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ABSTRACT

Classical stochastic optimization algorithms often diverge be-
cause of boundedness problems. We present a stochastic opti-
mization algorithm that is guaranteed to converge even when
the iterates are not assumed a priori to be bounded. The perfor-
mance of this algorithm will be compared with the performance
of classical stochastic optimization algorithms.

1. INTRODUCTION

Stochastic optimization involves the optimization of func-
tions whose values are not known analytically and therefore have
to be estimated or measured. This field originated in the early
1950’s but is presently experiencing a resurgence of interest due
to the recent development of efficient gradient estimation tech-
niques for simulation.

The goal of stochastic optimization is to obtain a sequence of
iterates {#,} that converges almost surely to a local minimizer of
a function, possibly subject to some constraints. The functions
involved are typically evaluated using simulation. They are not
assumed to have any particular structure and the distribution of
the estimates of the function values is unknown.

In this paper, we will briefly discuss classical stochastic op-
timization algorithms, before introducing a new algorithm for
stochastic optimization. We will then compare the performance
of these algorithms.

2. CLASSICAL STOCHASTIC OPTIMIZATION AL-
GORITHMS

Unconstrained stochastic optimization is the problem of find-
ing a local minimizer for a predetermined function f, whose val-
ues can not be evaluated analytically, but have to be estimated
or measured. Classical stochastic optimization algorithms obtain
a sequence {f,} of estimates of the solution as described below:

Algorithm 1

Step 0: Choose §; € R®.
Step 1: Given 0,, generate an estimate Y, of Vf(6,).

Step 2: Compute
0n+1 = an - anYn

Step 3: Go to step 1.

Algorithm 1 is a steepest descent algorithm. If 4, is our cur-
rent estimate of the solution, then 8,4, is obtained by moving
in the direction —Y,, where Y, is an estimate of V f(6,). This
is the direction along which we expect the objective function to
decrease the fastest. The length of the step that the algorithm
takes along this direction is a,||Yy||, where {a,.} is a predeter-
mined sequence of positive constants. We assume that a, — 0
and Y77, a, = 0o. These assumptions are needed to guaranty
the convergence of algorithm 1. If 322 4, < oo and the se-
quence Y, is bounded, then the iterates {0,} will all lie in a
compact sphere with center §;,. This means that the algorithm
can only converge if 6 is close enough to the solution of the prob-
lem. The assumption that a, — 0 is needed to dampen out the
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effect of the errors in the gradient evaluations to obtain almost
sure convergence to the solution of the problem as the number of
iterations goes to infinity. Typically, a, is chosen as a/n, where
a is a positive constant.

The Robbins-Monro algorithm ERobbins and Monro 1951
and the Kiefer-Wolfowitz algorithm ([Kiefer and Wolfowitz 1952
are the two most commonly used algorithms for unconstrained
stochastic optimization. They are both special cases of algorithm
1. They differ in how they estimate the gradient of the objective
function. The Robbins-Monro algorithm estimates the gradient
directly, whereas the Kiefer-Wolfowitz algorithm uses finite dif-
ferences to estimate the gradient. These algorithms are far from
ideal. It is well known that they converge extremely slowly when
the objective function is very flat and we now show that they do
not necessarily converge when the objective function is steep.

Typically, one expects an optimization algorithm to perform
at least as well when it is applied to minimizing the function
fo) = 410“, as when it is applied to minimizing the function
g(f) = 16 This is because one feels that the minimizer is more
stable in the former case. Algorithm 1 does not have this prop-
erty. Let a, = a/n where a > 0 and assume that there are no
errors in the evaluations of f’ and g¢’. It is easy to show that
algorithm 1 converges to the optimal solution when it is being
used to minimize the function g:

n—a

6n

0n+l = 0,,, - g01-1. =
n n

for all n, so the sequence {f[,)1,} goes to zero monotonically.

However, algorithm 1 does not necessarily converge when applied
to minimizing the function f:

Lemma 1 If6, > \/3/a and nyy = 6, — 263 for alln > 1 then
8] > [6|n! (1)
foralln>1.

Proof: Expression (1) clearly holds when n = 1. When n = 2,
we have

1651 = 1611 |1 — ab2| = 16, [a6? — 1] > 210,
so expression (1) holds. Now assume n > 2. By induction, it

suffices to show that expression (1) holds for n + 1 whenever it
holds for n. We have
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To show that expression (1) holds for n + 1, it suffices to show
that 3n>—3n—12> n+1,0r P(n):=3n2—4n—2> 0, whenever

n > 2. But P(z) > 0 for z > (2+\/E) /3 ~ 1.72, and the
proof is complete. O
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The above lemma shows that algorithm 1 does not necessar-
ily converge when applied to minimizing the function f(8) = 16°.
The problem is that the function f is quite steep, so the length
of the step taken in an iteration (a,|f’(6,)|) can be very large.
The algorithm generates a sequence of estimates of the solution
that goes to infinity in norm, fluctuating around the solution.

