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ABSTRACT

A fundamental use for system simulation is to compare a
number of different approaches to achieve a stated objective. The
analyst often uses simulation to aid in evaluating multiple system
designs and/or operation procedures. We say that simulation is
used to compare alternatives. This paper assumes that the sim-
ulation output is stochastic and has a distribution that is un-
known to the analyst. This paper presents methods for making
comparisons by either ranking alternatives or selecting the best
alternative with respect to a single output performance measure.
To increase the effectiveness of the comparisons, these methods
are able to use the variance reduction technique of common ran-
dom numbers. The finite horizon simulation case is considered
in this paper. Examples illustrate the application and utility of
the methods.

1. INTRODUCTION

The analyst uses simulation to compare system performance
in different situations or with different system designs. For ex-
ample, an industrial engineer may use a simulation of a manu-
facturing shop to investigate various methods for reducing lead
time. We define lead time as the time to produce an assembly
subsequent to releasing materials to production. The emphasis
is on comparing the simulation output obtained from multiple
sets of inputs. We are assuming that the analyst will rarely use
a simulation to estimate performance for a single set of inputs.
We will call each set of inputs defined for comparison purposes
an alternative.

Output analysis is complicated by the stochastic nature of
output performance measures. This paper makes the following
assumptions concerning the probability distribution of output
performance measures:

e The form of the true underlying distribution is unknown.
e The variance can and will change with the alternative.

The above assumptions are common occurrences in system sim-
ulation. We use the term replication to specify repetition of a
simulation with fixed inputs but different outputs due to differ-
ent random numbers. In a stochastic environment, the analyst
can increase his/her confidence in the validity of the comparison
made by increasing the number of replications. An important
question is how many replications are required to reduce the risk
of making inaccurate comparisons. This paper assumes that the
experimental objectives require simulations with finite horizons
and do not require estimation of performance measures in steady
state.
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Variance reduction techniques offer the potential for reducing
the number of replications required for an experimental objective.
Brately, Fox, and Schrage [1987] give a comprehensive descrip-
tion of variance reduction in simulation.The ability to use the
same random numbers for each alternative offers the potential
for sharpening the comparisons. This is an example of a variance
reduction technique and is called common random numbers. It is
easier to apply than many of the other variance reduction meth-
ods. Nelson [1987] reviews the variance reduction method of
common random numbers as well as two other commonly used
methods. All procedures discussed in this paper can make use of
common random numbers.

This paper considers comparisons in two forms:

1. The analyst wants to simultaneously compare all combi-
nations of the alternatives, e.g., generate a ranking with
respect to a single output measure, or

2. The analyst wants to select the best alternative based on
an output measure.

The paper presents a procedure for each form in the above order.
Examples illustrate the application of each procedure.

1.1 Comparison Problem

The simulation experiments must compare - alternatives.
Denote alternative j by II;. The value of the performance mea-
sure observed for II; on replication ¢ is X,v(j). That is, ij) is the
simulation output performance statistic on replication i for IT;.
The mean value or expected value of X,-(j) is 6;. Our objective is
to compare the individual alternatives based on their respective
values of ;. Throughout this paper, we assume that alternatives
giving lower values of ; are preferred. For example, we will pre-
fer alternatives giving lower values of mean waiting time. Since
we do not know the true values of §;, we must estimate them from
the simulation output statistics. The unbiased point estimator
for §; is the sample average of the output statistics collected for
1I,. That is,

X9 = 23X,
i=1

based upon n replications of II;. Our inferences concerning the
relative values of §; will never invert the ordering of X{). Im-
portant questions which we will address are:

e How many replications of each alternative must we observe
in order to achieve a desired probability of selecting the
best alternative?

o Are the observed differences in X sufficiently large to give
us confidence in a ranking of the values of §; ?
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1.2 Common Random Numbers

The objective is to use the same random numbers for each
alternative to obtain a large positive correlation among their per-
formance measure values on each replication. This reduces the
variance of the difference between their respective performance
measure values. For alternatives 1 and 2,

VXD - x®) = v(x) + v(xP)

—2p(x®, xW v (xOVv (X2, (1)

where
V(X) = Variance of the random variable X
p(X,Y) = Correlation between the random variables X and YV’

For example, if we want to estimate the difference in mean wait-
ing times for jobs entering a queue when two alternatives have
unequal mean service times, we could use the same random num-
ber(s) for the m* interarrival time (as well as for all other inter-
arrival times) for each alternative. This may increase the corre-
lation between X,-(l) and ,\’fz), where these quantities are mean
waiting times. The problem of coordinating random numbers
so that identical random numbers determine analogous events in
each alternative is called the synchronization problem. One can
obtain dramatic differences in the effectiveness of common ran-
dom numbers depending on how one performs synchronization.
See Bratley, Fox, and Schrage [1987] for suggestions on how to
obtain synchronization.

