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ABSTRACT

To facilitate the design and analysis of efficient simulation
experiments, many authors have advocated the use of common
random numbers and antithetic variates across the various runs that
comprise the experiment. The objective of such designed experi-
ments is often to estimate a general linear regression model on the
basis of a quantitative response variable generated by the simulation
model. This regression model is called the metamodel of the
experiment. Along with methods of metamodel estimation under
these various designed experiments, statistical methods have been
developed to perform appropriate tests of hypothesis as well as
confidence interval construction. The validity of these methods is
contingent upon the presence of a pure error component
(experimental error) in the response. The purpose of this paper is to
examine the effect that the absence of a pure error component in the
response has on these statistical analysis procedures and to provide
recommendations for ensuring the presence of pure error in the
Tesponse.

In particular, we investigate the effect that the absence of pure
error in the response has on the Schruben-Margolin correlation-
induction strategy and its recommended statistical analysis methods.
We make recommendations for ensuring the presence of pure error
in the response. We also provide an example that clearly illustrates
these points.

1. INTRODUCTION AND BACKGROUND

To facilitate the design of efficient simulation experiments,
Schruben and Margolin [1978] devised a correlation-induction
strategy that effectively incorporates the variance reduction tech-
niques of common random numbers and antithetic variates in the
same designed simulation experiment. For a large class of ex-
perimental designs, their strategy was shown to give optimal results
in terms of metamodel estimation. Nozari, Amnold, and Pegden
[1987] developed a procedure for conducting statistical analysis
under the Schruben-Margolin strategy. However, the validity of
this statistical analysis procedure is contingent upon the presence of
a pure error component in the observed responses. The purpose of
this paper is to investigate the effect that the absence of pure error
has on the Nozari, Ammold, and Pegden statistical analysis and to
identify conditions under which the presence of the pure error
component in the response is preserved. Next we give a brief
overview of the Schruben-Margolin correlation-induction strategy
and the statistical analysis given by Nozari, Amold, and Pegden
[1987]. In Section 2 we identify the effects that the absence of pure
error in the response has on this statistical analysis. In Section 3 we
given an example that illustrates how lack-of-fit variation in the
response can be misinterpreted as pure error. Section 4 contains
conclusions and suggests directions for future research.
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1.1 Schruben-Margolin Strategy

In this section we give a brief review and summary of the
Schruben-Margolin correlation induction strategy. For a more
complete discussion of this strategy see [Schruben and Margolin,
1978; Schruben 1979; Tew and Wilson 1990].

The Schruben-Margolin correlation induction strategy is
designed for the special case where X (the m x p design matrix) is
orthogonally blockable into two blocks. The number of design
points in each block represents the block size. Suppose that the
design matrix X = (1,,T) satisfies T’1, =0, , a (p - 1)-dimensional
column vector of zeros. This design is orthogonally blockable into
two blocks if there exists an (m x 2) matrix W of zeros and ones
such that T'W = 0 and 1, W = [m,, m,), where m, and m, are the
respective block sizes. Schruben and Margolin [1978] proposed the
following assignment rule which minimizes the determinant of the
covariance matrix for the ordinary least squares and the weighted
least squares estimators:

If the m-point experimental design admits orthogonal
blocking into two blocks of sizes m; and m,, preferably

chosen to be as nearly equal in size as possible, then for all
m, design points in the first block, use a set of random

numbers R = (r, r,, ..., r,) chosen randomly, and for all r,

design points in the second block, use R = d-r,1-1,..,
1- rg).

Here, R = (r}, ry, ..., T,) represents the set of g random number

streams used to drive the simulation model. Further, they suggest
that the set of random number streams that drive the simulation
model produces random controllable block effects that need to be
incorporated in the model. Blocking theory is utilized to assign
random number streams to the design points.

Schruben and Margolin [1978] decomposed the error term at
the ith design point, g,, into a random block effect b; and a residual

¢, both of which are functions of R;. Thus, the first-order model of
the relationship between the response and the design variables, x,,
of interest can be written as:

p-1
v ;) =Bo +k21 Brxc + bRy +& R fori=1,2,..,m, (1)

or in terms of the matrix notarion:

Y®R) = XB + WB(R) + ¢ (R) @

where ¥ = (¥, Yar - ¥)» R= (R, R, L, RO,



1.D. Tew and M.D. Crenshaw

b
B=[ (E):I 3)
b(R).

is the (2 x 1) vector of random block effects for the two sets of

streams, R and R, used in the experiment, and eo is the (m x 1)
vector of residual errors.

