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ABSTRACT

It is well-known that infinitesimal perturbation analysis gives
biased estimates for multi-server queues when the service time
distributions of the servers are not equal. In such cases, it is nat-
ural to ask how serious is the bias. In this paper, we analytically
calculate the bias for infinitesimal perturbation analysis gradi-
ent estimators of mean steady-state system time (with respect
to parameters in the interarrival or service time distributions)
in a two-server Markovian queue where reversibility holds.

1. INTRODUCTION

The technique of infinitesimal perturbation analysis (IPA)
was introduced by Ho and Cao [1983] for the sensitivity analysis
of throughput in queueing networks. Suri and Zazanis [1988]
applied the technique to the GI/G/1 queue for calculating sen-
sitivities of system time of a customer w.r.t. a parameter of the
arrival or service distribution, and proved strong consistency of
the IPA estimators for the M/G/1 queue. Since then, numer-
ous consistency proofs for the G/G/1 have followed. Fu and Hu
[1990] studied the extension to the multi-server case, the G/G/m
queue, proving strong consistency for the M/M/m queue. Un-
fortunately, the IPA algorithm fails (i.e., the estimator is neither
unbiased nor consistent) when the servers are not identical. A
heuristic argument as to why it fails is given in [Fu and Hu
1990]. Oftentimes when IPA fails, other perturbation analysis
techniques such as those introduced in [Gong and Ho 1987; Ho
and Li 1988] can be applied. However, the estimators derived
using these techniques do not always have as desirable statistical
or computational properties as IPA, so it is natural to investigate
the actual magnitude of the IPA estimator error. This paper is
a first step in that direction. In this paper, we study an analyt-
ically tractable, non-identical, two-server Markovian queueing
system and calculate the steady-state bias of the IPA estimator,
employing the technique of time-reversibility of Markov chains,
which was used to prove consistency of the M/M/m queue in [Fu
and Hu 1990). Since it is believed that the statistical proper-
ties of IPA are insensitive to the actual underlying distributions,
the calculation of the bias for this analytically tractable system
should provide insight for the general case, e.g., on the order of
the error with respect to server non-identicality. In section 2, we
describe the IPA algorithm; in section 3, we present and discuss
the bias result, with the details of the calculation provided in
the appendix; and in section 4, we make some conclusions.

2. THE IPA ALGORITHM

We consider a multi-server first-come, first-served (FCFS)
queueing system with a general renewal arrival process and gen-
eral service time distributions. Steady-state system time, de-
noted by T, is our performance measure of interest, and we
wish to estimate dET/df and dET/da, where 6§ is a param-
eter of the service time distribution and « is a parameter of
the interarrival time distribution. Consider an arbitrary busy
period of the system, and let X;(8) represent the service time
of the ith (to arrive) customer in the busy period and Ai(c)
represent the interarrival time between the (i-1)th and ith cus-
tomers in the busy period. To describe the IPA estimator, we

377

Jian-Qiang Hu

Division of Applied Sciences
Harvard University
Cambridge, Massachusetts 02138

introduce the important concept of a server’s local busy period:
the length between two adjacent idle times of the (same) server.
Thus, a single global busy period (busy period of the system)
may contain any number (including 0) of local busy periods of
a particular server.

Using this idea of local busy periods, and defining the set
of customers preceding i in the same local busy period L(i) =
{7 < i:]in the same local busy period as i}, we have (see [Fu
and Hu 1990] for details)

dT; dX;  dX;

—_ _ +—,
" T e

1)

where T; is the system time of the ith customer (in the busy
period). This expression can also be written in recursive form:

|

where ¢ = maxjer(;)J, i.e., customer z is the index of the cus-
tomer preceding i in the local busy period. Intuitively, the
change in system time of customer i is the sum of the change
in system time of the customer just preceding him in the same
local busy period (if any such customer exists) plus the change
in customer i’s own service time. Glasserman [1990] has shown
that this estimator (for the derivative of system time of the
ith customer, not for steady state) is unbiased for the GI/G/m
queue.

