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ABSTRACT

This paper presents some experimental design
strategies for simulation studies involving the esti-
mation of quadratic response surfaces. Optimal design
plans are developed in four common second-order design
classes (central composite, Box-Behnken, three-level
factorial, and small composite designs) using a cri-
terion which incorporates both the bias and variance
of the predicted response variable. Three alternative
methods of assigning pseudorandom number streams to
design points are considered: independent streams,
common streams, and the simultaneous use of common and
antithetic streams in an orthogonally blockable exper-
imental design. Each method employs independent
streams for replications of design points.

1. INTRODUCTION

Response surface methodology (RSM) offers a useful
framework for the optimization of simulation models.
Fundamental to RSM is the assumption that low-order
polynomial models can be used to approximate the
relationship between a set of controllable input vari-
ables and a simulated response within restricted
regions of the operability space. Generally first-or-
der experimental designs, in conjunction with the
steepest ascent search procedure, are used to locate
the region containing the optimal response. Then, in
order to more accurately predict the system optimum,
second-order experimental designs are used to fit a
quadratic response function. Canonical and ridge
analysis of the quadratic surface enable one to locate
the optimum response within the current experimental
region.

The experimental design plans used in a simulation
study affect the accuracy of the results obtained in
the RSM optimization procedures. This paper focuses
on the choice of a design plan for fitting a quadratic
response surface model. In each of four common sec-
ond-order design classes, the levels of the input
variables which minimize the bias error in the pre-
dicted response variable are determined. Then, the
designs are augmented with the number of center runs
needed to minimize the variance of the predicted
response variable. In addition, three different
strategies for the assignment of pseudorandom streams
to design points are examined: independent streams,
common streams, and the assignment rule blocking
strategy [Schruben and Margolin 1978]. The assignment
rule strategy requires the use of an orthogonally
blockable experimental design and each of the design
classes considered permit this type of blocking.

2. SECOND ORDER RESPONSE SURFACE DESIGNS

In the absence of theoretical models, RSM proce-
dures seek to determine the optimum system response
through a sequential exploration of the operability
region. In the early stages of an RSM study, first-
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order designs are used to estimate the parameters of a
linear response function. The model coefficients pro-
vide gradient information used to locate the region
containing the optimum. In the later stages of an RSM
study (after the optimum region has been tentatively
located), second-order designs are used to estimate
the parameters of a quadratic response function. The
fitted second-order response model can be written as
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where y denotes the fitted response variable, the x's
denote the input variables of the simulation model,
and the b's denote the ordinary least squares estima-
tors of the model parameters. The abilities of canon-
ical and ridge analysis to predict the optimum
response depend on the accuracy of the estimated model
parameters as well as the correctness of the assumed
polynomial model. The accuracy of the model coeffi-
cients can be measured by their variances and the cor-
rectness of the assumed model can be measured by the
bias in the model coefficients.

The variances of the coefficients in a second-or-
der response function only depend on the experimental
design plan, whereas the biases in the model coeffi-
cients also depend on the form of the true response
function. It is reasonable to assume that any bias in
the estimated model coefficients would largely be due
to unfitted terms of order one degree higher than
those in the fitted model. For example, if the fitted
model is quadratic, then one would assume that unfit-
ted third-order terms may be biasing the fitted model
coefficients. The cubic response function which may
be needed to adequately model the simulated response
can be written as
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where y denotes the simulated response variable,
B's are the unknown model parameters, and
random error term.

The criterion used in developing the optimal sec-
ond-order design plans incorporates possible third-or-
der bias in the estimated model coefficients. Incor-
poration of bias into the criterion is particularly
important in RSM studies because the fitted model rep-
resents an approximation to the unknown response func-
tion and, therefore, the fitted model coefficients are
likely to be biased. A mean squared error criterion
developed by Box and Draper ([1963], which takes into
account both the bias and the variance of the pre-
dicted response variable, is the basis for the design
criterion used in this research. The variance error,

the
e is the
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unlike the bias error, does not depend on the order of
the true response model; the variances of the model
coefficients are determined by the experimental design
plan. In this paper, four common second-order design
classes (illustrated in Appendix A) are considered:
central composite, Box-Behnken, three-level factorial,
and small composite designs.

