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ABSTRACT

First, deterministic simulation models are compared
with random simulation models and real-life experiments. In
deterministic simulation no mathematical statistics is needed
in the experimental design and in the Least Squares curve
fitting. Further analysis, however, becomes possible if certain
statistical models are specified for the fitting errors. In 1987
we proposed normally identically and indepently distributed
errors. Recently Sacks et al. proposed dependent errors with
a specific correlation structure. Needs for further research
are indicated.

1. INTRODUCTION

The unique characteristic of a deterministic simulation
model is that its response y is fixed, given the values of its
input variables in run i X = {X;j,XporrXy} (i=1,...,0). This
characteristic means:

var (y]x) = 0. 0

This property distinguishes these models from random simu-
lation models and real-life experiments. Random simulation
models use pseudorandom numbers; so different seeds pro-
duce different y values, in general. In the analysis of these
models, the pseudorandom numbers are treated as if they
were truly random numbers, which are distributed uniformly
and independently. Hence we view the response y as a ran-
dom variable with variance

@

Some authors assume that var(y|x;) is independent of x, so
var(y|x;) reduces to a constant (say) o°. We, however, prefer
to assume that the variance depends on the combination of
input values . So if an n x k experimental design matrix X is
selected, then each design "point" i has its own variance o* .
This variance can be estimated through replication; that is,
the simulation model is fed with different random numbers.
Other techniques for variance estimation do exist, but we
need not discuss them here; see [Kleijnen 1987].

Risk Analysis is an interesting combination of deter-
ministic simulation models and Monte Carlo sampling.
Examples of deterministic simulation are financial models
(which have become popular since spreadsheet software has
become widespread) and ecological models. These models
depend on a number of inputs that are unknown. Therefore
the user may specify a (prior) distribution of possible input
values; for example, a beta distribution. Monte Carlo sam-
pling means that the computer generates values from that
distribution, feeds those values into the simulation model,

var(y|x) = g(x).
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and generates output values, which are summarized in an
output distribution. Also see [Iman and Helton 1988].

In real life experiments repeated observations of the same
system generate different responses y, since the system ope-
rates in a noisy environment; that is, the environment is not
fully controlled and it perturbes the system. Experimental
design textbooks consider only this type of experiments, not
simulation experiments; see [Box and Draper 1987).

We emphasize that a random simulation model is not
completely different from a deterministic simulation model:
every time the random model is fed with the same input
combination x; and the same pseudorandom number seed,
the same response follows. This problem is "solved" by as-
suming that the pseudorandom number generator produces
truly random numbers, and that the seed selection does not
affect the distribution of these numbers.

So if a given deterministic simulation model is fed with
the input combination x, it always generates the same res-
ponse (say) y. In other words, a deterministic simulation
model provides a perfectly controlled world. Is mathematical
statistics still relevant in such an "ideal" world? This paper
tries to answer that question as follows. In Section 2 we shall
first show that basic ideas of the statistical theory of ex-
perimental design (originated by Fisher) still apply. The
simulation observations resulting from the experimental
design can be analyzed through Least Squares curve fitting
and "eye balling" of the results. Further analysis, however,
requires statistical assumptions. In Section 3 we shall present
the statistical model proposed in Kleijnen [1987]: the fitting
errors are normally, independently, and identically distri-
buted. Sacks et al. [1989a] replaced the independence as-
sumption by a stochastic process assumption. In Section 4 we
shall sketch future research needs.

2. DESIGN AND ANALYSIS WITHOUT STATISTICS

In deterministic simulation models the statistical theory
of experimental design should still be applied to select the
input combinations. For example, it is obviously not smart to
change two inputs (say) x, and x, simultaneously in the ex-
periment. And changing one factor at a time does not allow
the detection of any interactions among inputs. We also
point out that many Response Surface designs have been
derived under the assumption that noise can be neglected so
that only bias is to be minimized; see [Kleijnen 1987, p. 314;
Sacks et al. 1989b, p. 420).

