Proceedings of the 1990 Winter Simulation Conference
Osman Balci, Randall P. Sadowski, Richard E. Nance (eds.)

FINITE-TIME BEHAVIOR OF TWO SIMULATION OPTIMIZATION ALGORITHMS

Ying Tat Leung

Philips Laboratories

Rajan Suri

Department of Industrial Engineering

North American Philips Corporation

345 Scarborough Road
Briarclilf Manor, New York 10510

ABSTRACT

\We investigate the finite-time behavior of two specific simu-
lation optimization algorithms: a Robbins-Monro procedure ap-
plicd in a conventional way and a more recently proposed single-
run optimization algorithm. By applying these algorithms to
simple systems we show that, in practice, convergence of the for-
mer algorithm can be slow while that of the latter is very fast. We
also provide evidence that the choice of projection operator (to
deal with constraints in the optimization problem) has a signifi-
cant effect on the finite-time performance of the latter algorithm.
These results provide some basic insight into the behavior of such
algorithms.

1. INTRODUCTION

We consider optimizing an objective function which involves
quantities that can only be observed through running a com-
puter simulation model (or by observing the real world). This
situation often arises when one is interested in optimizing the
performance of a complex system such as a manufacturing facil-
ity. We assume that random components exist in the system,
so that the computer simulation model only gives sample esti-
mates of the quantities of interest. Our optimization problem
therefore falls into the category of stochastic optimization (e.g.
[Glynn 1986]). Pre-1977 works on stochastic optimization via
simulation are surveyed extensively in [Farrell 1977], while more
recent survey papers are those of Meketon [1987] and Jacobson
and Schruben [1989).

An important class of stochastic optimization algorithms is
stochastic approximation, first proposed by Robbins and Monro
[1951]. Their original algorithm is not an optimization scheme,
but rather a root finding procedure for a response function whose
exact values are not known but are observed with noise. In an
optimization scenario, the response function represents the gradi-
ent of an objective function. If we can find an unbiased estimator
for the response function, it is well-known that the asymptotic
convergence rate for the Robbins-Monro algorithm is most often
T-1/2 where T is the computational effort. This is usually the
best we can expect from Monte-Carlo algorithms.

However, asymptotic convergence rates alone may not give
sufficient. information on how fast the algorithms actually con-
verge in practice. This is because in general we do not know when
the algorithms will start to hehave “asymptotically”. Therefore
two algorithms with the same asymptotic hehavior may perform
quite differently when they are actually implemented and run for
a finite period of time. Recent empirical studies on a class of
simulation optimization algorithms, namely single-run optimiza-
tion [Suri and Zazanis 1988, I.'Ticuyer et al. 1989, Suri and Leung
1989], illustrate this point well. Results there suggest that single-
run optimization algorithms converge much faster than other
conventional simulation optimization algorithms, even though we
know that the asymptotic convergence rate cannot be faster than
T2, From a practical point of view, the finite-time behavior of
an algorithm is at least as important as the asymptotic behavior.
Not only does the finite-time hehavior give a sense of how far the
current solution is from the true optimum, but in so doing it also
suggests when to stop execution of the algorithm. Needless to
say, such information is very useful for practitioners.

Analyzing the finite-time performance of stochastic optimiza-
tion algorithms is in general a very hard problem. (In fact, es-
tablishing asymptotic properties is by no means easy, see e.g.

372

University of Wisconsin - Madison
1513 University Avenue
Madison, Wisconsin 53706

[Ljung 1977, Kushner and Clark 1978].) In this paper we use
some simple modcls to investigate the finite-time behavior of two
stochastic approximation procedures adapted to the simulation
environment. These models are believed to be representative of
many simulation models and yet simple enough to give insight-
ful results on the finite-time behavior of the optimization algo-
rithms. In addition, using one of the models we study the impact
of the projection operator (to deal with constraints) on the per-
formance of the algorithm. Since a projection operator is most
often carried out a finite number of times (in the case of conver-
gent algorithms), it does not aflect the asymptotic convergence
rate of the algorithm. However, we show that a projection oper-
ator does contribute to the finite-time bchavior and as a result
is an important consideration in practice.