Schruben and Margolin [1978] made the following assumptions
about the assigned inputs:
1. The response variance is constant across all points in the design.
2. Ify;andy; (fori= j) are realized from the same random number

stream, then
Corrly; R;), y;(R))] =p+, 0<p. <1 )
3. If y; and y; (for i # j) are realized from antithetic (comple-
mentary) random number streams, R, and ii respectively, then
Corr[y; (R;), yj (_Ei N=-p_, -1<-p_<0. 5)

Let X, represent the design matrix for the ith block (i = 1, 2). If the
design points are arranged such that

X 1 Tl
X=|21]=| ™
I:XZ] |:1m2T2] ’ (6)

then these assumptions lead to the following structure for the
covariance matrix of y:

— 1 Py PP - P

Py 1.

Y I A e ot
P D . .p.1p,.p, Inipn| @
Py 1.

I I I I |
where Zy is (m, x m,), L1z is (m; X m,), Zz is (m, x m,), and Zp, is
(m, x my). Thus, under the assumption that

€ =(e], 6, 60) ~Np O, 2(1-p)Ip) @

we have that

y ~ N,(XB, ). (&)

Based on experimental designs that admit orthogonal blocking,
Schruben and Margolin prove the following theorem:

Theorem 1: If an experimental design admits orthogonal blocking,
and if the assumptions given above hold, then under the assignment
rule the ordinary least squares estimator of B has a smaller general-
ized variance than it has under the following strategies: (1) the
assignment of one common set of random numbers to all design
points, or (2) the assignment of a different set of random numbers to
each design point, provided
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[1+(m-Dp, - (-rzﬁ)(ml Ym)(py +p))(1-py )P <1 (10

in the latter case.

Corollary 1: Under the assumptions of Theorem 1, the assignment
rule is superior to the use of common random numbers in estimation
B,; the two are equivalent in terms of dispersion for estimating (B,,
By we Bp—l)‘ When compared to the use of a different random
number stream at each point, both the assignment rule and common
random numbers are superior in terms of dispersion for estimating

By, By By

Corollary 2: For the assignment rule, the variance is minimized
when the two block sizes are equal; i.e., when m; =m, = % =q.

Thus, Schruben and Margolin [1978] showed that their alternative
strategy based upon blocking concepts is a successful means of
combining the two correlation methods of common random num-
bers and antithetic variates for a large class of experimental designs.

1.2 The Nozari, Arnold, and Pegden Statistical Analysis
Procedure

In this section we give a brief review and summary of the
statistical analysis procedure of Nozari, Arnold, and Pegden [1987].
Nozari, Arnold, and Pegden devised a procedure for conducting
statistical analysis under the Schruben-Margolin strategy. They
assumed that r independent replications are taken at each ex-
perimental point such that:

Y ~N_(GB, ©)), (¢3Y)
where Y = (¥}, ¥, .., ¥') is the (mr x 1) vector of responses
across all design points and replicates;

G=X®1, (12)
is the overall (mr x p) design matrix; X = [1,T] is the original
m-point design matrix for one replication given by (6); P is the (p X
1) vector of model parameters; and @, = X, ® I, is the (mr x mr)
covariance matrix with X; given by (7); and ® defined to be the

right Kronecker product such that, for any matrices A and B with
dimensions (h x i) and (j x k), respectively:

Abj; Abyg ... Abyy
Abj) Abjy ... Abyy

A®B= (13)

Abj] Abjz Abjk (hj x ik)
They also assume that the responses on each replication are jointly
normal. The assumptions underlying the follow-up analysis of
Nozari, Amold, and Pegden can be summarized as follows:
{y; i=1,2,...,r} ID~N_(XB, Z). (14)

Nozari, Ammold, and Pegden’s method focused on finding ways to
effectively:
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estimate f,

. test H: KPB =0 versus H;: KB # 0 for some (k x p) known
matrix K of rank k < p, and

3. construct simultaneous confidence intervals for I'Kp for all I e

R".

N —

Their statistical analysis procedure is based on the following four
results:

Result 1:
A
B=(G'G)'GY (15)

is the optimal (minimum variance, unbiased) estimator for the
model of (11). This result yields the formula t5 estimate .

Result 2:
A
(mn)'2 B, - By)
__M ~ t(,_]), (16)
T
where

tl =i=(l'—-l)— N (17)

Yix is the response for the ith replication of the kth design point in

the jth block, y;_is the average on the ith replication, and y _is the
overall average response. Equation (16) can be used in the obvious
way to construct a 100(1-a)% confidence interval for B and to give

an optimal (minimum variance, unbiased) test for Bo.
Result 3: The optimal (minimum variance, unbiased) size a test for
H,: HB, =0 versus H;: HB, #0 (18)

where H is a known (h X (p-1)) matrix of rank h < p, rejects, Hy if

(f5%)

f* = 2 >Fj g, mr-p-2r+1), (19)
3
where
B, YT T @By
f=— 1 o ! (20)
(ho™)
2 —
_ r-pd-7 f x (Vi oY)
Tg' (mr-p-2r+1) ’ @n
and
ny Gﬁu2
A -
= 22
& D) 22)
For simplicity purposes, %% can be conveniently expressed as:
ry [m@r- DIG% -1(T) +7T) 23
3° r(m - 2) ’

A2,
where 1:% is given in Result 2, and
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2 —
F=tme-0" 2 F P v - v @4
i=1 j=1 k=1
3 =(2')_lqi£31 (Vi - Yi2)- (v -y 2% (25)

such that
R 1 I

— qr _ 2 i} _
yi. =q" 2 Vi Vi = 12 Z Y YT L yi.. 26
= j=

Together Results 2 and 3 comprise the formula for testing Hy:
Kp =0 versus H;: Kp # 0 for some (k X p) known matrix K of rank
< p.