The central composite designs (CCDs) are the most

widely used second-order response surface designs
[Myers et al. 1989], consisting of two-level factorial
designs augmented with a set of axial points. The
CCDs permit orthogonal blocking with appropriate

choices for the levels of the axial design points.
Box-Behnken designs (BBDs) are a class of three-level,
second-order designs formed by combining two-level
factorial designs with incomplete block designs
[1960). These designs arc less flexible than the CCDs
but require the use of only three levels of each fac-
tor, as compared to five for the CCDs. The k=3 BBD
does not block orthogonally and therefore is not exam-
ined. The class of three-level factorial designs
(FACs) utilize k factors at each of three levels and
can be partitioned into three orthogonal blocks. The
FACs require a large number of experimental runs com-
pared to other second-order design classes. The final
class of second-order designs, the small composite
designs (SCDs), are economical designs utilizing the
minimum allowable number of experimental runs. Hart-
ley's SCDs [1959]) use fractional portions of the CCD
designs and Draper's SCDs [1985] use incomplete Plack-
ett-Burman designs in place of the factorial portion
of the CCDs. Hartley's SCDs are examined for k=3,4,6
factors and Draper's SCDs are examined for k=5,7 fac-
tors.

3. THE DESIGN CRITERION

Protection against model inadequacy is particu-
larly important in response surface exploration. Box
and Draper [1963] have developed a mean squared error
design criterion which provides protection against
bias error due to model inadequacy. The criterion,
termed the MSE of Response, calls for minimizing the
average, normalized mean squared error of the pre-
dicted response variable. The MSE of Response,
denoted by J, is the sum of the variance error and the
squared bias error, defined as
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where N is the number of experimental runs, Q,'is the

volume of the recgion of experimentation, 42 is the

experimental error variance, Yy, is the predicted
u

response at the data location x, (u=1,...,N), R is the

centered and scaled region of experimentation, and V
and B denote the variance and squared bias components
of J.

The MSE of Response can be conveniently defined in
terms of the region moments of the design when the
response function is partitioned into two parts, as
follows

y=Xif + Xaflz + 2 )
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where Xif1 includes the first- and second-order terms
in the fitted model and X:f2 includes the unfitted
third-order terms. Similarly, the fitted second-order
model can be written as
§ =X (5)

and the predicted value of the response at uth design
point becomes

A .

Yo = Bl 6
The region moment matrices of the response surface are
defined as

up = ,[R 5 & dx
uy = £, L X' % dg
My = Q, L X2’ 52 dx
Utilizing the above region matrices, the MSE of

Response criterion shown in equation (3) becomes the
minimization of
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where the variance-covariance matrix of the ordinary
least squares estimators of the fitted model coeffi-
cients is

Var[b,] = (X1 X))' X, V Xi (X", X)) ' e? (8)
and A is the ordinary least squares
defined as

alias matrix,

A = (X1 X)X X, 9)

where
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V is a matrix of the correlations between pairs of
simulated responses, defined as

1 pn
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(11)
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and

A =tV
ar(y) =o ) (12)

The form of V depends upon the pseudorandom number
strcams assigned to the experimental design points
(discussed in the following section).

Under ordinary least squares parameter estimation,
the bias component of J is independent of V and,
therefore, does not depend upon the pseudorandom num-
ber stream assignments. The bias component can be
minimized through the selection of an appropriate
scaling factor and, subsequently, the minimum bias
designs can be augmented with an appropriate number of
center runs in order to minimize the variance error.
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Exact minimization of the variance error is not possi-
ble, however, due to the integer restriction on the
number of center runs. The variance error is a func-
tion of the random number stream assignments (through
V) but, because the number of center runs must be an
integer value, the optimal design plans are the same
for each of the assignment strategies.
4. PSEUDORANDOM NUMBER STREAM ASSIGNMENTS
In addition to the choices of design class, number
of center runs, and levels of the design points,
experimentation on a stochastic simulation model
involves the assignment of pseudorandom number streams
to each design point. Three basic alternatives for
assigning streams to design points are: different
streams, identical streams, and antithetic streams.
However, simultaneous usc of the three alternatives
results in a multitude of assignment strategies.
Schruben and Margolin [1978] investigated 49 strat-
egics using two-level factorial designs and found the
following three strategies to be of particular impor-
tance:

* Independent streams (denoted IR),

* Common streams (denoted CR), and

¢ Assignment rule blocking strategy (denoted AR).