Throughout the paper we let & be a real-valued controllable or
decision paramcter of a simulation model, =" be the value of = we
are secking (e.g. root of the gradient of the objective function),
and x(n) be its estimate generated by the optimization procedure
in the nth iteration.

2. STOCHASTIC APPROXIMATION FOR A LINEAR
RESPONSE MODEL

2.1 The Linear Response Model

In this section we consider conventional stochastic approx-
imation for root finding, namely the Robbins-Monro procedure
[Robbins and Monro 1951]. It is well known that Robbins-Monro
type procedures when combined with suitable estimators typi-
cally have an asymptotic convergence rate of T-1/2, where T is
the computational effort. This has been shown to be true in a
number of papers under a variety of conditions (e.g. [Sacks 1958,
Major and Révész 1973, Kushner and Clark 1978, Kushner and
[Tuang 1979]).

On the other hand, little has been done on the finite-time
behavior of stochastic approximation. When the estimator for
the underlying response function is unbiased and under certain
additional conditions, Chung [1954] gives a bound on the second
moment of 7(n) centered around z*. Here we relax the assump-
tion of an unbiased estimator but only consider cases where the
underlying response function is linear. By obtaining an explicit
expression for the mean squared error for the estimate of z* at
the end of the nth iteration, we can gain some insight into the
behavior of the algorithm when the number of iterations is small.

Let I7(x) denote a real-valued function representing the un-
derlying response function of a simulation model with a real-
valued controllable parameter z. Suppose H(z) is unknown to
the experimenter who can only ohserve noisy values of it at dif-
ferent values of x. The goal of the experimenter is to solve for z*
such that F/(x*) = o, where « is a given constant. Assume that

the experimenter chooses to use the following Robbins-Monro
type procedure.

Algorithm 1. A Robbins-Monro procedure

(1) Initialize: Choose z(1) = ¢, ¢ arbitrary, a fixed initial state
so of the system to be simulated, a sequence of positive num-
ber‘s {a(k), k = 1,2,...} such that condition (A2.1.3) below is
satisfied, and another sequence of positive numbers T(k),k =
1,2,...} such that T'(k) — oo as k — oco. T(k) is the simulation
run length for iteration k. Set n = 1.

(2) Make an independent simulation run at x(n) with initial state

Y.T. Leung and R. Suri

so and run length T(n). Let ¥(n) be the (noisy) system response
observed.
(3) Update:

z(n+1)=z(n) —a(n)[Y(n) —a], n=1,2,... (1)

n=n+1.

(4) If the chosen stopping criterion is not satisfied, go to step 2.
Otherwise, stop the algorithm and z(n) is an estimate of z*.

[End of algorithm]

Algorithm 1 is a natural adaptation of the original Robbins-
Monro procedure to the simulation environment and is similar
to the one proposed by Wardi [1988]. We assume that a suit-
able stopping criterion (in step 4) has been chosen so that the
algorithm eventually stops (see e.g. [Stroup and Braun 1982]).

We consider the case where fI(z) is of a linear form,

H(z)=pz -0, (2)

where st and 0 are constants and p # 0. Without loss of gen-
erality, we assume that 4 > 0 and a = 0. The true solution is
therefore * = 0/u. Suppose that when given (1), ..., z(n),
Y (1), ..., Y(n —1); Y(n) can be written as

Y(n) = H(z(n)) + B(n) + £(n), ()

where f3(n) can be viewed as the bias due to the initial state
and £(n) the noise. In order to analyze this system, we further
assume that

(A2.1.1) {A(n),n = 1,2,...} is a sequence of bounded determin-
istic functions such that g(n) — 0 as n — oo.

(A2.1.2) {&(n),n = 1,2,...} is a sequence of independent and
identically distributed (i.i.d.) random variables with zero mean
and finite variance o2.

