of parameter
values, input-distribution forms, or run lengths, etc. For example, in
a model of a communications system we would have to specify the
types of messages, network topology, and protocols. In quantitative
modeling we are forced to get specific about parameter values, forms
of input-probability distributions, as well as the numerical values of
the parameters of those distributions. In the communications exam-
ple, we would have to specify distributions for the lengths of the dif-
ferent types of messages and a stochastic process for the frequency
of request of network services from its nodes.

Typically, most attention is focused on structural modeling.
Certainly, it is important to get that part right. Also, of the two, it
may in some ways be more fun.

However, accurate quantitative modeling is just as essential.
Examples abound to illustrate the grave errors that can result from
using an “incorrect” probability distribution, even one that might be
“correct” for the expected value and even variance. Furthermore, in
large simulations there could well be hundreds of different input dis-
tributions to specify, each representing a separate step in a fabrication
process. Practitioners have consistently identified the problem of in-
put-distribution specification as being among the most difficult as-
pects of a simulation study.

Traditionally, simulation analysts have used well-known statisti-
cal techniques to “fit” a “standard” distribution to observed data; in
terms of generating variates from such distributions, most of the
simulation languages provide adequate support. For instance, an ex-
ponential, gamma, or Weibull distribution could be fitted to observed
service-time data. However, there has been debate over the degree to
which this is appropriate. As a diametrically opposed view, it has
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been proposed that empirical distributions (specified directly from the
data, and perhaps modified in the tails) be used instead. Positions
somewhere in between these two extremes have also been proposed,
using flexible “families” of distributions with a fairly large number of
parameters (4 or 5) to allow a wide range of shapes and ranges.

This panel discussion will provide a forum for discussion of
philosophical issues, but more importantly will shed light on their
quantitative relative merits. Researchers in the area will give position
statements and evidence, and discussants from the simulation-practi-
tioner community will comment on the alternative approaches,
including their practicality.

This paper presents (in alphabetical order) brief position state-
ments written by the panelists to serve as a point of departure for the
discussion.

BENNETT L. FOX |

This position statement on input-distribution modeling is an up-
date of the views expressed in Bratley et al. [1987, chapter 4).

Keep the model simple but not simplistic. If there are lot of pa-
rameters, estimation may require intricate numerical routines and may
well be statistically unreliable—especially when the sample contains
observations far out in the tail. If there are too few parameters, get-
ting a good fit may be impossible.

Choose the model so that parameter estimation is easy and vari-
ate generation is fast, but not at the price of using a simplistic model.
If variate generation by inversion is fast, variance reduction by corre-
lation induction is greatly facilitated.

Unless some distribution is extremely peaked or is supported on
an interval which can’t be taken, to a first approximation, as zero to
infinity, use phase-type distributions to reduce the model to a contin-
uous-time Markov chain. Variance reduction techniques and gradient
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estimation are easier in that setting; e.g., see Fox and Glynn [1990]
and Glasserman [1990], respectively. In addition, transitions can be
generated quickly; see Fox [1990] and Fox and Young [1990].
Also, the (useful) simterpolation technique of Reiman et al. [1990]
requires at least one phase-type distribution—though not necessarily
a complete Markov-chain model. Since I have not worked on esti-
mating phase-type distributions, I’ll leave a discussion of that to
someone who has; my feeling is that there is a lot to say on that sub-
ject that has not yet been said. To check some of what has been said,
see several papers cited in Altiok [1989].

If fitting a continuous-time Markov chain model as above
doesn’t work, use a linearly-interpolated empirical distribution—
possibly with a (truncated) exponential tail as in Bratley, Fox, and
Schrage [1987]. “Coalesce” the breakpoints by letting the
(subsequently-interpolated) “empirical” distribution jump only at the
kth, 2kth, ... order statistics where k is chosen as a function of the
number n of observations to make the number of jumps at most a few
dozen. Devroye [1986, page 767] suggests choosing k as a function
of n to get a consistent density estimate, of interest when n is large
and (more importantly) when computer memory is virtually uncon-
strained.

Nonstationarity can be hard to model. If only one distribution is
non-stationary and a continuous-time Markov-chain model is appro-
priate, a piecewise-constant intensity corresponding to that distribu-
tion may be suitable. Given the breakpoints, the intensity function is
easy to estimate. Fox and Glynn [1990, section 6] show how to
handle the resulting process efficiently.