The explicit estimator for dET'/df is then given by summing
over all customers and can be implemented by the following
algorithm (given for simplicity for a single parameter, but of
course easily extendable to a vector of parameters):

aX,

5 if i initiates local busy period

dT;

- (2

dT:

—_—

=% + % otherwise

IPA Algorithm for a Service Parameter of the G1/G/m Queue.
Initialize:
DTSUM=0
DXSUM(S)=0 for S=1,...,m, where m=# servers
At the end of service of customer j at server S:
DXSUM(S)=DXSUM(S)+dX;/do
DTSUM=DTSUM+DXSUM(S)
If no one waiting in queue, then server S becomes idle and DX-
SUM(S)=0

t f ustomers
(dT/d8)p=DTSUM/N

Eerv

Analogously, for the arrival time parameter, we have

dA;

da”

dT; :

j=ivH
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and corresponding to Equation (1), we have:

0 if i initiates local busy period
dT;
do % - :;:;.“ %’- otherwise

(4

where i* is the index of the customer who initiates the loca%
busy period of customer i and 7 is the index of the customer
who precedes | in the local busy period. Intuitively, the change in
system time of customer i is the sum of the change in system time
of the customer just preceding him in the same local busy period
(if any such customer exists) plus the total change in customer
1’s own arrival time relative to the customer just preceding him
in the local busy period.

An algorithm for dET/da is given by

IPA Algorithm for an Arrival Parameter of the GI/G/m Queue.
Initialize:

DTSUM=0

DASUM(S)=0 for S=1,...,m, where m=4 servers

At the entrance of service for customer j at server S:
DASUM(S)=DASUM(S)-dA;/da for all busy servers S

If customer j initiates a local busy period at S, then
DASUM(S)=0.

DTSUM=DTSUM+DASUM(S)

At the end of N customers served:

(dT/da)y=DTSUM/N

3. A TWO-SERVER MARKOVIAN QUEUE

For the M/M/m queue, Fu and Hu [1990] proved strong
consistency for the IPA estimators by direct comparison with the
analytic expressions. The technique used in the proof was time-
reversibility of Markov chains. In this section, we utilize this
technique to calculate the analytic values of the IPA estimators
for a two-server case where the servers are unequal, and compare
it with the analytic expressions for the actual derivatives. Many
of the details are left to the appendix.

The system under consideration is a single queue, two-server
system with unlimited capacity. The arrival process is Poisson
with rate A = 1/a, and the service times are exponentially dis-
tributed with means 8, and 6,. If both servers are available,
then either server is chosen with equal probability. (This is the
necessary and sufficient condition for reversibility to hold in the
two-server case; see, e.g., [Wolff 1989, p.311].) Thus, the system
can be represented as a continuous-time Markov chain, and so
the stationary probabilities for number in system can be found
by solving the flow balance equations, yielding the following:

where p* = 2 pa/(pt1 + p12), p = Afi, and i = p1 4 p,. The

expected number in system is given by

A
(1=p)(1+kp)’

and applying Little’s Law, the expected system time is

E[N] = (6)

1/p
Ell=+—F7—77- 7
M= a0+ ™
Differentiating with respect to a, we get
dE[T]  —p) 1-k+2kp ®)
do — pt (1= p)2(1+kp)?

With respect to the service time distribution, there are numerous
choices for the parameter, e.g., 6, and 0, each separately. We
have chosen to take 8; = 8 and 8, = ¢f, so k = (c+ 1/c)/2, in
which case we get

dE[T) c+1
o "2

1+ kp’]
(1= p)*(1 + kp)*

To calculate the expectation of the IPA estimators, we con-
sider a customer, shown in Figure 1 and denoted by C., who
arrives to the system in steady-state at time A. and is the ith
customer in the busy period. As in the previous section, we let
X;(0) represent the service time of the jth customer served in
the same busy period as C\., and Aj(«) represent the interarrival
time between the (j-1)th and jth customers in the busy period.
Denote C.’s system time by T, waiting time by W, and service
time by X, (so T = W + X,).