3. A NEW STOCHASTIC OPTIMIZATION ALGO-
RITHM

In the previous section, we discussed the problems associated
with the classical algorithms for stochastic optimization: they
converge extremely slowly when the objective function is flat and
they often diverge when the objective function is steep. The
problem in both cases is that the length of the step that these
algorithms take in each iteration is directly proportional to the
norm of the gradient evaluation. We present a new stochastic
optimization algorithm that does not have this property. It can
be used with both unbiased and finite difference estimates of the
gradient of the objective function. It is based on the following
deterministic mathematical programming algorithm:

V()
"IVFE)I

where {a,} is a sequence of positive constants such that a, — 0
and 52, a, = oo. This algorithm was proposed for deterministic
optimization by Poljak [1967], based on an algorithm proposed
by Shor [1964]. We now propose a new stochastic optimization
algorithm, based on sequence (2).

Let ¢ > 0 and consider the following algorithm:

2)

0n+l = 0,,—(1

Algorithm 2

Step 0: Choose 8, € .

Step 1: Given 0,, generate two independent estimates Y;! and
Y2 of Vf(6y).

Step 2: Compute

Y} Y?

n n

Y =
"= max{e V2T T max{e [V211)

and
0n+1 = an - an}/-n

Step 3: Go to step 1.

It can be shown (see [Andradéttir 1990]) that this new algo-
rithm converges under much more general assumptions than the
Robbins-Monro and Kiefer-Wolfowitz algorithms. The assump-
tions are more general in that we do not assume a priori that the
sequence of iterates generated by the algorithm is bounded, nor
do we assume that the objective function or any of its derivatives
are bounded. As shown in lemma 1, such assumptions are nec-
essary to prove the convergence of the Robbins-Monro and the
Kiefer- Wolfowitz algorithms. When unbiased gradient estimates
are used and a, = a/n, where a > 0, this algorithm converges
to the solution at the rate n='/2, which is also the convergence
rate of the Robbins-Monro algorithm (if it converges!). This is
the best convergence rate achievable in simulation.

The performance of algorithm 2 is very dependent on the
parameter €. When the parameter ¢ is chosen, one should keep
the following facts in mind: The smaller ¢ is, the more ad-
vantage one is taking of the normalization Y;!/ max{e, ||Y;|},
(3,7) € {(1,2),(2,1)}. This makes the performance of the al-
gorithm independent of whether it is being used to optimize flat
or steep functions, and can therefore speed up the convergence of
the algorithm significantly on problems where algorithm 1 con-
verges very slowly. On the other hand, the smaller the parameter
€ is chosen, the larger steps algorithm 2 is allowed to take, so the
sequence 0, will have a larger asymptotic variance. Also, it is
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worth observing that the parameter € can be chosen so that al-
gorithm 2 behaves very much like algorithm 1 on the problems
where algorithm 1 converges, but it will also converge on prob-
lems where algorithm 1 diverges. Indeed, when ¢ is large, then
typically max{e, ||[Y;||} = ¢, fori=1,2,50 ¥, = {(¥! + Y?) for
most n.

4. EMPIRICAL WORK

In this section, we will compare the empirical behavior of
algorithms 1 and 2. We have already discussed the fact that
algorithm 2 is more robust than algorithm 1 in that it converges
under more general conditions. We now show that it sometimes
converges significantly faster than the Robbins-Monro and the
Kiefer-Wolfowitz algorithms in practise. This is particularly true
on the class of problems where the objective function is very
flat and the gradient evaluations aren’t very noisy. Notice that
algorithm 2 uses two estimates of the gradient of the objective
function in each iteration, whereas algorithm 1 uses only one
estimate. This means that for algorithm 2 to be faster than
algorithm 1, on the average it has to converge in at most half
the number of iterations of algorithm 1. Clearly this is always
the case on the class of problems where algorithm 1 can diverge,
so we only need to consider problems where both algorithms are
guaranteed to converge.

Consider the problem of finding the minimum of the func-
tion f(8) = 3In(1 + 6?). The solution of this problem is 6* = 0.
The derivative of f is given by f'(8) = /(1 + 6%). We want to
compare the performance of the Robbins-Monro algorithm and
of algorithm 2, when applied to solving this problem with noisy
estimates of the gradient: to each evaluation of the gradient, we

have added a sample of a U[—O.le/g, O‘OIﬁ]-distributed ran-

dom variable. This random variable has a standard deviation
of 0.01. (Very similar results are obtained when the errors are
normally distributed with mean 0 and standard deviation 0.01.)
To study this problem we conducted the experiment described
below. Both algorithms were started at §; = 100 and run un-
til f' had been evaluated 2000 times: we did 2000 iterations of
the Robbins-Monro algorithm and 1000 iterations of algorithm
2. This process was repeated 1000 times and figure 1 shows the
average performance of the two algorithms. The x-axis shows the
number of gradient evaluations (n) and the y-axis shows 8, for the
Robbins-Monro algorithm and 6}, /5 for algorithm 2. To be able
to compare the performance of the two algorithms more mean-
ingfully, we used common random numbers to estimate the errors
in the gradient evaluations. This means that for 1 < m < 1000
and 1 < n < 2000, the error in the nth gradient evaluation in the
mth replication is the same for both algorithms. Observe that
f'(6;) = 100/10001 ~ 0.01, so the errors are of the same order
of magnitude as f'(6;). For the purposes of this experiment, we
chose a, = 1/n and ¢ = 1073,