The IR strategy utilizes different streams of
pseudorandom numbers for each stochastic model compo-
nent on each simulation run, or me*N streams, where m
represents the number of stochastic model components
and N represents the number of simulation runs
(design points). The CR strategy uses different
streams for each stochastic model component, but uses
a common set of streams on each simulation run,
thercby requiring only m diffcrent streams. The AR
strategy uses common streams within orthogonal blocks
and antithetic streams for design points in opposite
blocks. The antithetic streams are 'one minus" the
uniform (0,1) deviates gencrated by the m common
streams. For the AR strategy, designs which partition
into an odd number of orthogonal blocks utilize inde-
pendent streams in the unpaired block. For the CR
strategy, replicated design points utilize independent
streams, and replicated design points within blocks
utilize independent streams in the AR strategy.

Schruben and Margolin [1978] note that the use of

independent, common, and antithetic pseudorandom num-
ber streams, respectively, for pairs of simulation
runs, tends to result in simulated responses that are
independent, positively correlated, and negatively
correlated. Further, in the development of the IR,
CR, and AR strategies, these authors assume that the

positive correlations between responses generated with
common streams is equal to P., and the negative corre-
lation between responses generated with antithetic
streams is equal to —p_. The relationship between the
magnitudes of the correlations, which is consistent
with empirical findings, is
0<p-<p.<1.

Under these assumptions, the correlation matrix shown
in equation (11) can be written as follows (for the
IR, CR, and AR strategies):

(13)
Lﬁn = Iy
Ven = In+ p,un’ —p, U (14)
Vie = In + (p—p)uw + %(p+p)yy — p U  (15)

whera Iyis an NxN identity matrix and U is an NxN
diagonal matrix of the vector u, whose ith element is
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if

uy =0 independent random number streams are
used for the ith design point,
=1 if a common or antithetic random number
streams are used for the /ith design point,
and V is an Nx7 vector whose ith element is
vy = 1 if a common random number streams are used
for the ith design point,
= 0 if independent random number streams are
used for the i/th design point,
= -1 if antithetic random number streams are

used for the /th design point.

Incorporation of these three correlation matrices
(also shown in Appendix B) into the equation for the
MSE of Response enables a comparison of the optimal
design plans. Since the bias error is not a function
of the correlation matrix, the optimal designs are
compared in terms of the variance error alone.

5. OPTIMAL EXPERIMENTAL DESIGNS

Second-order designs which minimize the variance
component of the MSE of Response, given minimum bias
components, are developed in four design classes for
models with two through seven factors, as follows:

1. Central Composite Designs (CCDs)

a) Full factorial replications k=2, 3,44,5
b) One-half fractional factorials k=6, 7
2. Box-Behnken Designs (BBDs) k=4,5,7
3. Three-level Factorials (FACs)
a) Full factorial replications k=3, 4, 5
b) One-third fractional factorials k =6, 7
4. Small Composite Designs (FACs)
a) Hartley designs (SCD-H) k=3, 4, 6
b) Draper designs (SCD-D) k=5, 7.

The BBDs and FACs can be partitioned into orthogo-
nal blocks regardless of the levels of the design
points, but the CCDs and SCDs require specific levels
of the axial design points, relative to the factorial
design points (assumed scaled to *1), in order to
block orthogonally. The required axial levels are
shown in Table 1.

Table 1. Levels of the Axial Design Points Required
for Orthogonal Blocking in the CCDs and
SCDs
DESIGN Values of « in the CCDs
CLASS
k=2 | k=3 | k=4 | k=5)| k=6 | k=7
CCD 1.414 | 1.764 | 2.058 | 2.309 | 2.511 | 2.717
SCD - 1.673 | 2.000 | 2.253 | 2.473 | 2.691