For exponential interarrival times with mean a, we have
dAj/da = Aj/a, and for exponential service times with mean
or cf, we have dX;/df = X;/6, so Equation (3) becomes

(9)

-1 ¢
Z Aiv

j=it41

dT

da a

(10)

where recall that * is the index of the customer who initiates
the local busy period of customer i, and Equation (1) becomes

daT 1
A =3 Z .YJ' +
dé 0jEL(-‘)

X.
- (11)

where recall that L(i) is the set of indices of customers who
precede customer i in the local busy period.
These two equations can be rewritten as

A T  -S§
= — n , 5 _ =
o= (%) = (12)
. 1—p 1 | g2
with po = dk=-(—+—), and
PEPE T, M 2t ) a1
0 5(.. +T), (13)
5
- jeLld) .
local busy period
of server |
*
Ax C+ enters service D»
- —

T

Figure 1. Customer C. in Steady-State System
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where S is the length of C.’s local busy period upon C.’s arrival
(see Figure 1). Thus, the expectations of the IPA estimators are
given by

dar -1
Ed_a. = TE[S]v (14)
and ar 1
B = S(EIS] + E(TY). (15)

To complete the calculations, we need E[S], for which we use the
reversibility of the system - the details of which are provided in
the appendix - to get

e
P = T (16)
Substituting, we have
T —2p2)/p
da = (L= pP( + (L4 Fp)’ (1
and dT  c+1 P+1
%= 2 =i en(it k) (1)

which match Equations (8) and (9) when ¢ = 1(= k =1).

The bias terms then are just the differences between Equa-
tions (8) and (17), and between Equations (9) and (18), which
we denote by b,(k) and bg(k), respectively:

-
= T ke 1
bok) = LB = 1) (20)

T2 (1= )1+ kp)?

where it can be checked that b,(1) = 0 and bg(1) = 0, i.e., IPA is
unbiased for the equal-scrver case. Interestingly enough, the two
bias terms differ only by a multiplicative term not dependent on
the non-identicality of the servers.

We investigate the two extremes now: when the servers are
nearly identical and when the servers are far from identical. For
this purpose, we define § such that ¢ =1+ 6.

‘ase 1: 6 << 1: Then, Equation (19) becomes

p26?

bo(6) % —————— x 6%, (21)
O T+ o
and Equation (20) becomes
-1 p262 2
N x 6. 22
WO S ST D

Thus, the biases are proportional to.éz. Note that the biases
go to 0 as p goes to 0, and to infinity as p goes to 1. Since
the bias is caused by finite jumps in the sample performance
function arising from event order changes in the sample path due

S

——

server 1

server 2

*

A

to infinitesimal perturbations in the parameters (analytically,
discontinuities in the sample performance function) — in this
case causing switching between unequal servers (see [Fu and Hu
1990] for details) - and more occurrences of such phenomenon
will occur at higher traffic intensities, this result makes intuitive
sense.

Case 2: ¢ >> 1 (and kp >> 1):  Then, Equation (19)

becomes 1
bole) % 1=, (23)
and Equation (20) becomes
-1 1
bg(c) = W'IT;Z-, (24)

The biases are bounded by a constant for ¢ large enough, when
the system begins to act like a single-server system, except when
empty. Again, both biases go to 0 as p goes to 0, and to infinity
as p goes to 1.

4. CONCLUSIONS

Because it is believed that the applicability of IPA is in gen-
eral distribution-independent, we would conjecture that the or-
der of biases with respect to non-identicality - proportional to 62
- may be applicable to more general distributions, as well. This
would mean that IPA is relatively insensitive to small deviations
from the equal server case. Simulation studies are presently un-
derway to verify this conjectures. Finally, it should be noted
again that in cases where IPA is inappropriate, very often other
forms of perturbation analysis can be applied, see e.g., [Gong
and Ho 1987; Ho and Li 1988].

APPENDIX: CALCULATION OF E[S]

Recall that A = 1/« is the arrival rate, gy = 1/6 and p; =
1/(ch) are the service rates, p = A/(p1 + p2), and we consider a
customer, C,, who arrives to the system in steady-state at time
A., shown in Figure 1.

To calculate E[S], we condition on the random variable N,
where N = the number of customers in the system upon C.'s
arrival:

BIS)= Y BISIN = nlpa = SopeBals]  (25)

n=0 n=0

where p, = probability that C. finds n customers in the system
upon arrival (since Poisson arrivals see time averages) and E,
denotes the conditional (given N = n) expectation.