Result 4: A size o procedure for testing
Hy: KB =0versus H;: KB=#0 27)
where K is a (k x p) known matrix of rank k < p, is to reject Hy if

1(r - k)
k(r-1)

A A A
B'K'(KAK") ' KB >F) o (k, 1 - K), 28)

A
where A = (X’X) ! X’SX(X’X)"! with

1 LS <\
S= @-D iEI (i -V -y (29)

This final result gives us a method for constructing the simultaneous
confidence intervals for 'K for all I € R,

The validity of this statistical analysis procedure depends upon
the validity of the Schruben-Margolin correlation induction
strategy. It requires that the correlation structure along with all
other assumptions prescribed by Schruben and Margolin [1978] are
true. If all of the assumptions given have been satisfied, then results
for drawing inferences about B and B, can be derived by transform-
ing the model to one with independent observations. Nozari,
Armnold, and Pegden [1987] present an invertible transformation that
does not involve any unknown parameters. Thus, any inferences
drawn about the transformed variables can also be applied to the
original variables. The authors employ this transformation to derive
the 4 results given above. This same transformation will be dis-
cussed and utilized in Section 2 to investigate the effects on this
statistical analysis procedure when no pure error component is
present in the response.

2. THE PURE ERROR COMPONENT IN DESIGNED
SIMULATION EXPERIMENTS

In this section we first give a discussion on how pure error
components arise in designed simulation experiments. This discus-
sion is based on the concepts first presented by Mihram [1972 and
1974]. Second, we identify the effect that the absence of a pure
error component in the response has on the Nozari, Amold, and
Pegden statistical analysis.

2.1 Presence of Pure Error
Mihram [1972] asserts that a simulation model may be clas-

sified as either static or dynamic. The static effect of a model’s
performance is denoted by y,, the value of the response variable at
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simulation time t. This response may be represented by:

Yi(R) = (X, Xg, ..o X, ) + E(R), (30)
where p(X;, Xp, ) Xpp) 18 the mean response at the design point
defined by the levels of the design variables x;, X,, ..., X,.;; and g
(R) is the value of the random error at simulation time t.

Mihram [1974], offers an explanation of the variation in the
response variable, y,, from a computer simulation experiment when
common random numbers are employed. He identifies two separate
components that contribute to this variation: (1) block effects and
(2) pure error. The block effects arise from using generated random
number streams repetitively across design points. Mihram contends
that this technique is compatible with the experimental statistician’s
concept of blocking. However, he cautions that the resulting block
effect should be interpreted as a variance component or random
block effect in that the streams used for blocking are randomly
selected. The pure error arises from randomly selecting different
generated random number streams across design points.

Since the randomness in a stochastic simulation model arises
from the sequences of random numbers used in the simulation code,
simulation analysts have long debated the merits of using the same
random number streams in simulating different systems (Heikes,
Montgomery, and Rardin [1976]). The idea of comparing alterna-
tive systems under the same statistical conditions is similar to the
use of the variance-reduction technique known as common random
numbers and the use of "blocking” in statistical design. Blocking is
evoked to reduce the experimental error across the design points.
Mihram was the first to propose considering the effects of pseudo-
random number streams as random block effects. He states that "in
order to obtain a true measure of experimental error, one should
select at least one (and typically all save one) seed value randomly
and nonrepetitively among the encounters defined in a similar
experimental design."

Mihram [1974] provides a procedure for appropriately selecting
the random number seeds across design points for a dynamic,
stochastic simulation model. To employ his procedure, the
dynamic, stochastic simulation model must be viewed as a genera-
tor of the set of sample paths from a stochastic process {y,}, such
that:

¥ = Y5 (R) (€2))

where y, is the simulation response, x = (%55 X5, oeo )ﬁ,_,) is the set of

p-1 factors, and R is the set of random number streams. In the

above equation, the variables t and x are fixed. The response, y,,

can be separated into two components as follows:

¥ (R) = p(x) + e,(x; R) (32)

where p(x) = E(ym(R)) is the mean response and g,(x; R) represents
the experimental error due to the random selection of R.