In the analysis, however mathematical curve fitting and
"eye balling" may be used instead of statistical analysis (that
analysis includes regression analysis and Analysis of
Variance). So we may apply the mathematical criterion of
Least Squares to fit a curve to the simulation data; those
data consist of {x, y;} with i=1,..,n. That curve is a meta-
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model of the underlying simulation model; see [Kleijnen
1987]. To validate this metamodel, mathematical criteria can
be used such as the multiple correlation coefficient R2. We
prefer to predict the response for a new input combination
X;.1, and to "eyeball’ the relative prediction error 9,,,/y,,;
where §,,, is the value predicted by the metamodel and y,,,
is the response of the simulation model for the new input
combination. A refinement is "cross validation": delete com-
bination i, fit the metamodel to the remaining simulation
data {X, y,}; predict the deleted response through ¢,; and
"eyeball" the relative prediction error §,/y;; repeat this pro-
cedure for i = 1,..,n. Examples are provided by Kleijnen
and Standridge [1988] who discuss a deterministic simulation
of Flexible Manufacturing Systems (FMS), and Kleijnen et
al. [1990] who examine a deterministic ecological simulation.

Once the model as a whole is validated, the individual
Least Squares coefficients b; (j=1,..k) can be studied. In
order to determine which factors are most important, the
coefficients b; may be sorted, provided the factors are stan-
dardized; see [Bettonvil and Kleijnen 1989). If, however, the
user wishes to identify coefficients that are so small that they
actually reflect "noise", then mathematical statistics becomes
necessary, as we shall show in the next section.

The regression model can also be used to predict the
simulation responses at input values not contained in the
simulation data {X, y}. (In the validation stage we predic-
ted responses for the "old" input X.) Usually interpolation,
not extrapolation, is needed, since the simulation data are
based on an experimental design that includes extremal
values: the "experimental area" covers the "area of interest".
The predictors are

=X, b (€)
where X, denotes the m x k matrix of new input values ,m
> 1, and b is the vector of Least Squares estimators. These
predictors are computed faster than the simulation responses
y» = h(X;) are, where h(.) denotes the simulation model.
For example, in a study of the Rotterdam container harbor
we answered ad hoc management questions through the
metamodel; in the beginning we were not completely sure
that this approach was adequate, so we checked the predic-
tions by running the expensive (random) simulation model
overnight; see [Kleijnen et al. 1978].

To quantity the uncertainty of these predictions a statis-
tical model must be specified for the fitting errors e: (3)
yields

var(y,) = X, cov(b) X, (C))
where
cov(b) = (X’X)'X’ cov(e)X(X’X)™. )

In the next section we shall discuss statistical models for e,
which also specify cov(e) in (5).

Note that Sacks et al. [1989a] introduced a more com-
plicated predictor that has the nice property that at the
observed input combinations the predictor equals the ob-
served response: $(X) = h(X). In random simulation such
an equality is not expected, since the observed responses
have zero probability of being observed again when the
responses are continuous variables and new seeds are
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employed. Therefore we test whether E[9(X)] = E[h(X)];
see [Kleijnen 1990).

3. STATISTICAL ERROR MODELS

Kleijnen [1987, pp. 163-164] discussed why a statistical
error model may be appropriate in deterministic simulation:
"Since infinitely many combinations of simulation para-
meters [x].... are possible, there are infinitely many errors e.
The population of these errors has a specific variance, de-
noted by ... Now we sample the simulation parameters....
We may perform this sampling randomly or more or less
systematically.... in the metamodeling of deterministic simu-
lation we may model the independent variables as random
variables. Consequently, the regression parameter estimator
[b] being a function of x ... becomes random, and so does §
.. 50 that e = y - ¢ is random too ..."