2. RANKING

This section presents an approach that can be used to simul-
taneously compare v alternatives and generate a ranking. Kleij-
nen [1975] outlines a multiple comparison procedure that meets
our requirements with respect to unknown variances, unequal
variances, and correlated observations. Kleijnen outlines use of
the Bonferroni Inequality to satisfy these requirements. How-
ever, the procedure leads to inconsistencies when attempting a
ranking. We suggest a set of rules in this section for resolving
these inconsistencies.

2.1 Bonferroni Inequality

Consider the single alternative case with two performance
measures, e.g., tardiness and throughput. Assume we calculated
an average tardiness value from a set of n replications and an
average throughput from another independent set of n' replica-
tions. If we estimate a 95 % confidence interval for tardiness and
a 95 % confidence interval for throughput, then the probability
that one or both of these confidence intervals do not cover the
true value of their respective means is 1 — .95% or .0975. In this
case when the confidence intervals are independent, we would
need v/.95 x 100% = 97.47% confidence intervals for each per-
formance measure to give us 95 % confidence that both intervals
cover their respective means.

In actual practice, we use data from the same replications
to calculate confidence intervals on both performance measures.
This practice means that the confidence intervals are correlated.
Kleijnen [1975, 1987] describes how one can use the Bonferroni in-
equality to calculate a conservative joint confidence interval when
the statistics used in constructing the confidence intervals are cor-
related. Assume that we want simultaneous confidence intervals
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for two unknown mean performance measure values, e.g., g, and
2. Let Li(ax) be the lower (1 — o) X 100% confidence boundary
for px, and let Uk(ayx) be its corresponding upper boundary..lf Sk
implies the statement that Li(aw) < pe < Uk(ax) and P_q is the?
probability that both 5; and S, are true, then by the Bonferroni
Inequality P,_, > 1 —a; — &, when a = a1 +a. More generally,
when we want to make 3 correlated confidence statements, i.e.,
S, = 1,...,%, that are simultaneously true with probability

l-a,

"
Pl-a 2 1- Z ay (2)
u=1
where
¥
a = Y a
u=1
Usually, we let o, = a/9.
Comparison | Statistic
6, -6, | X -xP
6,-6, | x.x®
6, -6, | XM x®
8,-0; | X - x®
9,-6, | Xx®.x®
B -0, | xP - x{®

Table 1. Pairwise Comparisons with 4 Alternatives
2.2 Ranking Procedure

To enhance the power of the comparisons, we will simulate
v different alternatives using common random numbers. To rank
the alternatives, we will in essence be making

¥ = (3)

pairwise comparisons. For example, with four alternatives we
would make six pairwise comparisons as specified in Table 1.

The statistics X - X and X9 X are correlated be-
cause of the common random numbers and the common quantity
X,»("). Regardless of the correlation, we estimate v simultaneous
confidence intervals that jointly hold with probability of at least
1 — a by using the Bonferroni Inequality. This may allow us to
rank the alternatives if we allow three possibilities:

1. Regard §; = §, when the confidence interval for §; - 6
includes zero.

2. Regard 6; > 6, when the lower bound on the confidence
interval for §; - 6, is positive.

3. Delete equality relations when they introduce contradic-
tions. For example, delete all comparisons with II, when
the above rules give 6, = §,, 8, = §,, and 6, > 3.

In practice, the third possibility can usually be resolved by adding
replications to reduce the confidence interval widths.

We will illustrate the ranking procedure using results from
a simulation of a bus system where the primary performance
measure is total passenger system time in minutes. The objective
is to rank the following four alternatives with 95 % confidence:
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1. One bus of capacity 10,

2. Two buses of capacity 10,
3. One bus of capacity 20, and
4. Two Buses of capacity 20.

The initial simulation experiment consisted of 100 independent
replications for each alternative, and the same random numbers
were used for each alternative.

