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ABSTRACT

We propose a method for using Frequency Domain Method-
ology to identify a linear meta-model. This involves multiple
Frequency Domain runs to eliminate the effect of gain. The
method uses the Fourier transform of the output process, rather
than the periodogram or smoothed periodogram estimators.
The identification focuses on estimating the coefficients of the
model, and is therefore similar in spirit to Response Surface
Methodology. The method is tested on two models, one with
known structure and the other with unknown structure. The
procedure does well at fitting the coefficients, including obtain-
ing the correct sign. The procedure may be extended to identify
the stochastic structure of the as well.

1. INTRODUCTION

Frequency Domain Methodology (FDM) has been proposed
as a technique for factor screening [Schruben & Cogliano 1987]
and for gradient estimation [Jacobson 1988]. A major advantage
of FDM is its ability to give information in a region of the
parameter space, rather than at a single factor combination as
for conventional simulation experiments. Thus, FDM offers the
potential to give the experimenter the same information as in a
conventional factorial experiment with a fraction of the number
of runs. In this paper we propose a method for identifying a
linear meta-model from a relatively small number of frequency
domain runs. As with previous researchers, we must contend
with the effects of gain, the differential response of systems to
various frequencies. Gain is the frequency domain analog of
autocorrelation, which complicates simulation analysis in the
time domain.

In this paper we restrict ourselves to models which are lin-
ear in the factors as well as the coefficients. Models which are
polynomial in the factors may also be considered with essen-
tially the same analysis. Other models, may be also considered
(Schruben, Heath, and Buss 1988; Jacobson 1988; Sanchez and
Buss 1987], again without essential change in the analysis.

The idea of FDM is to oscillate the design factors during
the run, rather than holding them fixed as conventional sim-
ulation runs do. In this way, factors at different levels in all
combinations occur during the run. Each factor is oscillated
at a unique frequency, its driving frequency, and the resulting
output has (potential) peaks at related frequencies, the term
indicator frequencies. The analysis is in the frequency domain,
which isolates the effects of each factor and combination of fac-
tors. This approach raises a number of issues. First, there
is the validity of the meta-model selected. Given the validity
of the meta-model, there are design issues for FDM. This in-
volves choosing the appropriate region of the parameter space,
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the driving frequencies and amplitudes for the experimental fac-
tors, and the appropriate method for estimating the frequency
content of the output.

Schruben and Cogliano [1987] and most subsequent re-
searchers have used smoothed periodogram estimators. Others
have more recently proposed using harmonic analysis [Jacob-
son 1990]. In this paper we will use the Fourier transform of
the output, appropriately scaled, and use a least squares ap-
proach to fit the coefficients of the meta-model as well as the
effects of gain at the term indicator frequencies. The reason for
using the unsmoothed Fourier transform is that we are primar-
ily interested in determining the coefficients of the meta-model,
rather than the complete spectrum. To this effect, we are in-
terested in estimating the frequency content of the output at a
relatively small number of frequencies. The reasons for using
smoothed spectral estimators have to do with statistical diffi-
culties when trying to estimate the spectral density, which we
are not attempting here. On the other hand, in the extensions
we will indicate how a reasonable estimate of the spectrum may
be obtained from a Frequency Domain Experiment.

2. THE MODEL

We begin with a collection of m experimental factors each
of which takes values in a finite interval on the real line. We do
not consider qualitative factors. We may thus assume without
loss of generality that the factor space is [-1,1]™. However,
we note that for most experimental situations, the factors in
fact represent deviations from certain non-zero nominal values.
This is important in our approach to estimating the response
coefficients.