Modeling multivariate distributions is also tough. In small di-
mensions, I'd look at generalizing the quasi-empirical approach in
Bratley, Fox, Schrage [1987]; beyond three or four dimensions,
however, I’d guess that this is a dead end. In higher dimensions, I'd
look at families of distributions indexed by a modest number of pa-
rameters; Johnson [1987] surveys these nicely. These families offer
significant modeling flexibility, but in small dimensions—certainly in
one dimension—they fail the simplicity test relative to the quasi-em-
pirical approach. With the latter, parameter estimation is easier and
variate generation is faster.
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I am delighted to be given the opportunity to provide some ran-
dom thoughts on the topic “alternative approaches for specifying in-
put distributions and processes.” I will proceed by reacting to the
thought piece provided by our distinguished organizer. )

The debate between using smooth data summaries embodied by
well-known probability distributions (fit to the data) versus empirical
cdf’s with tail adjustments parallels the debates I heard recently at a
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bootstrapping conference. That is, should we be using the bootstrap
as it was originally interpreted (re-sampling) or should we use a
parametric bootstrap. The bootstrapper crowd seems to put substan-
tial weight of evidence on asymptotics. Fortunately, the same crite-

rion has not yet strongly infiltrated the simulation crowd (although
there is always the threat). So much for a sound bite perspective. A
rather more pertinent point seems to be always overlooked regardless
of the crowd. It hardly matters what distribution estimator one uses
if the associated data are irrelevant. To illustrate, consider the
proverbial bank-teller problem. The observed bank-teller data for a
system in need of considerable improvement could be nearly useless.
Slow tellers lead to few arrivals so that even an exact representation
of this system and distribution fits could be deceptive to future sys-
tem configurations. One would hope that arrival rates would pick up
if the service in turn improves. A problem with this is that the cur-
rent situation does not provide the data to which analysts are eagerly
aspiring to subject their tools.

I have never cared for the (simplistic) view that data get col-
lected, fit using some standard distribution type, and then blessed or
blasted by means of a goodness-of-fit test. If blessed, the reason
could be bad (too small a data set or as above, the data set is the
‘wrong’ one). If blasted, the practical lack of fit may be so small as
to be not worth bothering with. The philosophical point to be made
is that we want to be able to tell how far from the truth we might be
rather than supplying a simple yes-no response for a model.

I would argue that it is not difficult to specify distributions in
simulation studies. In fact, it is really a rather straightforward opera-
tion. The problem is defending those that have been selected. Ar-
guments such as ‘they passed some hypothesis test’ or that ‘many
arrival patterns are exponential’ are not terribly compelling. Perhaps
it is a mistake to look for the one fixed static once-and-for-all set of
distributions but rather consider the problem to be dynamic. Once
the bank model has stumbled to some improved performance, further
improvements should be sought. Continuous quality improvement is
the rallying cry of the 90s, after all. Perhaps attention should be di-
rected to using the input distributions to assess how much the current
system can take and when further small/large refinements are called
for. A missing ingredient in many simulation studies seems to be the
role of the manager/decision maker. I hope we aren’t just simulating
systems to see if the software can mimic reality.

AVERILL M. LAW

There are two major situations experienced by the simulation
practitioner: (1) System data are available on the input random vari-
able of interest (e.g., machine repair times in a factory); (2) No sys-
tem data exist on the random variable. We now discuss each of these
cases in some detail.

Suppose that system data X1, X3, ..., X, are available and we
would like to specify an “appropriate” corresponding probability dis-
tribution to use in a simulation model. If it is possible to “fit” a stan-
dard (theoretical) probability distribution (e.g., exponential, gamma,
or lognormal) to the data that provides a “good” representation, then
we believe that this is generally the best modeling approach. (See
Law and Kelton [1991, pp. 356-400] for a three-activity approach
for specifying a theoretical distribution.) If no standard distmbution
works well, then we recommend using an empirical distribution
based on the X;’s (see Law and Kelton (1991, pp. 350-353]). An
important practical advantage of using standard and empirical distri-
butions is that they are supported by most simulation software.

The following are some reasons why we believe that a good the-
oretical distribution is generally preferable to an empirical distribu-
tion:
¢ An empirical distribution may have certain “irregularities,” par-

ticularly if only a small number of data values is available. A

theoretical distribution, on the other hand, “smooths out” the

data and may provide information on the overall underlying
distribution.

o If empirical distributions are used in the usual way, it is not
possible to generate values outside the range of the observed
data in the simulation. This is unfortunate, since many measures
of performance for simulated systems depend heavily on the
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probability of an “extreme” event’s occurring, €.g., generation
of a very large service time. With a fitted theoretical
distribution, on the other hand, values outside the range of the
observed data can be generated.