The bias component of the MSE of Response can be
minimized through the use of an appropriate scaling
factor, denoted g. For cach region of cxperimenta-
tion, the design points are generally scaled such that
+1 and -1 represent the high and low levels of each
factor. In order to protect against bias due to model
inadequacy, these #*1 levels need to be scaled by a
factor of g, which requires moving the design points
closer to the center of the experimental region. The
optimal values of the scaling factor, for both spheri-
cal and cuboidal regions of interest are shown in
Tables 2 and 3.
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Table 2. Min B Values of the scaling factor in a
Spherical Region
DESIGN Min-B Values of g
CLASS
k=2 | k=3 | k=4 { k=5 | k=6 | k=7
CCD .58 .48 .42 39 .36 34
BBD - - .61 .62 - .52
FAC - .55 .50 46 .43 .40
SCD - .52 42 .39 .36 .34
Table 3. Min B Values of the scaling factor in a
Cuboidal Region
DESIGN Min-B Values of g
CLASS
k=2 k=3 | k=4 | k=5] k=6 | k=7
CCD .68 .64 .63 .62 .61 .61
BBD - - .89 .98 - 93
FAC - 74 73 73 .72 72
SCD - 66 .63 .62 .61 61

After minimizing the bias component of the MSE of
Response, the variance component can then be minimized
by augmenting the design with an appropriate number of
center runs, Nc. The optimal number of center runs
(which have been rounded to the nearest integer) for a
Min-V | Min-B design are shown in Tables 4 and 5.

Table 4. Min-V | Min-B Number of Center Runs in a
Spherical Region
DESIGN Min-V | Min-B Values of Nc
CLASS
k=2 | k=3 | k=4 | k=5 k=6 | k=7
CCD 2 2 2 3 2 3
BBD - - 2 3 2
FAC - 0 0 0 0 0
SCD - 1 1 1 1 2
Table 5. Min-V | Min-B Number of Center Runs in a
Cuboidal Region
DESIGN Min-V | Min-B Values of Nc
CLASS
k=2 | k=3 | k=4 | k=5 | k=6 | k=7
CcCcD 2 2 3 4 3 4
BBD 3 3 3
FAC - 0 0 0 0 0
SCD - 2 2 2 2 2

6. PERFORMANCE RESULTS

In order to compare the performance of the four
design classes, the variance component of the MSE of
Response is computed for the three assignment strat-
egies. The bias component of the MSE of Response is
independent of the assignment strategy, as indicated
in equation (7), and therefore the performance of the
optimal design plans are evaluated in terms of the
variance component of the MSF of Response.

Figure 1 illustrates the relative performance of
the four design classes using the CR strategy (common
streams) for k=5 factors. (Similar results are
obtained for k=2,3,4,6,7.) The results indicate that
the CCDs and BBDs tend to perform the best of the four
design classes. However, when the magnitude of the
induced correlation betweecn pairs of simulated respon-
ses is greater than 0.6, the SCDs perform better than
the CCDs and BBDs. Figure 1 also indicates that the
CR strategy is inferior to the IR strategy (indepen-
dent streams) for the CCDs, BBDs, and FACs. (The IR
strategy is illustrated when the induced correlation
is equal to zero.)
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Figure 1. Optimal Values of V for k=5 Min-V | Min-B
Designs Usiug the CR Strategy in a Spheri-
cal Region

The performance of the four design classes under
the AR strategy (assignment rule) is shown in Figures
2 and 3. The horizontal axis represents the magnitude
of the induced positive correlation between responses
within orthogonal blocks. The upper lines of the tri-
angular regions correspond to induced negative corre-
lations of zero, and the lower lines of the triangular
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regions correspond to equal positive and negative cor-
relations. Similar to the results for the CR strat-
egy, the CCDs and BBDs perform the best when P.< 0.6
and SCDs perform the best when P.> 0.6. However, with
the exception of the FACs, the AR strategy tends to
perform better than the IR strategy.

|

T T T T T T T

0.0 0.1 0.2 03 0.4 0.5 0.6 0.7 08 09
P+
Figure 2. Optimal Values of V for k=4 Min-V | Min-B
Designs Using the AR Strategy in a Spher-
ical Region
The results indicate that medium-size designs

(CCDs and BBDs) tend to be preferred to the large FACs
for all three assignment strategies. The smaller SCDs
are preferred to the CCDs and BBDs only if the assign-
ment strategy results in correlations of at least 0.6
between simulated response pairs. In comparing the
use of the three assignment strategies on the optimal
Min-V | Min-B designs, the CR strategy tends to per-
form the poorest and the AR strategy tends to perform
the best in terms of the variance component of the MSE
of Response. In addition, the performance of the AR
strategy improves as the magnitudes of the induced
correlations increase.