Note that "random designs" were elaborately discussed
in Technometrics, back in 1959. In these designs the input
combinations are sampled by flipping a coin so P(x;=1) =
0.5 and P(x;=-1) = 0.5; see [Kleijnen 1987, pp. 321-323].

Recently Sacks et al. [1989a, pp. 41-47] modeled the
fitting errors "as a realization of a stochastic process in
which the covariance structure of [e] relates to the smooth-
ness of the response”. They further assumed that e is Gaus-
sian with zero expectation; if two design points are further
apart along one of the k axes, then the covariance of the two
fitting errors decreases exponentially. Their procedure is
computationally complex; it uses a supercomputer.

So Kleijnen [1987] proposed the same marginal distri-
bution as Sacks et al. [1989a] assumed. Kleijnen implicitly
assumed independent errors, whereas Sacks et al. postulated
a stationary stochastic process with a particular covariance
function. For simplicity’s sake we may stick to the model
with independent errors that underlies Ordinary Least
Squares (OLS). Sacks et al. s model, however, seems more
realistic, if the response surface is smooth. For, suppose the
error is positive for some x; in the k-dimensional space.
Suppose further that we wish to interpolate for x, + e,
which is a point "close” to the point x;. Then §(x;+¢€), the
response predicted by OLS, tends to underestimate the true
response h(x;+€). Sacks et al. ’s procedure does not have
that unattractive characteristic. Unfortunately they must
assume a specific covariance function; moreover, their com-
putations for that function are formidable.

A less fundamental discussion of statistical errors in
deterministic simulation can be found in Olivi [1984] and
Olivi and Pike [1981]. They distinguished two groups of
independent variables, namely controlled variables that are
supposed to be of major importance, and uncontrolled
variables of minor importance. They sampled the minor
variables, which resulted in experimental error. Similarly
Owen et al. [1989] considered "the response as a function of
the most important inputs, possibly with some noise due to
the other inputs".

4. FUTURE RESEARCH

In the tradition of Popper a scientific model should be
refutable. Therefore tests should be developed that allow
the user to reject the hypothesis that the fitting errors have a
specific distribution. In this case the hypothesis stipulates
independent normal errors or normal errors with a specific
covariance structure. Also see [Kleijnen 1987, pp. 178-179;
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Sacks et al. 1989b, p. 417).

The stochastic process specification introduced by
Sacks et al. [1989a] looks promising. Practitioners will pro-
bably apply this approach, once the conceptual and com-
putational details have been worked out. The “classical"
regression analysis and experimental design (based on in-
dependent errors) have already been applied to many simu-
lation experiments, as the many references in [Kleijnen1987,
p. 241] illustrate.

In practice, simulation models often have many inputs.
For example, Bettonvil [1990] investigated a deterministic
ecological model with 281 inputs. He assumed "white" noise:
normally, identically, and independently distributed errors.
Sacks et al. [1989a,b] limited their approach to small pro-
blems with, for example, six inputs; the computational bur-
den of problems with many inputs seems formidable.

We emphasize that metamodels have two goals: pre-
diction and explanation. For prediction purposes the meta-
model is a black box; the only question is: does the black
box predict "well'? Explanation means that the user gets
insight into the behavior of the underlying simulation model.
For example, Kleijnen and Standridge [1988, p. 261] repor-
ted that the final metamodel (after the original metamodel
was rejected) explained the behavior of the underlying
Flexible Manufacturing System: "Statistical techniques...
reduce the drawbacks of an empirical technique like simu-
lation, i.e.,... the regression metamodel... helped the authors
to better understand how an FMS works!". Sacks et al.
[1989a,b], however, concentrate on prediction.

The statistical analysis of deterministic simulation data
is controversial. Sacks et al. [1989b, p. 435] stated: "In earlier
drafts we did attempt to discuss these philosophical matters
[Bayesian and frequentist views] more fully, but we gave up
due to differences among the authors!" We did not discuss
the Bayesian viewpoint at all; Sacks et al. [1989b] did.
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