There may be a compelling physical reason in some situations
for using a certain theoretical distribution form as a model for a
particular input random variable. For example, interarrival times

of customers to a service facility are often exponentially.

distributed if arrivals occur at a constant rate.
A theoretical distribution is a compact way of representing a set
of data values. Conversely, if n data values are available from a
continuous distribution, then 2 values (data and corresponding
cumulative probabilities) must be entered and stored in the
computer to represent an empirical distribution in many
simulation languages. Thus, use of an empirical distribution
will be cumbersome if the data set is large.

Note that in many cases we do not expect any theoretical distri-
bution to be an exact representation of the true underlying random
variable of interest. Instead, we are trying to find a theoretical distri-
bution that is good enough for the purposes of the simulation model.
Also, we do not believe that goodness-of-fit tests (e.g., the chi-
square test) are by themselves a definitive way of deciding how well
a particular theoretical distribution fits a set of observed data. These
tests have low power when the sample size n is “small,” and may
have high power (i.e., able to detect even small discrepancies be-
tween the fitted and underlying distributions) for “large” n. Thus, in
the latter case, a theoretical distribution that is good enough for all
practical purposes may be rejected because a large sample size hap-
pens to be available. We recommend using both tests and graphical
comparisons to determine the efficacy of a particular theoretical dis-
tribution. For example, it is quite useful to plot a particular fitted
density function (appropriately normalized) over a histogram and vi-
sually determine the quality of the “fit.”

In some simulation studies it may not be possible to collect data
on the random variables of interest, so the above techniques are not
applicable to the problem of selecting corresponding probability dis-
tributions. For example, if the system being studied does not cur-
rently exist in some form, collecting data from the system is obvi-
ously not possible. This difficulty can also occur for existing sys-
tems, if the number of required probability distributions is large and
the time available for the simulation study prohibits the necessary
data collection and analysis. In many such situations, a good practi-
cal approach is to model an input random variable by a triangular
distribution, which is parameterized by its minimum, maximum, and
most likely values. People typically feel comfortable specifying these
values and, furthermore, the triangular distribution is supported by
almost all simulation software.
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Broadly, families of input models can be evaluated via three cri-
teria: (@) generality, (b) ease of generating realizations, and (c) ease
of parameter selection. The importance of each differs according to
the context in which the practitioner is working, which we discuss
later. First we briefly discuss these three criteria.

Generality is the first criterion. Many classical input models are
special or limiting cases of others. For example, the uniform distri-
bution is a special case of the beta. The gamma distribution is a limit-
ing case of the beta, and in turn the normal is a limiting case of the
gamma and the exponential is a special case of the gamma. Thus the
beta distribution never provides a worse input model than the
gamma, normal, exponential, and uniform distributions. Generality
can roughly be measured by the number of shape parameters; here
the beta distribution has two, the gamma one, the normal none, the
exponential none, and the uniform none. Schmeiser [1977] is an
early review of general input models. Debrota et al. [1989] discuss
ideas and software for fitting the four-parameter Johnson family of
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distributions. The cost of the generality of the beta, and of other
general families of distributions, lies with the other two criteria.

Random-variate generation, the second criterion, is related to in-
put modeling in that some input models allow trivial, efficient ran-
dom variate generation [Schmeiser 1980; Devroye 1986]. Ideally,
inverse-transformation algorithms are also available to aid correlation
induction for variance reduction. Schmeiser and Song [1989] look at
inverse-distribution algorithms for a variety of well-known stochastic
processes. Wilson and Avramidis [1989] look at general inverse-
distribution-function input modes.

Parameter selection, the third criterion, arises in three ways.
First is the classical situation of fitting the input model to real-world
data; classical methods of fitting apply. The second is fitting the
model to expert opinion, where ideally the input model has intuitive
properties so that the opinion can be easily converted to parameter
values. The third is selecting parameter values to provide a range of
cases, no one of which is meant to match a particular real-world sit-
uation; rather the interest is in interpolating or optimizing among
cases.

For discussion, we refer to the first two as real-world modeling
and the third as experimental-design modeling. In the former, the
true input processes are unknown and our input models are only rea-
sonable approximations to the real world (e.g., the time between ma-
chine failures in an existing system). In the latter, the true input pro-
cesses are assumed known, since the real world is one of assump-
tion.

In experimental-design modeling the problem is to assume
models that are tractable for determining parameter values so that we
can easily select a set of cases (an experimental design) so that practi-
tioners with real problems can interpolate between the cases (e.g., the
power of a test of hypothesis for i.i.d. exponential data for sample
size n = 13 when the cases run include n = 10 and n = 15). Fitting
the input model to data is seldom an issue in experimental-design
modeling. Monte Carlo experiments performed by statisticians fall in
this category. By referring to these experiments as “experimental-
design” modeling I do not mean to imply any particular formal or in-
formal analysis of the results; the reference is only to the problem of
choosing input models.

