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ABSTRACT

In the design of flow networks it is desirable to assess the
incremental gain in network flow permitted by increasing the
flow capacities of one or more components of the system.
Although a well-established methodology exists for doing this
for a deterministic system, probing this question for a
stochastic flow network encounters many problems not present
in the deterministic case. This paper provides a Monte Carlo
sampling plan for investigating this issue. It allows one to con-
duct a sensitivity analysis for a variable upper bound on the
flow capacity of a specified arc where the individual arc flow
capacities are all random. The plan has two notable features. It
permits estimation of the probabilities of a feasible flow for
many values of the upper bound on the arc capacity from a
single data set generated by the Monte Carlo method at a
single value of the upper bound. Also, the resulting estimators
have considerably smaller variances than crude Monte Carlo
sampling would produce in the same setting. The success of the
technique follows from the use of lower and upper bounds on
each probability of interest where the bounds are generated
from an established method of decomposing the capacity state
space.

1. INTRODUCTION

Designing a flow mnetwork often calls for evaluating
several alternative network configurations to decide which one
best meets a specified objective. For example, given a node set
A one may require a network to realize a flow rate of at least
d from a source node s to a terminal node ¢ (s,t€.#) where
the same set of arcs £ holds for each alternative design but
with different flow rate capacities on each alternative for a
particular arc e. Suppose that arc capacities are random and,
in particular, that arc e has capacity ¢ > 0 with probability
P,y and zero capacity with probability p , = 1-p, . Then
g(d,c), the probability that a feasible flow exists when arc e
has an upper capacity level ¢, provides one measure of
performance and one may be interested in evaluating how
g(d,c) €= {e, atl,.., f},

where a < f are positive integers. Conceptually, this analysis

varies as ¢ takes on values in
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allows a designer to assess how much of an improvement in

system reliability occurs as ¢ increases. Since evaluating
g(d,c) belongs to the class of NP-hard problems [Alexopoulos
and Fishman 1988], no polynomial time algorithm is currently
available for computing g(d,c) exactly. The need to evaluate
this probability for a sequence of alternative capacity levels for
arc e merely compounds the problem.

To overcome these limitations, this paper describes a
Monte Carlo sampling plan that allows one to estimate
{g(d,c), ce ¥}. The novelty of the approach comes from its
ability to produce all | €| estimates using data generated in
a single sampling experiment that uses lower and upper bounds
on g¢(d,c). The advantages of the proposed technique are
twofold: First, it is a considerable improvement over the crude
Monte Carlo approach and second, it extends the range of
application of the method proposed in [Fishman and Shaw
1989] for estimating ¢(d,c) for a single The latter
approach uses known lower and upper bounds on g¢(d,c) that
hold for fixed ¢ and, therefore, the estimation of {g(d,c),
c € ¢} requires essentially | #| experiments.

Let G = (4 4s,t) denote the flow network and suppose
that the arcs are numbered so that 6= {1,...,a} . Each arc i
has a random capacity Bz. that takes values in the set {0 <

bi1<...<bini< o} (n, = 2) with probabilities 2
respectively. If be1 > 0, one replaces e by two arcs e’ anci
e’’ in parallel such that Bc, = be1 , Be, , =0 wp. Py and
B, =b,b, wp. p,. Let Q(c) denote the state space of
the random vector B = (Bl,.‘.,Ba) when b, =c. Apoint b
of Q(c) can be defined as an a-tuple of values b =
(b b,, ) where v, isa numerical index for ¢ going from
a

c .

1o
1
lto n . To simplify the notation, the index v, will also be
used to denote the value b itself so that a state point b

1
will also be denoted as v= (v,,...,v ).
1 a
Assume that the capacities are independent random

variables and let P(v) denote the probability that the system
is in state v. Then

P(v) =

i

p. .
1%

(1)

a

Let A(wc) denote the value of a maximum s-t flow when the



C. Alexopoulos and G.S. Fishman

arc capacities are v and b, = ¢ and fix d > 0. For any state
v and fixed ¢ > 0 define the structure function

1 if A(v,c)2d

#u9) = { @)

0 otherwise .