‘The usual way to estimate 0; - O, for two different alter-
natives, II; and II, when using common random numbers is to
form pairs for each replication, i.e.,

DE¥) = x1) _ x® 3)
and calculate:
. n  plik)
k i
Dum = ; and (4)
sl(D(ik)) _ = (D:(jk) - ngk))z
o i=1 (n - 1) ’

the unbiased estimator of V(D). (5)

Parameter )_(l(f-,z, - XY;A L,(ay) | Uu(aw)
8, - 06, 1.97 1.73 2.21
6, - 63 17 -.03 37
6, - 64 3.77 3.58 3.96
8, - 03 -1.80 -2.01 -1.59
6, - 8, 1.80 1.60 2.00
05 - 8, 3.60 3.45 3.75

Table 2. Bus System Comparison Statistics

Parameter )-(%) - Xf:) Ly(o) | Uu(ow)
6, - 6, 5 -1 11
8, - 0, 10 4 16
9, - 05 5 1 11

Table 3. Hypothetical Comparison Statistics

Then calculate confidence intervals for each 8; - 6, using:

tsp = Quantile of the ¢ distribution with d degrees of
freedom which is exceeded with probability 2

Hu(0w) = tn-11-aus28a(DP®)/3/n, half width of
the (1 — a,) x 100% confidence interval
Ly(e,) = DU® — H,(a,), lower (1 — a,) x 100% confidence

boundary for 6; - 6 when X,-(j) - X.-(k) has a
normal distribution
Uaw) = DU* } H,(a,), upper confidence boundary

analogous to L,(ay)

Nelson (1985] has shown that calculation of the confidence inter-
val in this way is computationally equivalent to using (1) and
replacing values in (1) with their respective estimates. In this
case, a, = .05/6 = .004167 since ¥ = 6.

Table 2 displays the results based on 100 independent repli-
cations. The confidence intervals appearing in Table 2 indicate
that:

369

0§, <6, <8
.94<02<03

The hypothetical results shown in Table 3 illustrate the ne-
cessity for deleting an alternative from the ranking. Given the
results shown in the table, we would delete 11, from the ranking
and estimate that 63 j §,. Presented with these results, we may
want to simulate addition replications to reduce the confidence
interval widths and include II, in the ranking.

3. SELECTION OF THE BEST

We assume that less is better so that we want to identify
the alternative having the smallest mean performance measure
value. We attempt to do this by running a number of replica-
tions on each alternative and declaring the alternative with the
smallest average performance measure value as the “best.” The
challenge is to determine the number of replications which give
a specified probability of making a correct selection. . When
other competing alternatives have means almost as small as the
best alternative, the required number of replications can be quite
large. That is why we resort to the indifference zone approach.
The length of the indifference zone is & which is specified by the
analyst before conducting the simulation experiments. Any al-
ternative with a mean within § of the truly best alternative is a
satisfactory choice or a correct selection. Let P(CS) represent
the probability of making a correct selection. The object of the
procedure is to make P(CS) > P~, where the analysts specifies
a value for P(CS) prior to the simulation experiments.

When we assume normally distributed outputs, unknown
variances, and unequal variances, we consider two possible proce-
dures for implementing the indifference zone approach. Dudewicz
and Dalal [1975] present an exact procedure for these assump-
tions when the outputs for each alternative are independent. We
should use common random numbers so the specified number of
observations by the Dudewicz and Dalal procedure are probably
in excess of the minimum requirement. Clark and Yang [1986]
present a procedure, described in the following section, that does
consider the correlations induced by common random numbers,
but they use the Bonferroni Inequality and another bounding as-
sumption which renders their procedure conservative. Clark and
Yang’s procedure is preferred when the correlations are large and
the number of alternatives is not large.

3.1 Bonferroni Selection Procedure

Since the alternative variances are unknown, the selection
procedure requires an initial sample to estimate:

m; = Number of replications required of II; to
achieve a P(CS) > P*

The Bonferroni selection procedure is:
1. Simulate n replications for each alternative.
9. Determine the ¥ paired comparisons.
3. Foru = 1,...,%, perform the following calculations:

e Let (j,k) be the two alternatives in comparison u.
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e Calculate D{*) using equation 4.
o Calculate s2(D®) using equation 5.

4. Determine

h=tn1p
where {_pr
==
5. For j =1,...,v, perform the following calculations:
s Let )
vl = Tg}(Sﬁ(DE’”)))
o Let

m; = max(n, [v;/(§/h)*]),
where [x] is the smallest integer greater than or equal
to x.
o Simulate m; — n additional replications for II;.

e Calculate X’,(,{}).

6. Select the alternative with maximum X,(,{J)

Clark and Yang (1990] have determined sufficient conditions
for increasing correlation among alternatives reducing the ex-
pected sample size in the above procedure.