By repeatedly employing the same seed values R, for different
values of x, the simulation analyst can form a block of experimental
units. When the same seed values, R, are used repeatedly across
design points, €(x; R), is no longer a representation of pure error,
but a representation of random block effect. This interpretation of a
block effect is consistent with that given in the experimental design
literature. That is, using the same random number streams at
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diff.ercnt dcsign points is analogous to subjecting different ex-
perimental units to the same experimental conditions. For example,
consider the case where g streams denoted by R = (r,, T, ..., T,)» aTe
used for each simulation run. This allows the response to be
represented as

Yx(R) = H(x) + b(R*) +g(x; R - R*) (33
where R* is the vector of fixed seed values, R - R” is the non-empty

vector of seed values that are randomly selected across design
points, and b (R) is a random block effect. An appropriate measure
of experimental error is obtained by randomly and non-repetitively
specifying across design points the streams in R - R’

Mihram [1974] concludes that the proper interpretation of the
block effect obtained from the repetitious use of random number
streams across design points is in the form of a random block effect.
This constitutes a variance component of the dispersion inherent in
the responses from dynamic, stochastic simulation models. In
simulation, the analyst must not only be concerned with interpreting
the resulting block effect, but also with retaining an appropriate
measure of experimental error. Mihram [1974] asserts that in order
to obtain a true measure of experimental error, one should select at
least one seed value randomly and non-repetitively among the
encounters defined in a simulation experiment. In the next section
we discuss the effect that using all available streams for blocking
has on the Nozari, Arnold, and Pegden statistical analysis.

2.2 Statistical Analysis in the Absence of Pure Error

In order to construct valid inferences about the performance of
a stochastic simulation model, the technique used to execute the
simulation experiment must be properly identified. For purposes of
this research, the problem of proper identification takes the form of
ensuring that the hypothesized model is appropriate for the number
of random number streams used to induce correlations. This section
identifies an appropriate model for simulation experiments designed
under the Schruben-Margolin correlation induction strategy in the
absence of pure error.

As discussed in Section 1.1, under the Schruben-Margolin
correlation induction strategy, sets of random number streams are
assigned to design points in order to induce correlations across the
design points in the experiment. The number of random number
streams that the simulation analyst employs at each design point
determines whether a pure error component is present in the gener-
ated responses. In particular, if all random number streams are used
to induce correlations across the design points, then no pure error
component is present in the response.

Under the assumptions of the Schruben-Margolin correlation
induction strategy given in Section 1.1, when all random number
streams are used to induce correlations at each design point, the
response z;, which has mean P and variance o, will reduce the
model of (1) to:

Z(R) =Pg + % Bexe +b;(R) fori=1,2, ..m.  (34)
k=1

(Note: the response variable z, which has similar properties to the
response variable y, will be used to distinguish responses generated
by model (34) from those discussed earlier). Model (34) can be
written in matrix notation as:
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Z=GB+(WB)®1,, (35)

where G, B, W, and B are defined in Section 1, and Z = /.2, ..,
z,) is the column vector of responses for all r independent replica-

tions across all m design points generated by (34). Now, it can be
shown that under (35):

Z ~N,_ (GB, Cov(Z)), (36)
where:

Cov@) =%, ®I, =0,, 37

P+Em, xm;) P.E
z, =Cov(z)=c?| * (my xm) (my xmg) | (38)
'p-E(m2 xmy) p+E(m2 X my)

and Egx; is the (i X j) matrix of ones.
Applying the orthogonal transformation I' (see Nozari, Arnold,
and Pegden (1987)) to (35) yields:

2’ =CoL)Z=TC®L)GE+T®L)(WB)®1,), (39)
which by (36), (37), and (38) yields:

Z" ~N_.(G*B,®,), (40)
with
Ao o
ox o . (4
2
0 0 Mg

such that A} = o%q(p, - p.), A2 =c?q(p, +p.), and A2 =0. A
proof of (41) is given in Appendix IV of Crenshaw [1989].

Theorems analogous to the ones given by Nozari, Arnold, and
Pegden [1987] can be established from conditions (39), (40), and
(41), such that:

€, =T®L)O, L) =

Theorem 5. Z;, Z;, and Z, are independent,
Theorem 6. Z; ~N;(29)"2 1,89, A21,),
Theorem 7. Z, ~ N, (0, \31,),

Theorem 8. Z; ~Nor(g-1) (T*B1, 7% L)

The invertible transformation given by Nozari, Amold, and Pegden
[1987] does not involve any unknown parameters. Thus, all optimal
procedures based on Z' are also optimal for procedures based on Z,
the untransformed responses.