Then, for fixed demand d, the network reliability g(c) = 9(d,c)
= Pr{A(B,c) > d] can be written as

go)= 2 )¢(v,C)P(v)~ ©)

v €Q
The limitations on the exact computation of (3) have
prompted a search for alternative methods for approximating

g(e),

candidate.

among which the Monte Carlo method is a prime
For fixed ¢ , Fishman and Shaw [1989] used
available lower and upper bounds on ¢(c) generated by a
decomposition of the state space Q(c) due to Doulliez and
Jamoulle [1972] to replace the sampling distribution {P(v)}
with a modified distribution that produces an estimate of ¢(¢)
with greater accuracy than one would obtain for the same cost,
were one to sample directly from {P(w)}. This ability to in-
corporate information on bounds into a Monte Carlo sampling
plan fits well with the philosophical attitude that one should
use as much deterministic information as possible before turn-
ing to a sampling experiment to sharpen one’s estimate of g(c).

Section 2 describes the essential features of crude Monte
Carlo and then describes the incorporation of the Doulliez and
Jamoulle (D-J) decomposition. Section 3 extends this decom-
position method to the case in which we wish to estimate
{g(d,c), c e #} from data generated on a single experiment.
Section 4 describes the experiment and Sec. 5 illustrates how
the extension works in practice.

2. MONTE CARLO METHOD

Suppose that one draws N

ii.d. samples from from
Q) using the distribution {P(v)}. Let Vi(n) denote the
state of arc ¢ in the nth trial, and let V(® = (Vl(n),...,

Va(n)). Also, suppose in each trial n one performs the steps:

1. For ce #: set ¢(V("),c)=0.

2. I A(V™a)rd: For ce % set ¢(V™e)=-1; end
replication.

3. If Ve(") =1: end replication.

4 HAV™a)+f-a<d: end replication.

5. Find k=min{c: e< c<f and A(V("),a)+c-a2d}.

6. I AV k) >d: For k<c<pset (v o-1.
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Note that step 5 is based on the fact that A(V(n),c) =

mj“{A(V(n):m): A(V(n)»a) + ¢ - a}. Then the crude Monte
Carlo estimators

5 )
gple) = L oV /N ced

(4)

of ¢(c) are unbiased with

var g, (¢) = g(c)[1-g(9)/N . (5)

Two sources principally contribute to the cost per repli-
cation. Omne is the time to sample a capacity state v from
{P(v); veQ(a)} and the other is the time to determine a
maximum flow at most twice. For sampling, the cutpoint
method [Fishman and Moore 1984] takes O(| .#]) time on the
average. For general networks once the capacity state o is
given, a maximum flow can be determined via a maximal flow

algorithm in O(| /4| 3) time [Papadimitriou and Steiglitz 1982].

For fixed and for a specified sample size N a
reduction in the variance (4) follows from using information on
bounds for g¢(¢) and modifying the sampling distribution
{P(v)} [Kumamoto et al. 1977 and Fishman 1986a]. The
present paper derives the bounds on the entire function {g(c),
c € ¥} from a decomposition of the capacity state spaces
(c) by extending the approach of Doulliez and Jamoulle.

c

While the time to compute the bounds for all ¢ is O(J| A4

where I is an integer > 1, no special tables are needed for the
sampling distribution and the cost of sampling v and

determining A(w,c) is no greater than in the case of crude
Monte Carlo sampling. These properties make the proposed
method more appealing than an alternative approach in
[Fishman 1989] where the modified distribution depends on ¢,
and the time to draw a sample from it is about twice as great
as the sampling time from {P(v)}.

We describe shortly how the D-J decomposition provides
useful lower and upper bounds to implement the proposed
approach. Doulliez and Jamoulle describe a state space
decomposition method, based on iteration, to compute g(c)
exactly.  Although the number of iterations for exact
computation can grow exponentially with the size of the
problem, on each iteration the technique produces lower and
upper bounds on ¢(¢) that become progressively tighter as the
number of iterations increases. Any state wve€ Q(c) can be
classified as either an operating state (¢(v,c) = 1) or a failed

state (¢(v,c) = 0). Let o be the set of all operating states
and ¢ be the set of all failed states.

Since the state space (c) has l'[': 1™ elements, it is
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hopeless in general to determine o " (and hence o) by
considering each state in (c) one after the other. Doulliez
and Jamoulle present an iterative method for overcoming this
At each iteration, their algorithm determines
disjoint sets of operating states, failed states and undetermined
states. An undetermined state is one in which it is not possible
at that iteration to determine ¢(v,c).

problem.

These undetermined
states are used as input to the next iteration to determine
additional operating and failed states and again any remaining
undetermined states are used in the next iteration. The
procedure ends with a total decomposition into operating and
failed states and an exact evaluation of g¢{c). The operating
and undetermined sets that are produced in each iteration are
(discrete) rectangles in the sense that:
there is a lower limiting point I{S] and an upper limiting
point u[S] such that each integer v with I[S] < v< u[S]
belongs to S.