The additive form of (3) is also used in, for example, [Kush-
ner and Clark 1978] and seems to be fairly general. Assumption
(A2.1.1) says that the initial bias has to go to zero as the sim-
ulation run length T'(n) increases. Since we start each iteration
with a fixed initial system state so, it is not unreasonable to as-
sume 3(n) is deterministic (but may depend on s¢). A potential
weakness of this assumption, however, is that we do not allow
B(n) to depend on the parameter value x(n) at which the simu-
lation is running. {£(n)} stands for the random noise observed
in independent simulation runs. For convergence of Algorithm 1,
we also assume that
(A2.1.3) {a(n),n = 1,2,...} is a deterministic sequence of posi-

tive real numbers such that a(n) — 0 as n — o0, ¥, a(n) = oo,
and ¥, [a(n))? < co.

In the optimization situation, H(z) is the derivative of an
objective function, and so (2) implies that the original objective
function is quadratic. This is not unreasonable for many practical
systems operating near a local optimum.

2.2 Finite-Time Behavior of the Algorithm

We are interested in the bchavior of Algorithm 1 when the
number of iterations n is finite. Assuming the system response
has the form of (3) and that (A2.1.1) and (A2.1.2) hold, it can
be shown [Leung 1990] that, forn = 1,2,...,

Betn+ 1)) = 2+ (c—%)k_ﬁlu—na(k)l—
> [ﬁ(j)a(j) 1 ¢ —#a(k))}, (4)
Jj=1 k=j+1
varf[r(n +1)] = azi [az(k) fI (1- /ta(j))Q] . (5)
k=1 i=k+1

On the RIIS of (1), note that 0/ = z*, so the second term is
the bias due to the starting value ¢, and the last term is the bias
due to that contained in the observations Y (n) (namely 8(n)).
It is also intuitively clear that (5) is independent of B(n) since
B(n) is assumed to be deterministic. From these two formulae,
the mean squared error (MSE) of z(n +1) is immediate from the
relation

MSE[z(n + 1))

I

B {letr+1) - =)
{Elz(n + 1)] = 2*}% 4 var[z(n + 1)].

We give a numerical example of calculating the MSE. Let A
denote a constant. We take a(n) to be A/n, a common choice
for Robbins-Monro type procedures, and B(n) to be 1/n. (It is
well known that many practical simulation models have an initial
bias inversely proportional to the simulation run length.) Other
parameters used are: 0 =4, p = 2 (hence v* =2), 02 =8,(=0.

Figure 1 shows the graphs of MSE versus n for different values
of A. It is clear that when A = 0.125, the MSE decreases much
more slowly than that of the other cases. For a large value of
A such as 2.125, the MSE in the first few iterations is very big
but decreases quickly after 6 or 7 iterations. Other cases with
different parameter values also show similar behavior and are
omitted here.

4
3.5
54
2.5
[£1]
122}
=,
5
) -
0.5 -
o . . : A)&xa. nmm
[+] 20 40
n
o A=0.5 + = 0.125 ¢ A = 2,125

Figure 1. Behavior of Algorithm 1

Finite-Time Behavior of Two Simulation Optimization Algorithms

An important. lesson learned from this analysis is that al-
though the Robbins-Monro procedure typically enjoys a fast (in
terms of Monte Carlo algorithms) asymptotic convergence rate of
n~1/2_ its finite-time behavior is not as good as we wish it to be.
For example, if we want the estimate of z* to be, on the average,
within plus or minus 5% of the true value (i.e. x(n) € [1.9,2.1],
resulting in an MSE[z(n)] of 0.01 and H(x(n)) € [-0.2,0.2], rea-
sonable requirements), the number of iterations needed is not
small, even when using the better choices of A = 0.5 or 2.125.
The exact numbers of iterations are shown in Table 1. Since each
iteration involves one simulation run, the total computational ef-
fort is rather substantial, especially for models of complex sys-
tems.

Table 1. Small-Sample Behavior of Algorithm 1

A [o? [Smallest n such that MSE[z(n)] < 0.01
0.5 1 38
8 206
2125 | 1 64
8 485

[t should be noted that we have no intention of diminishing
the value of the Robbins-Monro algorithm here. On the contrary,
we feel that it is one of the best algorithms available for (con-
tinuous parameter) stochastic optimization. It is simple, usually
does not have any numerical instability problems, and when ap-
plied carefully can be much faster than, say, techniques adapted
from deterministic optimization methods. It also forms the basis
of single-run optimization, as will be seen next.