Denoting the output series as {Y(¢)}, we postulate a linear
relationship between the steady state mean of {¥(t} and the
experimental factors. That is, if factor j is at level z; for j =
1,...,m, then the mean response is given by

py = EY() =) bjz;

Jj=1

(2.1)

for some coefficients b;,...,b,,. We further assume that the
response of the system is linear when the factors are oscillated
and that there is a common impulse response function g(k) to
all factors. That is, if factor j is oscillated at frequency wj, then
the steady state output is given by

Y(t) = py + Z B; Z g(k)cos2mw;(t — k) + €(t), (2.2)
=1 k=1

whefe {e(t)} is a stationary zero-mean process with absolutely
continuous spectral density fe(w). We will also need {g(t)} to be
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strictly stable; that is, e, k|g(k)| < oo [Ljung 1987). Letting
had .
gw) =Y g(k)e>mk, (2.3)
k=1

we see that holding each factor constant at some level z; results
in the response in Equation (2.2):

Y(8) = py +§(0) ) Bz, +€(t).

=1

(2.4)

Observe that b; = $;§(0),7 = 1,...,m. Our objective is to
estimate the §(0)g;’s, since they will identify the deterministic
portion of the system. We may also desire information about
the stochastic portion of the system. In the current setting, this
involves identifying the noise process {€(t)}, which may be done
using standard methods after suitably adjusting the output.

There are several consequences of our assumption about
the spectrum of {e(t)}. The primary implication for Frequency
Domain Methodology is that there is no inherent periodic term
in the disturbance. Thus, all peaks in the output spectrum
correspond to cyclic components which have been induced by
the oscillation of input factors. If the experimenter suspects
the non-oscillated system to have periodic components, then
this will affect both the frequency selection procedure, since
these frequencies must be avoided, as well as the asymptotic
properties of the spectral estimators. In our method, this means
that the part of the Fourier transform due to the noise process
has variance which decays as 1/N (see Equation (3.4) below).

An important feature of the output spectrum for this model
is that there will be terms involving both §(w) and fe(w), the
Fourier transforms of, respectively, the sequence {g(k)} and the
covariance of {€(t)}. If there is no oscillation, then §(w) is not
present in the output spectrum. On the other hand, fe(w) will
be in every estimate of the output spectrum. The importance of
this is that the system will typically respond differently to dif-
ferent frequencies, a phenomenon called gain. This clearly will
impact a Frequency Domain Experiment, since each factor will
be oscillated at a different frequency. If gain is not adequately
accounted for, then there is a confound between the effect of the
factor and of the system at the corresponding frequency. That
is, if we observe a peak at a term indicator frequency, we won’t
know if it is due to the factor or to system gain. However, in this
context gain only refers to fe(w), not §(w). Even if the effects
of f(w) are removed (such as in the standard “Signal to Noise
Ratio” estimate), §(w) is still in the spectrum. Our method,
which we present in the following section, reduces the effect of
fe(w) by using an estimator for which its effects diminish with
larger samples. The effects of §(w), and the corresponding in-
teraction with the ; coefficients, is then handled using a least
squares approach.

3. IDENTIFICATION

Assume that the m factors, m driving frequencies and m
amplitudes have been selected. As suggested in Schruben and
Cogliano [1987], we will always take driving frequencies to be
Fourier frequencies; that is, frequencies of the form 27k/N,
where N is the sample size. With the above model assump-
tions, we first compute the discrete Fourier transform of the
output series, after first centering to zero mean:
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N

Tiv(w) = ﬁ EY(t)e—Zﬂ’iut 3.1)
t=1

= \/TN Y Big(w)b(w —w;) + én(w)  (3.2)

j=1
where én(w) = Z{\;l e(t)e~2™t/\/N is the Fourier transform
of the error process, and
fw=0

1’
bw) = {0, ffw#0
is the discrete Delta function. Thus, for the term indicator
frequencies wy, . .. ,w, we have
2 - 2

ﬁYN(Wj) = B;§(w;) + \/_IvéN(‘-'-’j)- (3.3)
In the above we have assumed that py = 0; in practice, we
will have to estimate uy by the sample mean Y and apply the
analysis to Y(t) — V.

Observe that the (unknown) gain enters in each estimate
of the output spectrum and that, with our model assumptions,
§(w) is determined solely by the system response to oscillation.
The response at the term indicator frequencies apparently has
little to do with the frequency response of {¢(t)}. However, we
have [Ljung 1987]

Var [2@N(w,-)/\/ﬁ] = 0(1/N) (3.4)
so that ‘ZY’N(wj)/\/J—V— is consistent for B;¢(w;). However, since
G(wj) is still in each expression at w;, this fact does not solve
the problem associated with gain.