We note that for N < 2, C, has no wait and initiates the
local busy period, so Equation (25) becomes

E[S] = ian,.[S]. (26)

We need to calculate the term E,[S] for n > 2. For this
calculation, we use the reversibility of the system. First, we
rewrite the desired term by conditioning on the local busy period
that C. enters (see Figure 2):

S
arrival?
reversed < aS .
§2

A

Figure 2. Time-Reversed Sample Path
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E.[S] = Eu[S1]P[C. served by i
+E,[53)P[C. served by 2] (27)
= E.[8]+ E.AS % P[C. served by 2], (28)

where S is the length of the shorter local busy period when C.
arrives and 1 denotes the server of the shorter local busy period,
S, is the length of the longer local busy period 2 when C. arrives
and 2 denotes the server of the longer local busy period, and
AS = S, — S}, the difference in length between the two local
busy periods.

Using the time-reversed sample path shown in Figure 2, the
first term is just the time to go from n down to 1 customers
for an M/M/1 queue with arrival rate A and mean service time
[t = p1 + 2, which is equal to the sum of (n — 1) independent,
identically distributed busy periods of the M/M/1 queue, i.e.,

1/

E,.[.§'1]=(n—1)1_p

for n > 2. (29)

To calculate the second term in Equation (28), we condi-

tion on whether S, corresponds to server 1's local busy period
or server 2’s local busy period:

E.AS P[C. served by 2]
E.[AS|2 = 1] % P[C. served by 2|2 = 1]P[2 = 1]
+E,[AS|2 = 2] % P[C. served by 2|2 = 2]P[2 = 2|

= EnA..ql _#l _#2 n 2 L L
i+ p2 g -t g+ p2
= M (B AS + E.AS), (30)

(p1 + p2)?

where E,AS, = E,[AS|2 = 1], E,AS, = E,[AS|2 = 2], and
where we have utilized reversibility and the memoryless property
of the exponential distribution to derive the probabilities.
Viewing the time-reversed sample path in Figure 2, we see
that the term E,AS) is the time from having only one customer
in the system - and that one at server 1 - to the time when server
1's local busy period ends. There are two cases to consider,
shown in Figure 3, depending on whether or not server 1 finishes
service of its current customer before another customer arrives to
the system. The probability of the former (finishing) is g1 /(X +
1), the probability of the latter (not finishing) is A/(A + p1),
while the mean time of the event (either departure or arrival)
is 1/(A + p1). The former casc indicates the end of scrver 1's
local busy period, so E,AS; is simply 1/(A + p1). The latter
case is more complicated. Given the arrival occurs before the
departure at server 1, the system now has two customers. The
expected time back down to one customer in the system is, as
we calculated in the previous paragraph, (1/)/(1 — p). The
remaining customer is at server 1 with probability pa/(p1 + p2)
and at server 2 with probability p;/(p1 + p2). If the customer
is at server 2, then server 1’s local busy period has ended, while
if the customer is at 1, then we have returned to the situation
that we began with, i.e., the remaining time at this point is
again E,AS) (see Figure 3). Putting this altogether, we have

1 X 1fi o
E.AS, = + E,AS ————
T+ A+u1(1—p l#1+#z)
Solving, we get
E.A8 = P (31)
1-p?
A completely analogous argument for server 2 yields
E.AS, = M (32)
1-p?
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Substituting into Equation (30), we get

/i

E.AS x P[C. served by 2] = e

(33)

Substituting into Equation (25), we have

A& Vi | 1p
E[S] = u.PoE;P [(n— I)IT/; + 1—_p2]
_ e p’lu
T (1=p)(1+kp) T (1= p2)(1+kp)
_ 2% [p"
(1=p)2(1+p)(1 + kp)’
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1) 1 finishes before next arrival

no arrival
server 2 |

server 1

. !

end of local b.p.
2) arrival before 1 finishes
a) 1 idle first
server 2 l [
server 1
Ax
end of local b.p.
b) 2 idle first

server 2

server 1

. !

just like at A,+S51

Figure 3. Cases to Consider in Calculating E,AS;
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