3. SINGLE-RUN OPTIMIZATION FOR AN AR(1)
PROBLEM '

3.1 The Optimization Problem

In this section we apply the Robbins-Monro procedure within
asimulation run, resulting in a single-run optimization algorithm.
The optimization problem is in fact analytically tractable, but we
shall use simulation to solve the problem as if this were not so in
order to analyze the simulation optimization algorithm. Though
simple, this problem illustrates some interesting results which
seem counter-intuitive on first sight. For instance, the observa-
tions (from simulation) Y(x(n)) used in the optimization algo-
rithm are biased and highly correlated; additionally, the value of
x(n) is updated after only one noisy observation is made. Yet
the algorithm is convergent [Leung 1990] and possesses highly
desirable small-sample behavior, as we shall show later.

It turns out that the optimization problem studied here re-
duces to a level crossing problem used by Mcketon [1983, 1987] to
demonstrate the single-run optimization concept. All notations
used in this section are independent of those in section 2.

Consider an autoregressive process of order one (AR(1) pro-
cess) which depends on a real-valued parameter z:

Y(0,r) 0,
Y(n,r) z-Y(n-1,2)+¢n), n=12,...

= (6)

Let T'={r]| —1 <z < 1}. We assume the following.
(A3.1.1) z € I', and
(A3.1.2) {e(n),n = 1,2,...} is a sequence of i.i.d. random vari-
ables having a Normal distribution with finite mean g and vari-
ance o2,

We take this AR(1) process as a model of the output from a
simulation run of a discrete-event stochastic system. For exam-
ple, if we are simulating a single server queue and are interested
in the waiting time per customer, then Y(n,z) represents the
waiting time of the nth customer and is assumed to obey (6).
While the use of such a model necessarily involves considerable
simplification, it is generally believed that the AR(1) process
does possess many important statistical properties of the output
processes commonly found in discrete-event simulations. For ex-
ample, both cov(Y(n,z),Y(n + k,z)) and the eflect of Y(0,x)
on the conditional mean E[}Y'(k, r) | ¥(0,z)] decreases exponen-

374

tially to zero as k — oo. The class of AR(1) processes have long
been used as a model for output processes from discrete-event
simulations (e.g. [Fishman 1972, Turnquist and Sussman 1977,
Kelton and Law 1984, Kelton 1986)).

Suppose the steady-state performance measure of interest is

M(z) = lim E(Y(n,z)].
Let o be a constant. Our objective is to solve:

(J(z, M(2)) = [M(x) - of?).

i @
Assume, for the time being, that the minimum value of zero is
achievable in the constraint set I'. Then (7) is equivalent to

solving
(8)

which is identical to that considered in [Meketon 1987]. Let z*
be a solution to (8). From standard results in the theory of time
series, we know M(z) = u/(1 — z). So for M(z*) = e, we have

M(z) —a =0,

az” — (a—p) =0.

Note that this is a linear equation in z*, which is consistent with
the assumption of a linear response function in section 2. We
assume

(A3.1.3) @ # 0 and —1 < (a — g}/ < 1 so that an achievable
minimum within ' is ensured. Further, without loss of general-
ity, we restrict o to be strictly positive. (The case of a < 0 is
analogous.)

3.2 The Single-Run Optimization Algorithm

If we were to use a conventional search procedure to solve this
problem (e.g. Hooke and Jeeves’ [1961] pattern search), we would
first have to simulate a number of Y'(z,z)’s, delete the transient
observations, estimate M (z) from the steady-state observations,
and update the value of z based on the estimated value of M(z).
The procedure would then be repeated a number of times until
an estimate of the optimum was obtained. Obviously, the total
computational effort involved would be large.

Let u be a fixed positive real number close to but strictly
less than 1 such that z* € [—w,u], unif{a,] be an independent
uniform random variate between a and b, and K be a strictly
positive real constant. We propose a single-run optimization al-
gorithm as follows, with ¥'(n) denoting an estimate of Y(n,z)
generated while the optimization algorithm is running. The al-
gorithm is similar to the one in [Meketon 1987).