By Theorem 5, and as before, the model involvillg z cogsist of
3 separate ordinary linear models, one involving (Z,, By, A7), one
involving (Z; s 7\%), and one involving (Z; ,B1, 7\%), for which
optimal procedures are easy to find. Arnold [1981] refers to this
situation as a "product of problems" and notes that a procedure for
drawing inferences about B (B, ) based on Z: (Z;) that is optimal
among procedures based on Z; (Z;) is optimal among procedures

based on Z'. (See p. 135 of Nozari, Arnold, and Pegden [1987)).
Thus, the situation created by Theorems 5, 6, 7, and 8 is similar to
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the situation created by Theorems 1, 2, 3, and 4 of Nozari, Amold,
and Pegden [1987] with the exception of the differences in the
respective variance components. The remainder of this section is
devoted to identifying and interpreting the changes in Results 1, 2,
3, and 4 of Nozari, Amold, and Pegden [1987] brought on by these
variance component differences. (Results 1, 2, 3, and 4 are summa-
rized in Section 1.2).

Result 1 remains unchanged under (35) in that the ordinary
least squares estimator of B,

Bo
B=| &

A= G"'G"Y16"'Z" =G'G) Gz,
B

42)

is the optimal (minimum variance, unbiased) estimator. However,
Theorems 6 and 8 indicate that, respectively,

A
A *
Bo = @@ ArL,Z] ~N; B, A2 2qn)), (43)

and
N

A ok o] ok g * 2 ¥ ko]
B =Ty ITZY <N B AT, 4

A A
A A
Thus, the variances of By and the components of B; have been

reduced by (1 - p,,). Since A2 =0, the multivariate distribution of

A

A

B, given in (44) is degenerate. To clarify, 7\% =0 in (44) indicates
that if Gf is the mean of Z, then B, is known perfectly. (In practice

of course, the hypothesized linear model G for simulation experi-
ments is at best a close approximation to the mean of Z so that

A

A
var(B;) > 0).

Result 2 remains unchanged under (35) with the exception that
the half-width of the 100(1-0t)% confidence interval for [30 is
reduced by the amount of:

-1
(@2 a(p, - p.)3+0%(1- p, NV2- (62q(p, - p. ))l’zlt#. 4s)

Although Results 1 and 2 have changed very little under model
(34), Results 3 and 4 have changed fundamentally. Moreover,
under the assumption of (36), the statistical test given by Result 3

A

can be eliminated. This is because the Cov(ﬁl) = 0. Since B, is
known with certainty, no statistical testing procedure is required to
determine whether HB, = 0 or HB, # 0. Thus, the testing procedure
given by equation (18) and the 100(1-0t)% simultaneous confidence
interval given by equation (6) of Nozari, Amnold, and Pegden [1987]
are inappropriate under model (34).

Moreover, the statistical testing procedure given by Result 4 for
testing Hy: KB = 0 versus H;: KB # 0 reduces to a simpler test of
Hy: By = 0 versus H;: B, # 0. As before, this is due to the absence of
variability for the components of B, under (34).
following the development of Result 4 given on page 136 of Nozari,
Amold, and Pegden [1987], it can be shown that under model (34):

Specifically,

a PRI - 1
p=XX)"X ~Np B, £ 4), (46)
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where

Py -P.) o
A=02|: 2 , (47)
0 0

— 1 . 1 ’ A
and z =7 iél zZ;. TahngS:; i_ﬁ] (z -—)(Zi -z) and letting A=

(X’X)'X’SX(X’X)" yields by (36) and Theorem 17.6 of Arnold
(1981]:

A 1 48
A~Wy(-1, =1 B). (48)

A proof of (47) is given in Appendix V of Crenshaw [1989]. By
(47) and Theorem 17.6 of Amnold [1981], the Wishart distribution in
(48) reduces to:

A 02(P+'P-) 2

A~ X 49

which implies that

(@02 B - Bo)
M

~t(r-1), (50)

where 211 is the element of A in the first-row and first-column
position. A proof of (50) is given in Appendix VI of Crenshaw
[1989].

The distribution of the responses generated by model (39) has
significantly changed the applicability of the Nozari, Amnold, and
Pegden statistical analysis procedure. In particular, the o1 - p,)
variance reduction has eliminated the need for Results 3 and 4 all
together. For example, equation (50) can be used to conduct
hypothesis tests and construct confidence intervals on B,. Thus, as
expected, Result 4 reduces to the procedure of Result 1 and, as with
Result 3, hypothesis tests and confidence intervals on B, are un-
available. Consequently, under model (35), the objectives of the
Nozari, Amold, and Pegden statistical analysis procedure are
attainable for B, but unattainable for B,.

3. EXAMPLE

In the previous section the argument was made for randomly
selecting at least one random number stream across all design points
in the experiment to ensure a pure error component in the response.
This procedure is recommended in all cases. Nevertheless, many
simulation analysts, in the spirit of trying to maximize the magni-
tude of the induced correlations, use all available random number
streams to induce correlations across design points. In order to
explain what can happen in this situation we present, in this section,
some simplified examples.