In contrast, real-world models are the domain of those modeling
existing or proposed systems. Often no reason exists to expect that a
good input model will be related to the classical distributions found in
statistics textbooks. In addition, in real-world modeling the practi-
tioner often has to fit many input models, usually in a short amount
of time and often with little statistical background; the issue is then
one of efficiently finding an adequate model rather than fine tuning to
the model that would have been used given more time and training.

Another taxonomy of input models is by their dependency
structure: (a) independent scalar distributions, (b) multivariate distri-
butions, (c) scalar time-series models, and (d) point processes. This
taxonomy is not perfect. For example, it does not include multivari-
ate time series, a combination of (b) and (c), and point processes are
often best viewed as the time-series of times between event epochs.

Most commercial software focuses on the classical scalar distri-
butions. The first GPSS that I used supported the user only if the
input model was normal, exponential, or uniform. The saving fea-
ture was that the user could specify a general piece-wise linear distri-
bution function. But the ease of choosing a built-in distribution was
tempting, even when all of the three built-in distributions were sus-
pect. The current software is much better, but yet seldom provides
built-in distributions beyond the classical scalar distributions.

A variety of models exist for multivariate models based on clas-
sical distributions. Schmeiser and Lal [1980] provide a brief survey;
Johnson [1987] provides a comprehensive work on multivariate dis-
tributions for simulation in the experimental-design context, with
emphasis on graphically depicting the distributions. Schmeiser and
Lal [1982] _discuss a family of bivariate gamma random vectors (and
corresponding ﬁ;st-order autoregressive gamma time series) that will
obtain any marginal gamma distributions and any corresponding fea-
sible correlation, but the cost of such generality even in the restricted
gamma case is solving nonlinear equations numerically. Lewis et al.
[1989] discuss a variety of gamma time series.

. In the real-world context random-vector input models can some-
times be constructed by cascading conditional distributions, often
intuitively by building a logical model. In other cases, the condi-
tional distributions are not intuitive. Then I like to transform multi-
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variate normal random vectors to match desired marginal distribu-
tions and correlations, ideally with scatter plots to check that the cor-
relation is capturing the desired dependence between components
(see, e.g., Schmeiser [1990]). Similarly, ARMA time-series with
normal marginal distributions can be transformed to nonnormal time
series with similar dependency structures.

My final point concerns determining the validity of input mod-
els, an important issue in real-world modeling. Neyman-Pearson
hypothesis testing is often advocated and sometimes used to assess
model validity, with the null hypothesis being that the model is cor-
rect and the alternative hypothesis being that it is incorrect. But in
real-world modeling the null hypothesis is almost certainly false,
making model validation a strained application of the Neyman-Pear-
son approach. Such a test really is checking whether enough real-
world data have been collected to detect the error that is present, not
whether the model is valid. Since the null hypothesis is false, the
real problem is to estimate the error in the input model and to deter-
mine whether it is negligible. Another way of saying this is that vali-
dation is not a matter of statistical significance, which is the focus of
hypothesis testing, but of practical significance: whether the model-
ing error is acceptable in the situation at hand. Practical significance
can often be assessed easily with simple graphs. For example, scalar
marginal distributions can be assessed by plotting the real-world
empirical distribution function against the fitted distribution function.
(Another common practice is to plot two empirical distribution func-
tions, the real-world data and a sample of equal size from the fitted
input model. Plotting against the distribution function of the fitted
model contains more information and therefore dominates.) Scatter
plots and plots of times series are useful for input models with de-
pendence.
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In modeling and simulation of stochastic systems, a major problem is
the selection of probability distributions that will adequately represent
the input processes (populations) driving the simulation model.
When it is feasible to collect sample data from a target Kopulation,
simulation input modeling is usually accomplished by (@) hypothesiz-
ing a standard parametric distribution to describe that population,
(b) estimating the associated parameters based on the sample infor-
mation, and (¢) performing diagnostic checks to assess the adequacy
of the fit based on a comparison of the sample distribution with the
fitted distribution. In the absence of sample information for parame-
ter estimation and goodness-of-fit testing, practitioners usually try to
elicit expert opinions about enough numerical characteristics of the
target population (for example, the mode, the end points, or the
?a‘f;ﬂ) to specify uniquely a member of the hypothesized distribution

y.
Rather than trying to fit a miscellaneous collection of distribu-
tions in an ad hoc fashion, it is preferable to adopt a systematic ap-
proach to input modeling based on a sufficiently general family of
related distributions. This is hardly a new idea—it was the basic
premise underlying the development of comprehensive distribution
families by Pearson [1895] and Johnson [1949a, b]. In recent years
the dramatic increase in the number of large-scale simulation studies
has led to renewed interest in this approach [Ramberg and Schmeiser
1974; Schmeiser and Deutsch 1977; Johnson 1987; DeBrota et al.
1989a, b]. This discussion focuses on some of the main require-
ments of a general distribution family for simulation input modeling.