Algorithm 2. A single-run optimization algorithm
(1) Initialize:
Choose a sequence of numbers {a(n) = K/n,n =1,2,.

Y(0)=0, n=1, z(n) = unif[—u,]

(2) Simulate: Generate ¢(n) ~ Normal(y, a?).

V(n) = e(n)-¥(n-1)+ e(n)
(3) Update:

&(n+1) = 2(n) - a(n)[¥(n) - o]
z(n+1) =7(z(n + 1))
n=n+1,
where 7 (= m or m defined respectively by (9) or (10) below)
denotes a projection operator into the set T
(4) 1f the chosen stopping criterion is satisfied, stop. z(n) is an
estimate of z*. Otherwise, go to step 2. [End of algorithm]

It should be emphasized that in step 2 of Algorithm 2, updat-
ing of z(n) is done after observing only one value of)"(n), a noisy,
biased, and correlated sample of AMf(z(n)). The updating scheme
belongs to the Robbins-Monro type. After updating, simulation

Y.T. Leung and R. Suri

is continued with the old state but the new parameter value.

The projection operator in step 3 is to ensure that x(n+1) €
I. Writing #(n + 1) as & and the logical operator “and” as A, we
define two different projection operators 7y and m, by

- z, -l<z<l1
m(2) = { unif[—u, u), otherwise ©)

T, -l<i<l
unif[z(n), u], (1<@)A(—u<z(n)<u)
unif[2u — z(n), u], (1 < &) A(u<z(n))

mo(F) = { unif[—u,], (1 <&)A(x(n) < —u)
unif[—u, z(n)], (2 < -1)A(~u<a(n) <u)
unif[—u, —=2u — z(n)], (£ < -1)A(7(n) < —u)
unif[—wu,], (2 < =1)A(u<x(n))

(10)

7y is a simple projector so that the algorithm restarts from a
random point within the interval [—u,u] when # is outside .
is a more sophisticated projector using some current information
(namely x(n)) of the system. Basically, m, works as follows. If
7 > 1, then a random step is taken from the current x(n) towards
u. Because of a technical condition required for convergence (see
[Leung 1990]), it is necessary to always project T onto a compact
set ([—u,u] here). This is the reason why we need to consider
separately the cases when Z > 1 and z(n) itself is outside [—u, u]
(but within [-1,1]), as shown in the third and fourth lines in (10).
The case of < 1 is similar.

It should be noted that these two projection operators are by
no means optimal in any sense. The objective of using two differ-
ent operators is to study the effect of projection on the behavior
of the optimization algorithm. my and 7 represent somewhat ar-
bitrary choices for a simple-minded and a reasonably “intelligent”
projection scheme.

As before, we assume that a suitable stopping criterion has
been chosen in step 4.

3.3 Finite-Time Behavior of the Algorithm

Consider the problem defined by (6) and (8) under assump-
tions (A3.1.1) to (A3.1.3). We can derive a set of equations,
recursive in n, which describes the finite-time behavior of Algo-
rithm 2 in terms of the distribution function of z(n). In principle,

solving the equations leads to an exact solution for the distribu-
tion function of z(n). In practice, these equations have to be
enumerated using numerical methods.

The detailed mathematical derivation is of considerable length
(see [Leung 1990]) and is omitted here. Instead, we give an exam-
ple of the results from enumerating the equations. This example
serves to illustrate the performance of Algorithm 2 under the two
alternative projection operators m; and .

For convenience, we shall use a single index of the perfor-
mance of the algorithms, the percentage root mean squared error
denoted by % z-RMSE(n). It is defined as

% -RMSE(n) = 100 - {MSE[z(n)]}!/?/z".

Recall that
MSE[z(n)] = E [(x(n) - 1")2] .

Using the set of recursive equations, we can numerically obtain,
for n = 1,2,..., the distribution of z(n) and hence the expecta-
tion on the RHS of the above equation.

To evaluate the finite-time behavior of Algorithm 2 in general
terms, we compare it with a standard simulation (without opti-
mization) of the AR(1) process at a fixed parameter z, as defined
in (6). Suppose we are interested in estimating the steady-state
performance measure

M(x) = lim E[Y(n,z)] = ¢/(1 — z).

