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ABSTRACT

The Rao-Blackwell theorem is applicd to show that
the method of control variates can be effected either in
the standard way, or by means of an equivalent
conditional sampling procedure where the control variates
are, in essence, stratified. This alternative method, which
we call conditional simulation, is particularly convenient if
a parametric model is to be fitted to the simulation
response. An application which estimates the saturation
point of a single server queue is described.

1. INTRODUCTION

The Rao-Blackwell theorem is a well known result
of mathematical statistics. ~We show that it can be
applied to examine the method of control variates. The
theorem gives rise to two distinct approaches to how
control variates can be utilized. One is the traditional
method which is essentially that of linear regression (sce
for example Venkatraman and Wilson, 1986). The second
can be interpreted as the stratified sampling of control
variates. We give conditions under which the two
methods are equivalent, when they give equal variance
reduction.

From the practical viewpoint the second atpproach of
using stratified sampling has a number of features of
interest. It allows simulation runs to be carried out
conditional on control variates being set equal to selected
prescribed values. Arguably this is more in the spirit of
what a user would really like to do in a simulation. For
example in a single server queue, it may be of interest to
examine the queue’s behaviour at certain prescribed traffic
intensities. Conditional sampling would call for the sample
traffic intensity to be prescribed and then the simulation
run to be made conditional on the traffic intensity being
set equal to this given value. We call this method of
simulation conditional simulation.

A complementary aspect of this approach is to
utilize a parametric model to try to define the response
of a simulation more precisely. This could be done with
the usual method of control variates, but the conditional
simulation approach allows thc regressor function to be
thought of as a fixed known function rather than being
random.

In the next Section we describe the underlying
theory. In Section 3 we describe some sampling schemes
which can be used to control the sampling of traffic
intensities, when inter-arrival and service times are gamma
distributed.  An application to the M/M/1 queue is
considered in detail.

2. THEORY
Suppose that a simulation run yields a response Y

and a control variate X which we can assume to be
related by the equation

Y=1X+12 21
where 7 = cov(X,Y)var(X); T will usual)lgl be unknown.
We shall write uy for E(X), oy? for var(X), and so on,
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for convenience. Assume also that N independent
simulation runs are made yielding the observations (Xj,
Yi)i=1,2 ., N. The objective is to estimate py, the
mean of Y, from these observations.

Much of what follows can be developed without
additional assumptions, but for clarity we shall assume
initially, if the simulation runs are allowed to become
long, that asymptotically X and Y become jointly normally
distributed.

Now recall the Rao-Blackwell theorem (see Fraser,
1967 for example):

Theorem. Let Yy, i = 1, 2, .., N be a random sample

from a distribution with density fy(8) and let 8, estimate
8,, the first component of 8. Suppose T is a sufficient
for 8, and let &, = E(8,|T). Then var(s,) < var(8,).

The theorem is usually stated under the additional
condition that 61 is unbiased, when 51 is also unbiased;

<

S

but this is not strictly necessary.

We apply the theorem to (2.1) under the
assumption:
(A) X,Y are jointly normal with uy, ox®, T known.
Theorem 1  Under assumption (A):

Var(zy) ¢ Var(Y) (22)
where
wy = E(Y1Z) = Y - (X - uy).

Proof Under assumption (A) the only unknown

parameters are py and oz?; Z is sufficient for these. If we
set ©, = py and apply the theorem to 8, = Y we get
(2.2) immediately. To verify the last part we have:

8, = E(§,12)
- Ey(Y12)
= By(1X + Z1Z)
=Tuy + Z (23)
=Y - (X - wy),

as required. . u]
The estimator 8, is clearly the conventional control
variates estimator.
The condition that T be known can be relaxed at

this stage on noting that if we replace T by an estimator
7 with bias Op(N™*) and variance also Op(N™*), then the
asymptotic distribution of 6, remains unchanged. Thus,
for example, the least squares estimator for 7 would do.
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There are two points to note about the preceding
result.  Firstly it works by “integrating out" the variation
in the control variate X.  Secondly it does this from an
"undoctored” random sample. We now show that in
situations where the sampling of X can be controlled, we
can achieve the same cffect by means of stratified
sampling.