1. Flexibility. A great diversity of distributional shapes arise
in modern simulation studies, and the overriding consideration in ef-
fective input modeling must be the flexibility of the distribution fam-
ily to be used. The chief advantage of the Pearson and Johnson
families is that they are capable of matching the first four moments of
any distribution; and in many circumstances this provides sufficient
flexibility to represent the important features of an empirical or theo-
retical distribution. The generalized lambda family of distributions
[Ramberg and Schmeiser 1974] and the absolute lambda family
[Schmeiser and Deutsch 1977] provide somewhat less flexibility, but
all of these families encompass a much greater span of shapes than
the standard distributions that are commonly used in simulation ex-
periments.

2. Generalizability in one dimension. All of the distribu-
tion families discussed so far are based on univariate densities with at
most four parameters. This limitation on the parameterization implies
a corresponding limitation on the variety of distributional shapes that
can be achieved; and it is not uncommon to encounter data sets in
practice that simply cannot be adequately fitted by any of the well-
known families of univariate distributions. The phrase generalizabil-
ity in one dimension is used here to refer to the capability for modify-
ing the basic functional form of a fitted univariate distribution by an_
open-ended, systematic generalization of the parameterization of that
distribution. Hora [1983] and Avramidis and Wilson [1989] have
proposed alternative techniques for achieving such generalizability,
but it seems that many fundamental properties of these techniques
have not been completely worked out; moreover there does not yet
appear to be any substantial body of practical experience with either
of these techniques.

3. Extendability to higher dimensions. This phrase
refers to the ability to model not only univariate populations but also
bivariate and higher-dimensional populations. Although the depen-
dency structure among input variates is frequently ignored in prac-
tice, this can be a source of significant error in large-scale simulation
studies [McDaniel et al. 1988]. In addition to its well-known flexi-
bility, one of the principal advantages of the Johnson distribution
family is that it can be naturally extended to fit multidimensional
populations [Johnson 1949b; Johnson 1987].

4. Tractability. The ease with which a family can be manipu-
lated analytically or numerically is an important consideration. The
mathematically complex, highly ramified Pearson family has discour-
aged some potential users, and the Johnson family is also relatively
difficult to handle. The absolute and generalized lambda families are
substantially easier to handle, but they still present nontrivial mathe-
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matical and numerical difficulties. The user can be shielded from this
complexity by software packages that facilitate fitting distributions
from a general family using sample data [Swain et al. 1988] or by
subjective estimation [DeBrota et al. 1989]; nevertheless, the robust-
ness and responsiveness of these packages can depend critically on
tl;agu-actability of the underlying distribution family [AbouRizk et al.
1990].

5. Good parameterization. In addition to the mathematical
and numerical tractability of a distribution family, another related but
distinctly different consideration is the extent to which (a) the
parameters of the constituent densities can be given direct physical
interpretations, and (b) different parameters regulate genuinely
different characteristics of the target population. For example, the
parameters of Johnson distributions frequently are given a biometric
interpretation in applications to forestry [Schreuder and Hafley
1977]. However, it is clear that sample estimators of the parameters
of a Johnson distribution are highly correlated. Moreover, fits of
nearly the same quality can frequently be obtained with a single
Johnson density and with substantially different values of the
parameters of that density. These properties of the Johnson family
indicate that there is substantial overlap in the roles played by some
of its parameters, especially in the bounded (Sg) subfamily of
Johnson distributions. This is a disturbing state of affairs.

6. Ease of variate generation. Although this topic might be
viewed as another aspect of tractability, it is considered separately for
several reasons. In the first place, the variate-generation scheme
should be compatible with the use of variance-reduction techniques
[Wilson 1984); and this suggests that the inverse transform method
should always be used for sampling from univariate distributions.
‘When sampling a multivariate distribution, it is highly desirable that
each component of the generated random vector be a monotonically
nondecreasing function of each random number required to generate
the complete random vector. On the other hand, the efficiency with
which random variates are generated does not appear to be a crucial
issue in many large-scale simulation studies [Klein and Baris 1990];
thus the increased computational overhead required to use an appro-
priately monotonic random-variate generator should be more than
compensated by the effective implementation of variance-reduction
techniques like common random numbers and antithetic variates.
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