We will use multiple runs with different factor-frequency
assignments in order to get around the effects of gain. Each
run will be a signal run in which the factors are oscillated, but
the driving frequencies will be assigned to different factors for
each run. We propose the following approach. A set of driv-
ing frequencies is selected on the basis of the number of fac-
tors, the order of the model, and the criterion for spacing of
term indicator frequencies. See Jacobson, Buss, and Schruben
[1990] for some approaches to frequency selection. These are
then adjusted to the closest Fourier frequency [Morrice 1990].
The factor-driving frequency assignments for the first run are’
selected randomly from the chosen set of frequencies. The re-
maining m — 1 runs are performed by cyclically permuting the
driving frequency assignments in the first run. In this way we
obtain estimates at each term indicator frequency-factor combi-
nation. Note that this multiple run approach is similar in spirit
to ideas in Schruben and Cogliano [1987] and Jacobson [1988].
The difference here is in how the output is analyzed.

Let Y;; denote the (complex) value of 2)‘}\1(0.)])/\/]7 for the
run in which w; is the term indicator frequency for 8;. Denoting
§(w;) by v;, we will first estimate $y,...,8m and 71,...,vm by
a least-squares solution; namely we seek to minimize

Yo 1B - Yyl
ij ,

Differentiating Expression (3.4), we obtain the following “nor-
mal” equations

(3.5)

R(7;Yi;s
Bi = %% (3.6)
v = sz'? ;2’ (3.7)
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where R(-) denotes the real part of a complex quantity. Al-
though there does not appear to be a general closed-form solu-
tion to Equations (3.5) and (3.6), they are easily solved numer-
ically. ) )

Having obtained the solutions f1, ..., fm _and Fly-- s Ym tO
Equations (3.5) and (3.6), we note that the §'s should be cor-
rect in the relative magnitudes, but not necessarily accurate
estimates of the original 3's. Recall that we are really inter-
ested in 3;§(0), for j = 1,...,m. To obtain an estimate of
§(0), we return to the original parameter region of the model.
Let c1,...,cm be the actual center points in the region (in
most practical applications, these are non-zero). Then since
the steady-state mean of {Y(¢)} is

EY(t) =) B;¢;4(0), (3.8)
7=1
we can estimate §(0) by
— (3.9)
> =1 Bics-
Our estimated meta-model is therefore
E[Y] =Y+ b, (3.10)
=1
where .
=B (3.11)
Zq:l Bqcq

forj=1,...,m.
4. EXPERIMENTAL RESULTS

We will consider two examples to test the approach devel-
oped in the preceding section. The first example is a model
which meets the assumptions exactly. The second is a model of
a serial production line with stochastic processing times.

4.1 A Linear Model

We first examine a linear model for which the assumptions
are met. We take {17(t)} to be of the form

2 3
V()= B> (c;+a;cos2mw,(t — k) g(k) +e(t)  (4.1)

j=1 k=1

in which ¢(1) = 1., g(2) = 0.8, ¢(3) = 0.6, B, = 2., B = 1.,
1 = c¢2 = a = az = 1, and {e(t)} is a MA(1) process with
parameter o = 0.8. Observe that the corresponding Response
Surface Model is therefore given by

E[Y])=72+48x, + 24x,. (4.2)
The system was simulated for 4096 (= 2'?) observations, .the
resulting estimates being ¥* = 7.231, f; = 1.349, 3, = 0.651,
§(0) = 3.616, 4; = 0.593 — 1.188¢, 4, = 0.512 — 0.123¢, so the
fitted model is

E[Y] = 7.231 + 4.8762, + 2.3551,. (4.3)
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We remind the reader that the estimates Bj’s and §¢(0) are not
necessarily accurate for the f8;’s and §(0), but that ﬁjgj(O) does
appear to accurately estimate 3;§(0).