Theorem 2 Let (¢4, Y;), i = 1, 2, .., N be a sample
where the ¢;’s are fived. Define

by =Y =1t 42 (2.4)

Then under assumption (A) and if T o= the

distributions of ‘A‘Y and ;‘Y are identical.

Proof: Under assumption (A), and if § = py, then gy is
identical to (2.3) and the result follows.

my,

u]
uy can be achieved in

In practice the condition &t
at least three separate ways

(M1) Set t; = uy i

1,2 .,N

(M2) Use a fixed set of ¢; values which in effcct make a
numerical quadrature of [ xfy(x)dx so that ¢ = py.

(M3) The analogue of M2, but carried out by stratified
sampling from the distribution of X. In this case
carc is needed to ensure that Var() = o(N"*) so
that the asymptotic distribution of fLY is not
altered.

In selecting which of the three options to use it is
important to take account of how the overall method
should be implemented and the effect of assumption (A)
not being exactly satisfied. In this respect option M3 is
best as stratification of X will not alter the distribution of
Y so that uy will be unbiased whether (A) holds or not.
In contrast M1 does require the exact independence of X
and Z to work without error. However M1 does allow the
runs to be pinpointed at the control variate value of most
immediate interest. A good compromise would therefore
seem to be option M2. A set of ¢; values can be
prescribed allowing conditional simulation at selected
(interesting) values of the control variate.

A natural adjunct of this idea is to fit a parametric
model to the response variable treating the control
variable as, in cffect, a deterministic independent variable
on which Y depends. Thus we assume

Y

n(X,8) + Z(8). (2.5)

We make the runs using non-random quadrature of
X, and estimate @ using lcast squares. The advantage of
this approach is that it allows for much more specific
models to be tried in characterizing the behaviour of Y.
An example occurs in the estimation of the traffic
intensity at which a queueing
becomes unstable.
next Section.

3. A QUEUEING EXAMPLE

system saturates and
We discuss such an example in the

To illustrate the ideas of the previous section we
consider the M/M/1 queue with Poisson arrivals, rate ),
and exponential service times with parameter p. We wish
to estimate the average waiting time W in the system
(including service) of a customer, and see how it depends
on the traffic intensity p. The known standard result is
that E(W) = (x - 2)7*. We pretend not to know this
and examine its estimation by conditional simulation of n
customers.
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Before describing how each simulation run is to be
done it will be necessary to gather together some
properties of the gamma distribution. ) )

Let t;, i = 1, 2, .., n be the inter-arrival times and
s;» i = 1, 2, ., n the service times of the n customers.
Let

(3.1)
The T and pS both have the gamma distribution G(n)
with pdf

n-1

fg(x, n) = e

I(n)

X

, X > 0. (3.2)

Moreover we have:
Lemma
Let R have the beta distribution Be(n,n) and C the
gamma distribution G(2n), with R and C independent.
Then
AT = C(1-R) and ¢S = CR

are independent G(n) variates.

Proof This is a standard result of gamma and beta
variates (see Aitchison, 1963, or Rao 1973, for example),
obtainable by transforming the joint distribution of R and
C to that of AT and S. 5]

Sampling R (and C) and then forming »T and &S in
effect allows the sample traffic intensity

R

(1-R)

-\
p =~
1
to be controlled by controlling R.

Using this result the basic conditional simulation run
may be arranged as follows:

(i)  Generate R from Be(n,n).
(i)  Generate C from G(2n).
(i)  The sums of the inter-arrival and service times can
then be obtained as
T =C>A-R)» and S = CR/u
(iv)  The individual t;’s and s;’s are then obtained as

independent G(1) variates t;', s;' i=1, 2 .., n
which can then be rescaled (see éhcng, 1984) as

ty

t.
1
):[i'

. T,

This_conditional gencration of the t's and s’s is
distributionally exact.