A standard point estimator for Af(z) over one simulation run of
n observations is

Tedious algebraic calculation gives the mean squared error of
this estimator as
MSE[M(x,n)] =

o? (1—2a")

0.2(21 + 12 - I"+2)
n(l—z)2 n?%l-x)3

14z

pra*(1 - a")
1—-z

For comparison of this steady-state estimation problem with
the optimization algorithm, we fix ¢ = z* and define the percent-

age root mean squared error of M(z*,n) by

160
150 4 §
140 -
130
120 +
110
100
90

% RMSE

80 -
70
60 -
50 -
40
30
20
10

O Optimization

+ Improved Optimiz.

¢ Estimation

Figure 2. Behavior of Algorithm 2 when a = 2

375

Finite-Time Behavior of Two Simulation Optimization Algorithms

100 -

90 —

80 -

70

60 -

% RMSE

50

40

30 4

20

O Optimization + Improved Optimiz.

¢ Estimation

Figure 3. Behavior of Algorithm 2 when a = 10

% M-RMSE(n) = 100 - {MSE [M(z*,n)]}"* /M (2*).

This quantity is chosen to investigate the difference between the
rate of r(n) converging to z* and the rate of M (z*,n) reaching
its steady state value in a standard simulation.

Now we present some numerical results of the percentage root
mean squared errors for both the optimization case (Algorithm
2) and the estimation case (conventional simulationS. Param-
eters used are: « 2 (hence z* = 0.5) or 10 (z* = 0.9),
K =1u =099, = 1,62 = 1. Figures 2 and 3 show the
values of % z-RMSE(n) and % M-RMSE(n) for n = 1,...,50.
In the figures, Algorithm 2 with projection operator m is labelled
as “optimization”; Algorithm 2 with m, is labelled as “improved
optimization” and estimation of M (z*) using conventional simu-
lation is labelled as “estimation”. The vertical axis, labelled as
% RMSE, represents the % z-RMSE for the optimization algo-
rithms and the % AM-RMSE for steady-state estimation.

From Figure 2 we see that the estimator of the optimizer,
z(n), generated by Algorithm 2, converges roughly as fast as the
estimator of Y(z*) does in a conventional simulation. The differ-
ence between m; and m, is not very pronounced; nevertheless ,
shows a slightly faster initial convergence rate. Figure 3 clearly
suggests the superiority of m,. It helps the algorithm converge
quickly to a small neighborhood of z*. It is interesting to note
that in this latter case, the optimization algorithm with m; con-
verges even faster than the steady-state estimator in a standard
simulation.

From these numerical results, it seems worthwhile to use the
more complicated projection operator m;. The extra computa-
tion required by it is most likely to be more than offset by the
faster initial convergence rate offered. At the same time, we see
that the (finite-time) convergence rate of the single-run optimiza-
tion algorithm is very fast, comparable to the rate of a standard
simulation reaching steady state. This analysis complements the
experimental evidence obtained earlier [Suri and Zazanis 1988,
L’Ecuyer et al. 1989, Suri and Leung 1989] that single-run opti-
mization algorithms of this type are very efficient.

4. CONCLUSIONS

We have analyzed the finite-time behavior of two simula-
tion optimization algorithms. Results suggest that the Robbins-
Monro procedure when applied in a conventional way can be slow;
however it is very fast when applied in a single-run optimization
algorithm. This work also demonstrates the importance of un-
derstanding the finite-time behavior of, and the impact of the
projection operator on, such simulation optimization algorithms.
Although the results are developed for two simple systems, they
provide some insight into the performance of the Robbins-Monro
procedure in the simulation environment.

376

REFERENCES

Chung, K.L. (1954), “On a Stochastic Approximation Method”,
Annals of Mathematical Statistics 25, 463-483.

Farrell, W. (1977), “Literature Review and Bibliography of Sim-
ulation Optimization”, Proceedings of the 1977 Winter Sim-
ulation Conference, 117-124.