3.1 An Illustrative Example on the Effectiveness of the
Combined Use of Common Random Numbers and
Antithetic Variates

In this section, a simulation experiment is conducted to illus-
trate how the implementation of the Schruben-Margolin correlation
induction strategy can affect the presence of random error in the
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response. Consider a simulation experiment consisting of two
factors, each with two levels of interest. For the ith replicate of the
jth design point, the known function of the factor settings, x, and x,,
yield the univariate response y;, which has mean  and variance o
The vector, y; = (¥;» Yig» +-» Yim) » d€nOtes the m responses of the ith

replicate. For a given design point, the linear relation of the
univariate response to the level of two factors is given by:

Yim = Bo +B1x1i +Baxgj +EGjn> Q)
where
Y = the response for the nth run of the simulation using the ith

and jth level of the factor settings;

B, = the overall mean response;

x;; = the fixed effect of the ith level of the factor setting;

Xy = the fixed effect of the jth level of the factor setting;

Egjo = the residual error for the nth computation of the simulation

at factor levels x,;, and x,; where [e(ij)n: for all i, j, k, n} ID

~N(0, 6.
In order to demonstrate the impact of using all streams to induce
correlations for this example, the error term in model (51) was
decomposed into two components: €, and €, Thatis, £, =
€1 + Exgm WheTe €y TID ~ N(O, 07) and &, IID ~ N(O, ),
such that 6° = (6% + 02). (Note that, unlike most simulation models,
the model in (51) is completely known and is not an hypothesized
approximation to the true relationship between the response of
interest and the settings of the factors.)

For this example, the simulation experiments were performed
using the tabulation method of the Normal distribution function
with 10 independent replications made at each of the four design
points. The purpose of this example is to study the effect that the
different factor levels have on the mean response. To study this
system, a 22 factorial design was employed for factor levels x; and
x, given in Table 1. This 22 factorial design is orthogonally block-
able into two blocks of four design points each. The x;x, interac-

tion was used to divide the experiment into two incomplete blocks
of two design points each. Table 2 shows how the treatments were
assigned to the blocks so as to confound x,x, with the block effect
induced by the assignment of common random number streams and
antithetic random number streams as prescribed by the Schruben-
Margolin strategy.

Table 1. Fagtor Levels for Example 1
Factors Selected Levels
X, -1=1.0
+1=20
X, -1=20
+1=30

Including the block effect, the complete mathematical model
for this experiment is given by:

Yiij =Bo +Bi +Brxy +Baxgj +eyGjny +E26hpn  (52)

where B; = the random effect of the lth block, confounded with the
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XX, interaction such that (B,: /=1, 2,} IID ~ N(u, o3) Wi = 0, if
the x,x, interaction does not exist. The block effect B, is random

due to the random selection of the set of random number streams,
R, and R,, that are used by all design points in Block 1 to drive the

WO €ITor components, €, and €, , respectively. For all design

points in Block 2, the antithetic streams, R, and Ez are used to
drive €5, and &, respectively. (See the assignment rule given
in Section 1.)

To provide the desired sign pattern for the induced correlations
as prescribed by the Schruben-Margolin correlation induction
strategy, this example was structured so as to maintain the following
properties across all four design points:

1. The response y has the same monotonic dependence on the ith
random number sampled within a run when all other random
numbers are fixed i =1, 2, ...).

2. Random numbers are assigned to the emor term in a
synchronized manner so that the stochastic characteristics
generated are the same for every alternative within the same
block (j =1, 2).

For a detailed discussion of the Schruben-Margolin correlation
induction strategy, see Section 1.1.

For this example, the first set of runs utilized all streams to
induce correlatons across design points. The resulting set of
simulation responses are displayed in Table 3. The corresponding
sample correlation matrix is given by:

1.0000 1.0000 -.9998 -.9998
1.0000 1.0000 -.9998 -.9998
-9998 -.9998 1.0000 1.0000 |’
-9998 -.9998 1.0000 1.0000.

Cor(y) = (53

A A A A
and the resulting sample covariance matrix of (B =y, By, B;) is
given by:

(54

A [0.0006 0.0000 0.0000
Cov(B) =[o,oooo 0.0000 0.0000] )
0.0000 0.0000 0.0000.

By applying formulas (17), (23), (24), and (25) to the gencl;\aztcd
simulation responses, the following results were obtained: ¢~ =
3.6080, %2 = 0.0026, T = 12.9842, and T; = 0.0009. Observe that

%f, and %§ are not practically, significantly different from 0. Thus,
as expected, when all streams are utilized under the Schruben-
Margolin strategy in conjunction with a linear model, no pure error
is observed in the responses.