Sampling of R and C can be controlled if they are
generated by the inverse probability transform method. If

Fr and F¢ are the cdf's of R and "C respectively then we
can generate R and C using

R = Fp™'(V)

where 0 < U, V < 1.

The inverse distribution function Fp™* can be
computed using the algorithm given by Cran, Martin and
Thomas (1977). However for large n, the distribution is

C=F'(V)
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very closely approximated by the normal with mean cqual
to % and variance equal to [4(2n + 1)]™*. We can then
use the Hastings approximation to the inverse of the
ngrmal cdf as given by Abramowitz and Stcgun (26.2.23,
1965).

)For the inverse distribution function Fc™!' we solve
the equation

Fc(C) =V

for ¢ using Newton-Raphson iterations using the mode of
the density ¢, = 2n-1 as starting value (see Devroye,
1986). F. can be computed using the algorithm AS239
given by $hea (1988).

As only one value of R and C is needed in each
run, the added expense of generating these in this way
rather than by library routines is negligible.

The above method allows a block of runs to be
made with preselected values of R and C using any of
the methods M1, M2 or M3 of the previous section.

As an illustration we consider method M1 where R
and C are set at their mean values in each run of the
block. Table 1 gives the mean and variance estimates
from each of three blocks of a hundred runs each, with
each run simulating 5000 customers. For comparison the
Table also gives the mean and variance of three blocks
where R and C are independently gencrated from their
respective population distributions. The variance reduction
is greater than that reported by Morgan (1984) using
antithetic varietes.

As a second example we consider method M2 with
preselected values of R and C. We use N (m-1) 2
combinations of R and C:

(R;,C)) : Ry = Fg~i(i/m), C; = Fy™*(j/m), 1<i, jem-1,

Table 2a gives the values of W corresponding to 81 runs
where R and C take cach of 9 different values (viz where
m=10).

)The average of the W’s can be used to estimate
E(W), however we consider instead their use in estimating
the saturation point of the qucue by fitting a parametric
model to the response. As with any procedure of this
sort there is the possibility of biasing crror occurring
through incorrect model seclection, and this has to be
offset against the benefits of fitting a model with

Table 1.

The Sample Means and Variances of 100 obse

structure. In our example we illustrate by fitting the
model (2.5) with X = (R,C) and

6,(1- (8,9
E(l - 925)

7 = A\R/[£(1-R)], is the sample traffic intensity and
I un/(CR), is the sample service rate, and
e =(8, 8, 0, is the vector of parameters (o be
estimated. The form of n has the correct general
behaviour in that, if 6,5 < 1, n remains finite as n -~ =,
but n ~ @ as n » = when 8,5 > 1. Thus in effect o,
estimates the saturation level of the queue. Functionally n
does not have the correct form for the case when
8,5 > 1 but the inclusion of the additional parameters 6
and @, builds, hopefully, some tolerance into the modef.
A more sophisticated model would perhaps incorporate
different functional forms for n depending on whether 6,5
is less than or greater than 1.

A least squares fit gave

n(R,C;8) =

6 = (.878, 1027, 1.100)

and the fitted function, 7, is tabulated in Table 2b
together with the residuals in Table 2¢. The value of 6
estimates the equilibrium expected value of W as

- . 878
EW) = 1oom
compared  with  the  known  exact value of

E(W) = (& - 2™

In conclusion we remark that the above method
offers clear advantages over straight replication where N
independent but identical runs are made. By conditioning
on control variates it allows these to be treated like
deterministic regressor variables so that simulation runs
can be done at prescribed control variate values. This
extends naturally to the use of parametric models for the
mean of the response of interest. This yields additional
variance reduction as the fitted regression will have less
variance than individual observations, and moreover allows
for a more insightful interpretation of the response
behaviour through the paramctric model.