One difficulty encountered with the use of smoothed peri-
odogram estimators, which is shared by methods utilizing the
periodogram, involves the sign of the coefficients, since the pe-
riodogram removes information about the sign. We therefore
tested the approach in this paper with the above model, but
with 8; = —1. The true Response Surface is therefore

E[Y) =24+ 487, — 2.4z, (4.4)
Again, 4096 observations were generated. The estimates were
Y = 2368, /1 = 4.044, B, = —2.044, §(0) = 1.190, % =
0.332 — 0.6637, 3, = 0.277 — 0.598, so the fitted model is

E[Y] = 2.368 + 4.808z) — 2.441z5. (4.5)
Thus, the method was able to detect the sign of the coefficient
of z,.

4.2 A Production Line

Next, we consider a production line consisting of machines
in a series having stochastic processing times. Following stan-
dard assumptions, the first machine always has work and the
second machine is never blocked. There is finite buffer capacity
between the machines, however, which can lead to blocking and
starving. Our experimental factors will be the mean process-
ing times of each machine, and the output process will be the
sequence of throughput times for each job.

We first consider a line with two machines and no buffer
capacity between them. Thus, if a job finishes on the first ma-
chine while the second machine is busy, the first machine be-
comes blocked. We take the processing times are distributed
as gamma random variables with mean 100. and coefficient of
variation 0.3 for each machine. The amplitudes for the means
will be 10. and the frequencies will be 585/4096 and 878/4096,
with a run length of 4096. The fitted Response Surface Model
is

E[Y] = 217.153 + 0.648z; + 1.523z, (4.6)

in which z; is the deviation from 100 for the mean of machine
1. To test the fitted model, various combinations of means were
separately estimated using conventional simulation runs. The
results are summarized in Table 4.1. below. Observe that the
fitted model is very close to the values obtained by the actual
runs. The worst cases are near the boundaries of the parameter
region.

Table 1. Predicted vs Actual Values

r 11 Lo Estimated Actual % Errou

90 110 225.900 228.514 1.1%

100 110 232.383 232.928 0.2%

105 105 228.010 227.516 0.2%
105 110 235.625 235.516 0.0%
110 90 208.407 208.581 0.1%
110 100 223.637 223.012 0.3%

110 105 231.252 230.572 0.3%
110 110 238.867 238.350 0.2%

Naturally, models such as this can be highly nonlinear.
Therefore, it might be more accurate to employ higher order
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meta-models, particularly if the range of possible values is large.
Nevertheless, the linear model presented here has done quite
well. Experiments performed on other factors, such as the co-
efficient of variation, produced similar results.

5. SUMMARY AND RESEARCH DIRECTIONS

We have presented a method which identifies a linear model
using Frequency Domain Methodology. Although more runs are
required for this procedure than conventional FDM, the infor-
mation obtained is more detailed. The method appears to work
well in the examples presented. By focusing on the coefficient
estimation alone, we were able to use the Fourier transform of
the output series, rather than a periodogram estimator. The
primary reason for this is that spectral estimators are oriented
toward obtaining the entire spectrum, while for our purposes it
suffices to obtain information at a small set of predetermined
frequencies. Thus, for example, the asymptotic independence
of an estimator at distinct frequencies is not the liability here
that it is if we were attempting to estimate the spectral density.
However, we can still estimate the disturbance spectrum using
smoothed periodogram estimators as follows. First remove the
Fourier transform points corresponding to the term indicator
frequencies, then smooth the resulting periodogram. Observe
that this estimates the spectrum of {€(¢)}, but does not contain
any information about g(w).

As discussed before, the method can easily be extended to
higher order meta-models with relatively little change. This is
being pursued in related work. Although we have used m runs,
it is possible to determine the required estimates with as few as
two runs. In this situation, the runs must be performed so that
each factor has a unique pair of frequencies for the two runs. It is
expected that this approach would result in considerably worse
estimates than the m run method. Naturally, experiments with
the number of runs between 2 and m could also be done.
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