To demonstrate when a measure of pure error is present in the
simulation model, a second set of simulation runs were performed
under conditions similar to experiment 1, except that stream two,
which drives &5 of the error term, was randomly selected across
all design points. The resulting set of generated responses are
displayed in Table 4. The corresponding sample correlation matrix
is given by:

1.0000 .7451 -.5998 .0982
7451 1.0000 -.5930 .2504
-.5998 -.5930 1.0000 -.4402
0982 2504 -.4402 1.0000.

Corr(y) = , (55)
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A A A A
and the resulting sample covariance matrix of B =(Bo, B1, ) is
given by:

8577 3593 -.2682
] . (56)

A
cav(B)=|: 3592 5797 -.2193
2682 -2192 4467

The following results, again, were obtained from formulas (17),
(23), (24), and (25): G° =3.3210, T = 3.0718, T = 5.3699, and T =
1.7552. Of note is that with pure error in the simulation model, %f,

and 1“:3 are practically, significantly different from 0.

To complete this first example, another set of simulation runs
were made. These runs were conducted to demonstrate the effect
that an incorrectly hypothesized model can have on the statistical
results, or more directly, how the results obtained from an incor-
rectly specified model can mask the absence of random error in the
response. This second set of runs were performed exactly as the
first set, except that a non-linear model was used to generate the
simulation responses. The non-linear model used for this experi-
ment is given by:

2.2

Yiin = Bo +Brxai +Baxgj + (X %5 ) in 6N
where
Vi = the response for the nth run of the simulation using the ith

and jth level of the factor settings;

By = the overall mean response;
x,; = the fixed effect of the ith level of the factor setting;
Xy = the fixed effect of the jth level of the factor setting;

€ = the residual error for the nth computation of the simulation
at factor levels X5 and Xy where (e(ij)n: for all i, j, k, n} IID
~N(0, 6?.

Equation (57) represents the correct relationship between the
response and the levels of the input factors. However, for this
experiment, the linear model in (51) was used as the hypothesized
metamodel. Thus, there will be a lack-of-fit component present in
the results.

Table 5 gives the resulting responses generated, where all
streams were utilized under model (57). Again, random number
streams, R, and R,, are used to drive the two error components of,

€16 and €&y, respectively. for all design points in Block 1, and

the antithetic streams, R, and Ez, are used to drive the error
components in Block 2. The comesponding sample covariance

A A A A 3 .
matrix of B = (Bo, B1, B2) is given by:

A
Cov(B) =| 81.3000 137.7000 2162000

127.5000 216.5000 340.0000.

47.8000 813000 127.2000
[ ] (58

As expected, the sample correlation matrix for this example was
exactly the same as in experiment 1, and is given by equation (53).
Using the responses generated from model (57), the following
results were obtained from formulas (17), (23), (24), and (25),
respectively: & = 1475.010, T = 172.010, 2 = 3418.072, and 22 =
859.976. Notice the huge variations in the responses generated
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Table 2. Assignment of Treatment Combinations to Blocks for Example 1

Block J Response Index Treatment Combination
(Random Number Assignment) k X, Xy
1 1 -1 -1
(Common Streams R)
2 +1 +1
2 3 -1 +1
(Antithetic Streams E)
4 +1 -1

Table 3. Simulation Responses Generated for Experiment 1 Using All Streams

Response
index k 1 2 1 2 Averages within:
Replication Block j Blocks Replications
Number i 1 2 Vi Y Yi.
1 5.28 9.28 12.86 12.86 7.28 12.86 10.07
2 6.16 10.16 11.81 11.81 8.16 11.81 9.98
3 8.33 12.33 9.66 9.66 10.33 9.66 9.99
4 8.50 12.50 9.49 9.49 10.50 9.49 9.99
S 9.10 13.10 8.89 8.89 11.10 8.89 9.99
6 8.51 12.51 9.48 9.48 10.51 9.48 9.99
7 8.15 12.15 9.84 9.84 10.15 9.84 9.99
8 9.66 13.66 8.33 8.33 11.66 8.33 9.99
9 11.24 15.24 6.75 6.75 13.24 6.75 9.99
10 11.13 15.13 6.86 6.86 13.13 6.86 9.99
Averages Yo Yo Y Y2 Y.
across
Replications 8.60 12.60 9.39 9.39 10.60 9.39 9.99