rvations from the

simulation of an M/M/1 queue starting empty, »=0.8, u=1. Each
observation is the average waiting time of 5000 customers.
Three sets of results are given, each for the case when the
runs are independent, and for the case when method M1 is

used.
Independent Runs
Mean Variance
5.02 .337
5.03 . 489
4.92 .329
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Runs using Method M1

Mean Variance
4.93 .135
4.94 . 182
4. 86 . 160
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Table 2. Average Waiting Times of 5000 Customers in an M/M/1 at 81 Different Combinations of Values of the Control
Variates R and C. 2=0.8, p=1.

(a) Observed Average Waiting Times

C
9872 9916 9947 9974 10000 10025 10052 10084 10028
R
0.494 4.50 4.17 3.93 4.50 4.13 4.37 4.26 4.44 4.21
0.496 4.80 5.03 4.42 4.04 4.83 4.59 5.03 4.33 5.66
0.497 5.33 4.26 4.45 3.97 5.70 5.35 5.02 4.76 5.19
0.499 4.80 4.93 4.57 4.99 5.20 4.57 4.16 4.78 4.81
0.500 4.35 4.81 4.85 5.48 4.64 4.63 4.47 4.14 4.79
0.501 5.79 5.21 4.49 5.28 5.82 5.04 5.17 4.78 4.91
0.503 4.49 5.31 5.78 5.00 4.71 4.85 5.26 5.25 5.10
0.504 4.73 6.17 4.79 5.08 4.79 5.31 4.75 5.21 4.96
0.506 4.83 5.74 6.01 6.26 8.74 5.03 5.27 5.82 6.10
(b) Fitted Model
C
9872 9916 9947 9974 10000 10025 10052 10084 10028
R
0.494 4.31 4.32 4.34 4.35 4.36 4.37 4.38 4.40 4.42
0.496 4.48 4.50 4.52 4.53 4.54 4.55 4.57 4.58 4.50
0.497 4.62 4.64 4.66 4.67 4.68 4.69 4.71 4.72 4.74
0.499 4.75 4.77 4.78 4.80 4.81 4.82 4.83 4.85 4.87
0.500 4.87 4.89 4.91 4.92 4.93 4.95 4.96 4.98 4.00
0.501 5.00 5.02 5.04 5.05 5.06 5.08 5.09 5.11 5.13
0.503 5.15 5.17 5.19 5.20 5.21 5.23 5.24 5.26 5.28
0.504 5.33 5.35 5.37 5.38 5.40 5.41 5.43 5.44 5.47
0.506 5.60 5.63 5.65 5.66 5.68 5.69 5.71 5.73 5.75
(¢) Residuals
C
9872 9916 9947 9974 10000 10025 10052 10084 10028
R
0.494 0.19 -0.15 -0.41 0.15 -0.23 0.00 -0.13 0.05 -0.21
0.496 0.32 0.53 -0.09 -0.49 0.29 0.04 0.46 -0.25 1.06
0.497 0.71 -0.39 -0.20 -0.80 0.02 0.65 0.31 0.04 0.45
0.499 0.05 0.16 -0.22 0.19 0.39 -0.25 -0.67 -0.07 -0.06
0.500 -0.52 -0.08 -0.06 0.56 -0.29 -0.32 -0.49 -0.84 -0.20
0.501 0.79 0.18 -0.55 0.23 0.76 -0.03 0.08 -0.33 -0.22
0.503 -0.66 0.14 0.60 -0.20 -0.50 -0.37 0.02 -0.00 -0.18
0.504 -0.60 0.82 -0.58 -0.30 -0.61 -0.10 -0.67 -0.23 -0.50
0.506 -0.77 0.11 0.36 0.60 0.06 -0.66 -0.43 0.10 0.35
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