3.2 Application

This section summarizes an application of the Bonferroni
selection procedure to identify a preferred sequencing rule in
scheduling a cell having three machines. Identify the machines
as machines 1, 2, and 3. The primary performance measure is
mean job tardiness where:

T = Job tardiness

T = max(0,C - D)

C = Job completion time
D = Job due time

Jobs arrive to the cell from upstream sources to machines 1 and
2, and after processing by these machines all jobs go to machine 3
for testing. Thus, an arriving job must go through two operations
before departing the cell. The first operation is at machine 1 or
2 depending on where it arrives. The second operation is at
machine 3 for testing. The arrival processes for machines 1 and
2 are approximated as independent Poisson processes, and each
process has a mean time between arrivals of 33.33 minutes. The
production planning department assigns to each job upon arrival
a standard operation time and a due time for completion of each
operation. The cell may use these times in sequencing work to
reduce job tardiness. Let S, be the standard time assigned to a
job for its first operation, and S; be the assigned standard time
for its second operation. For analysis purposes, one can represent
the standard times as having log-normal distributions with the
following parameters:

o Mean for S; is 30 minutes.

e Standard deviation for S; is 5 minutes.
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e Mean for S, is 15 minutes.
o Standard deviation for S, is 2.5 minutes.

The actual operation times at each machine have log-normal dis-
tributions where the means are equal to S; or S, depending on
which operation is to be performed, and the standard deviations
are 10 % of S; or S, depending on the particular operation in-
volved. Given the cell arrival time of A, the due times are:

e A+ 25, for the first operation and
o A+2(S; + 5,) for the second operation.

The experimental objective is to compare three queue se-
quencing rules with respect to their effect on average job tardi-
ness for the next shift. The three rules are:

1. Shortest Standard Time (SST)
2. Earliest Job Due Time (EDT)
3. Earliest Job Operation Due Time (EOT)

The job due time is the time the job is due for completion by the
cell. The job operation due time is the time the current operation
for the job is due to be completed. The probability must be at
least .9 of making a correct selection, and the decision maker is
indifferent when mean tardiness differs by one minute or less.

3.3 Approaching Normality

The first step in implementing the selection procedure is to
investigate whether the average shift tardiness values are approx-
imately normal. Nelson [1982] describes the use of probability
plotting to identify a distribution for representing a particular
process. A normal probability plot will give a straight line if
the process appears normal; however, in this case, the proba-
bility plot of the average shift tardiness values clearly indicated
that they were not normally distributed. The usual approach to
approximate a normal distribution is to batch the data. For ex-
ample, one can form batches of size 5 replications by taking the
average of the first 5 replications and letting it be the first batch,
the second 5 observations would become the second batch, and
this process would be continued until all replications are grouped
into batches. Under weak assumptions as the batch size becomes
large, the central limit theorem shows that the values of the batch
averages approach a normal distribution. The output analysis
proceeds by setting the values of X,(’) to the batch averages.
However, large batches means fewer batches which will increase
the width of the confidence interval. Schmeiser [1982) shows that
the effect on confidence interval width is negligible even when
the data is truly normal so long as the number of batches is not
smaller than 30. For the simulations discussed in this paper, we
are never sure the output data is normal. The conclusion is that
we should always use batches and limit the number of batches
to 30 even with very large samples. The probability plot for a
batch size of 5 appeared to be approximately normal.

3.4 Effectiveness of Common Random Numbers

One selects a synchronization method in order to implement
common random numbers. A common method is to assign a
random number stream for each sampling step in the simulation.
The first approach in this case was to use the following streams:
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1. Individual streams for interarrival times at machines 1 and

2

2. Individual streams for generating standard times at each
machine when a job arrives at machines 1 and 2.

3. Individual streams for sampling actual operation times at
each machine.

This method of synchronization yielded very poor results as ev-
idenced by the sample correlation matrix. The change that dra-
matically improved the correlation among alternatives was to
sample for the actual operation times as the jobs entered the
system rather than as they started their operations. Table 4
gives the sample correlation matrix.

| SST EDT EOT

SST | 1.0 9919 .9915
EDT | 9919 1.0 .9995
EOT | 9915 .9995 1.0

Table 4. Sample Correlation Matrix

3.5 Results

The initial sample consisted of 10 batches of size 5. The
results appear in Table 5, and they indicate that the shortest
standard time (SST) rule is preferred. To show the advantage
of the Bonferroni procedure, the table estimates the sample size
required by the Dudewicz and Dalal procedure which ignores the
correlation due to common random numbers. The Dudewicz and
Dalal procedure would require 21 times as many replications as
the Bonferroni procedure.

Alternative | Average Bonferroni Dudewicz and Dalal
Tardiness  Batches Batches
SST 76.96 19 497
EDT 83.80 17 596
EOT 84.11 19 613

Table 5. Tardiness Experiment Results

4. CONCLUSIONS

The primary motivation for the analyst to use proper output
analysis procedures when using stochastic simulations is to re-
duce the risk in making incorrect conclusions. The results clearly
show the utility of the procedures presented in this paper to
make comparisons using a stochastic simulation. They are easily
implemented, and the results indicate that proper experimental
analysis may significantly reduce the simulation effort required.
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