100 99.91
801
o TT—— 66.67
401  —— The Robbins-Monro Algorithm
90] Algorithm 2
0 500 1000 1500 2000

Figure 1. A comparison between the performance of the Rob-
bins-Monro algorithm and algorithm 2.

The Robbins-Monro algorithm converges extremely slowly
on this problem. After 2000 gradient evaluations, the average es-
timate of the solution is 99.91. Algorithm 2 converges somewhat
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faster on this problem: after 2000 gradient evaluations, its aver-
age estimate of the solution is 66.67. Notice however that when
algorithm 2 is used, 0, decreases very fast in the first few itera-
tions, but the convergence becomes slow as time goes on. This is
because the length of the step taken in iteration n is proportional
to a, = 1/n, so we are forcing the algorithm to take increasingly
smaller steps. This is something that we want to do when we
are close to the optimal solution to dampen out the effect of the
errors in the evaluations of f’, but when we are far from the solu-
tion, we want the algorithm to take large steps and move quickly
towards the solution. This is the idea behind Kesten’s acceler-
ation [Kesten 1958). The algorithms that we have considered
update 6, according to the following equation:

0n+1 =0, —a,Ya (3)

where —Y;, is the search direction and a,||Y,|| is the length of the
step that the algorithm takes in the nth iteration. The sequence
an is such that a, — 0 and 372, @, = oo. Typically a, = a/n
where a > 0. Instead of updating 6, according to equation (3)
we want to update it according to

’

€n+1 = 0n - bny;L

where b, satisfies the same conditions as a,, but b, decreases
only when we have reason to believe that 8, is close to the so-
lution. Clearly if Y,_; and Y,_, are of different sign, this is the
case. Kesten therefore suggests choosing the sequence {b,} as
described below:

bn = Gy,

where t; = 1, t, = 2 and for n > 3,

th=2+ Z I{Yk-lyk-zso)
k=3

where I is an indicator random variable. Figure 2 shows how
the Robbins-Monro algorithm and algorithm 2 perform on the
problem described above, when Kesten’s acceleration is used.
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Figure 2. A comparison between the performance of the Rob-
bins-Monro algorithm and algorithm 2, using Kesten’s
acceleration.

Observe that the performance of the Robbins-Monro algo-
rithm improves only slightly when Kesten’s acceleration is used.
After 2000 gradient evaluations, the average estimate of the solu-
tion is 99.79. The performance of algorithm 2 is however greatly
improved: after 500 gradient evaluations, the average estimate
is 1.23 (the 90% confidence interval is 1.23 + 0.26), after 1000
gradient evaluations, the average estimate is 0.05 (the 90% confi-
dence interval is 0.05 + 0.04) and after 2000 gradient evaluations,
the average estimate is —0.26 x10~3 (the 90% confidence interval
is —0.26 x107>+£ 0.83 x1073).

This example shows that algorithm 2 sometimes converges
much faster than the Robbins-Monro algorithm. This is par-
ticularly true when Kesten’s acceleration is used. Kesten’s ac-
celeration does not seem to significantly increase the speed of
convergence of the Robbins-Monro algorithm on this problem,
whereas it increases the speed of convergence of algorithm 2

366

quite dramatically. This is partially because the normalization
Y}/ max{e, ||Y||} makes algorithm 2 take larger steps than the
Robbins-Monro algorithm when we are far away from the solu-
tion, and partially because the search direction of the Robbins-
Monro algorithm tends to change sign more often than the search
direction of algorithm 2.

5. CONCLUSIONS

Classical stochastic optimization algorithms have severe prob-
lems associated with them: they converge extremely slowly on
problems where the objective function is very flat, and they of-
ten diverge when the objective function is steep. We have devel-
oped a new stochastic optimization algorithm that is more robust
than the older algorithms in that it is guaranteed to converge on
a larger class of problems. At the same time, we have observed
that it converges faster on a significant class of problems. As
the parameters of the new algorithm can be chosen so that the
new algorithm behaves very much like the older algorithms, while
having the additional feature that it converges on a larger class
of problems, we believe that this new algorithm should always
be used in preference to the older algorithms. Additional work
needs however to be done to guide the selection of values for the
parameters of the new algorithm on specific problems.
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