7. DISCUSSION

Previous research on quadratic response surface
estimation by Hussey et al. [1987] reached similar
conclusions concerning the relative performance of the
assignment strategies. These authors compared the IR,
CR, and AR strategies using designs which minimized
the variance component of the MSE of Response. This
current research indicates that there should be even
greater emphasis placed on the importance of the AR
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strategy when bias is incorporated into the develop-
ment of an optimal design plan; the AR strategy was
found to be superior over a wider range of induced
correlation magnitudes than was found in the Hussey et
al. study.

V.

o B T A T T T T T T
90 01 02 03 04 o0s 06 07 08 09
P+
Figure 3. Optimal Values of V for k=6 Min-V | Min-B

Designs Using the AR Strategy in a Sphere

ical Region

The findings presented here clearly indicate that
carefully planned experimental designs can substan-
tially improve the estimation of quadratic response
surface models. Such improvements in the prediction
of response should inevitably lead to improved effi-
ciency in the estimation of the optimum operating con-
ditions of the simulated system.
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Draper's Small Composite DNesign with k=5 Factors

APPENDIX A. EXPERIMENTAL DESIGN PLANS

'
B3 T T T~ OO0 O ¥
. +H
.
.
.
.
R T T T T 200 80
. H
'
'
f
. '
g3 T ro o sc o
: +H
.
.
.
. H
f
.
.
S e et e ey e et e et e ot — '
3 - - - - - L so o oo
. H
.
[}
[a]
v
-
o
s o
5 x
oo _ !
i .
k M e e — - e — ‘
. 3 - T~ 99000 ¥ o
5 '
b .
Z '
c .
o0 i e OO B o oo o
. (¥ . N D
o .
] .
(] v
.
e .
.m m.|.. lllllll .a.ﬂooooo
o
a,
3
<}
o
—
©
i
+
=
(3}
o

5 Factors

Box-Behnken Design with k

Three-level Factorial Design with k=3 Factors

Number

of Points

Xs

X

p.$3

X

X2

2.9

xg

—_,D et O - O —
» . '

O D — O —
v . .

TTTeeem——

L

Om——=~—0—~0 =0

T e ~ToeTre

N=46

8o
X
co—~o—~0 | o0 —-—=0co0©
+H +H . H H
O —~0co -0 ' ©o—~0 0o ~c
+ H o +H +
P o —~0o oo
o —~0o 0o o ,
+ H coH +
! —m o oo —~c
—o —~ocooc o
H H : + +
—co—-—0co0 .20 —~0—~0o
+ + ! +H H
1
[a}

3 Factors

Hartley's Small Composite Design with ki

xg

OO OO ¥ ¥ O

OOG.GOOO

342



Some Optimal Simulation Designs for Estimating Quadratic Response Surface Functions

APPENDIX B. CORRELATION MATRICES
The matrix form of equation (13), the correlation
matrix for the IR strategy, can be written as

10 0

For the CR strategy, the response vector has been
partitioned into two parts; the first part contains
responses generated with common streams and the second
part contains responses generated with independent
streams (replicated design points). The matrix form
of equation (14), the correlation matrix for the CR
strategy, can be written as

r —/
A
P, 1 .
. 1 ’ : 0
p\’-
V= P, P, 1
0 I
— -

For the AR strategy, the response vector is parti-
tioned into three parts; the first contains responses
within one orthogonal block (generated with common
streams), the second contains responses within the
opposite block (generated with antithetic streams),
and the third contains responses gencrated with inde-
pendent streams (replicated design points and any
responses in a third block). The matrix form of equa-
tion (15), the correlation matrix for the AR strategy,
can be written as

Loe [
. 1
I -p_ 0
[
[N [
LER ’.
Vin= -» oo 0
: e
e, I !
0 0 1
L -
where — p_ is a matrix in which each element is equal to —p_ .
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APPENDIX C. SCALING FACTORS

FACs

Scaling Factor (g

03% T ™ T T T
2 3 4 s 6 7
Number of Factors )
Figure C.1. Optimal Values of the Scaling Factor for
Min-B Designs
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