Table 4. Simulation Responses Generated for Experiment 2 Using One Stream

Response
index k 1 2 1 2 Averages within:
Replication Block j Blocks Replications
Number i 1 2 Y. Yo Yi.
1 7.02 9.24 9.98 8.60 8.13 9.29 8.71
2 5.64 10.73 1041 10.72 8.18 10.56 9.37
3 10.30 12.38 9.99 11.15 11.34 10.57 10.95
4 7.74 11.50 12.07 6.52 9.62 929 9.45
5 7.68 10.94 8.89 10.55 9.31 9.72 9.51
6 3.79 8.86 12.80 9.53 6.32 11.16 8.74
7 8.32 13.66 10.27 9.63 10.99 9.95 10.47
8 5.64 11.46 9.66 9.13 8.55 9.39 8.97
9 8.14 14.88 9.16 11.77 11.51 10.46 10.98
10 10.73 15.28 8.49 9.01 13.00 8.75 10.87
Averages Y Vo Yo Ya Y.
across
Replications 7.50 11.89 10.17 9.66 9.69 991 9.80
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Table 5. Simulation Responses Generated for Experiment 3 Using All Streams
Response
index k 1 2 1 2 Averages within:
Replication Block j Blocks Replications
Number i 1 2 7“, 7.1 Yi..
1 -2.88  -85.92 35.74 55.76 | 44.40 45.75 0.67
2 064 -5424 26.29 38.96 | -26.80 32.62 291
3 9.32 23.88 6.96 4.56 16.60 5.75 11.17
4 10.00 30.00 541 1.84 20.00 3.62 11.81
5 12.40 51.60 0.01 -1.76 32.00 -3.87 14.06
6 10.04 30.36 5.32 1.68 20.20 3.58 11.85
7 8.60 17.40 8.56 744 13.00 8.00 10.50
8 14.64 71.76 -5.03  -16.72 4320 -10.87 16.16
9 2096 12864 | -1925 42.00 7480  -30.62 22.09
10 20.52  124.68 | -18.26  -40.24 72.60  -29.25 21.67
Averages Yo Yo Y Y2 Y.
across
Replications 10.42 33.81 4.57 0.35 22.12 2.46 12.28

Table 6. Simulation Responses Generated for Experiment 4 Using One Stream

Response
index k 1 2 1 2 Averages within:
Replication Block j Blocks Replications|
Number i 1 2 Y. Y. Yi.
1 4.08 -87.36 9.82 -12.40 41.64 -1.29 -21.46
2 -1.44 -33.72 13.69 2152 -17.58 17.60 0.01
3 17.20 25.68 9.91 28.40 21.44 19.15 20.29
4 6.96 -6.00 28.63 -45.68 048 -8.52 -4.02
5 6.72 -26.16 0.01 18.80 -9.72 9.40 -0.16
6 -8.84 -101.04 35.20 248 -54.94 18.84 -18.05
7 9.28 71.76 1243 4.08 40.52 8.25 24.38
8 -1.44 -7.44 6.94 -3.92 4.44 1.51 -1.46
9 856 11568 244 38.32 62.12 20.38 41.25
10 18.92  130.08 -3.59 -5.84 74.50 4.71 34.89
Averages Yok Y 2 Y2 Y.
across
Replications 6.00 8.14 11.54 4.57 7.07 8.06 7.56
from model (57) as compared to the responses obtained in the first ~ by:

set of runs. The responses generated from the non-linear model in
(57) give the true relationship between the response of interest and
the input factors. However, the statistical analysis for this experi-
ment was conducted under the assumption that the true relationship
between the response of interest and the input factors is given by the
linear model in (51). Thus, since the only change from (51) to (57)
is the inclusion of the non-linear term, (x} ,xgj )Eim » this variation
must be due to the lack-of-fit in the model, and not the procedure
used to perform the simulation experiment.

Model (57) was also used to generate the responses for a fourth
set of runs, where the second stream, R,, was randomly selected
across design points. Model (57) again represents the true relation-
ship between the response of interest and the levels of the input
factors, and as before, the hypothesized metamodel will be given by
model (51). The responses are given in Table 6, and the cor-

A A A A
responding sample covariance matrix of B = (B, Py, B) is given

462.0000 462.5000 279.0000
] (59)

Cov(p) =[472.20w 506.7000 264.7000 | .
278.7000 264.7000 268.2000.

The correlation matrix for this experiment was identical to the one
for experiment 2, and is given in equation (55). The following 32
results were obtained from formulas (17), (23), (24), and (25):
1732.5160, T = 1662.8000, T = 1784.4520, and % = 1394.9030.
These results indicate a moderate increase in o, but. as expected. a
significant increase results in %f and %§ These relatively simple
simulation experiments have eloquently illustrated the appropriate-
ness for a measure of pure error in a simulation experiment. They
also show how a lack-of-fit of the hypothesized model tends to
distort the results of the statistical analysis.
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4. CONCLUSIONS

Clearly, the results of Section 2 together with the examples
discussed in Section 3 suggest that, in order to legitimize a proper
statistical analysis of the output responses from a simulation experi-
ment conducted under the Schruben-Margolin correlation-induction
strategy, at least one random number stream must be randomly
selected across all design points in the experiment. In practice, this
rule should be followed for any simulation experiment where
correlations are induced across design points by the methods of
common random numbers or antithetic variates. The obvious
question left unanswered is: For a given simulation model, which
random number stream(s) should be randomly selected across the
design points? This issue will be taken up in future work.
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