Fishman, G.S. (1972), “Bias Considerations in Simulation Ex-
periments”, Operations Research 20, 785-790.

Glynn, P.W. (1986), “Optimization of Stochastic Systems”, Pro-
ceedings of the 1986 Winter Simulation Conference, 52-59.

Hooke, R. and T.A. Jeeves (1961), “A Direct Search Solution of
Numerical and Statistical Problems”, Journal of the Associ-
ation for Computing Machinery 8, 2, 212-229.

Jacobson, S.H. and L.W. Schruben (1989), “Techniques for Simu-
lation Response Optimization”, Operations Research Letters
81, 1-9.

Kelton, W.D. (1986), “Replication Splitting and Variance for
Simulating Discrete-Parameter Stochastic Processes”, Oper-
ations Research Letters 4, 6, 275-279.

Kelton, W.D. and A.M. Law (1984), “An Analytical Evaluation
of Alternative Strategies in Steady-State Simulation”, Oper-
ations Research 32, 1, 169-184.

Kushner, H.J. and D.S. Clark (1978), Stochastic Approzima-
tion Methods for Constrained and Unconstrained Systems,
Springer-Verlag, New York, NY.

Kushner, II.J. and H. Huang (1979), “Rates of Convergence for
Stochastic Approximation Type Algorithms”, Society for In-
dustrial and Applied Mathematics Journal on Control and
Optimization 17, 5, 607-617.

L’Ecuyer, P., N. Giroux, and P.\V. Glynn (1989), “Stochastic Op-
timization by Simulation: Some Experiments with a Simple
Steady-State Queue”, Technical Report No. 31, Department
of Operations Research, Stanford University, Stanford, CA.

Leung, Y.T. (1990), “Single-Run Optimization of Discrete-Event
Simulations”, Ph.D. dissertation, Department of Industrial
Engineering, University of Wisconsin - Madison, Madison,
WI.

Ljung, L. (1977), “Analysis of Recursive Stochastic Algorithms”,
Institute of Electrical and Electronic Engineers Transactions
on Automatic Control AC-22, 4, 551-575.

Major, P. and P. Révész (1973), “A Limit Theorem for the
Robbins-Monro Approximation”, Zeitschrift fiir Wahrschein-
lichkeitstheorie und verwandte Gebiete 27, 79-86.

Meketon, M.S. (1983), “A Tutorial on Optimization in Simula-
tions”, presented at the 1983 Winter Simulation Conference.

Meketon, M.S. (1987), “Optimization in Simulation: A Survey of
Recent Results”, Proceedings of the 1987 Winter Simulation
Conference, 58-67.

Robbins, H. and S. Monro (1951), “Stochastic Approximation
Mecthod”, Annals of Mathematical Statistics 22, 400-407.
Sacks, J. (1958), “Asymptotic Distribution of Stochastic Approx-
imation Procedures”, Annals of Mathematical Statistics 29,

373-405.

Stroup, D.F. and H.I. Braun (1982), “On a New Stopping Rule
for Stochastic Approximation”, Zeitschrift fir Wahrschein-
lichkeitstheorie und verwandte Gebiete 60, 535-554.

Suri, R. and Y.T. Leung (1989), “Single Run Optimization of
Discrete Event Simulations: An Empirical Study Using the
M/M/1 Queue”, Institute of Industrial Engineers Transac-
tions 21, 1, 35-49. Also as Technical Report No. 87-3, De-
partment of Industrial Engineering, University of Wisconsin
- Madison, Madison, W1, 1987.

Suri, R. and M.A. Zazanis (1988), “Perturbation Analysis Gives
Strongly Consistent Sensitivity Estimates for the M/G/1
Queue”, Management Science 34, 1, 39-64.

Turnquist, M.A. and J.M. Sussman (1977), “Toward Guidelines
for Designing Experiments in Queueing Simulation”, Simu-
lation 28, 137-144.

Wardi, Y. (1988), “Simulation-Based Stochastic Algorithm for
Optlmlglng GI/G/1 Queues”, working paper, Department of
Industrial Engineering, Ben Gurion University of the Negev,
Beer Sheva, Israel.