For fixed ¢, Fishman and Shaw [1989] showed how this

method can be used for deriving lower and upper bounds on
¢(c) and presented an efficient sampling plan for estimating

for each such set S

this quantity. However, a problem with adopting the D-J
method and thereby the Fishman and Shaw method to the
present setting is that an operating state for lz82 = ¢ is not
necessarily an operating state for be2 < ¢ and a failed state
when be2 = ¢ may not be failed when be2 >c.

3. PROPOSED METHOD

The method proposed here also takes advantage of the
D-J state-space decomposition method. In particular, it
decomposes at most I subsets of 2(a) and produces operating
subsets Wl, W2,..., WI of Q(c) forall ce ¢, failed subsets
of Q(a), disjoint undetermined subsets U (a), Uy(a),...,

Uy (@) of Q(a), failed subsets of (), and disjoint
undetermined subsets Ul(ﬂ), UQ(ﬁ),..., Uy (B) of Q(B). The
families  %(e) = {U(a),Uy(@),-,U, ()} and %(B) =
(U8, 0. Uy (9)) saisty ’

Property 1: %(a) ¢ %(f) and the rectanglesin #%(f) - %(a)
are failed subsets of Q(a).

An undetermined set S C ©(a) with lower and upper
limiting points ! and u is decomposed as follows: Create a
fictitious demand node T, add the arc e’ = (¢,T) numbered
with capacity d and determine a maximum s-T flow f=
( f1 fa,fe,) with capacities u for the arcs in .¢. If the value
of this flow A(wa) is less than d, none of the states in S
can satisfy the demand at node ¢ and then S is a failed
subset of €Q(a). Suppose that A(w,a) = d and for each arc ¢
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define
states v with vJ.O LAY ¥ 4 form an operating rectangle
W Q(a) and therefore of Q(c) for ¢ > @ Now given the
flow f, for each arc ¢ let A(a) denote the value of

vio min{z: lig 1397 and 2> f;} Obviously, all

maximum flow that can be transmitted from the tail of i to
the head of i without using this arc. If Ai(a) < f,,arc i is
in a minimal cut that blocks the value of maximum s-¢ flow
below d and every state v€ S with v, < f;- Aa) is failed.
If Ai(a) > f,, any capacity L<zgu, for arc 1 satisfies the
demand ¢ when all other capacities are fixed at wu,, ktid.
For i€ & define

vrle] =min{z: L <z<u, 22 fi- Afa)} if f> Afa)

=1 if f<Afa). (6)
Then the sets
F(o)={v:veS and v,<vr[a]} i€ 4
are failed subsets of Q(a), the rectangles
(M

Li(cx)={11:'uk"$'uk$'ulc for k<1,vi*[a]g'vig v0 -1
and v[o] < v < uy for k>1} 1€ A

are disjoint, undetermined subsets of (@) and S = WU

{ul_, L{x)}u {v_, F(a)}

Note that if u_= 2, that is if the values Afa), 1 # e
were computed with capacity be2 = @, then each failed set
F(a) would not be necessarily failed when b, = ¢ for
¢> a. However, each failed set when b‘22 = f is also failed
when be2 = ¢ for c¢< fB. We now determine failed and
undetermined subsets of Q(f) as follows: If u, = 1, the
rectangles L (a) are added to up). U v, =2 set v {f =
ve*[a] and, given the initial flow f and the capacities U, for
k#i e and b, = B, foreach arc i# e let Ai(ﬂ) denote the
value of maximum flow that can go from the tail of arc i to
the head of 7 when this arc is deleted. For i€ £ define

vi*[ﬁ] =min{z: <2<, 22 f- Ai(ﬂ)} if f> Ai(ﬁ)
=1 if f<A(B). (8)
Then, the sets
F(f)={v:ve S and v, <v[f} i€ £
are failed subsets of Q(f) and the rectangles
(9)

Li(ﬂ)={'u:vk(’S'ukgu,c for k<i,vi*[ﬁ]$vi$vi°-l
and vf] <v < uy for k>1} i€ g
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are disjoint, undetermined subsets of ().

Observe that for each 1, Afa) ¢ A(f) and then
v¥[o] > vx[f]. This implies that each rectangle LJ{a) .is a
subset of a rectangle Lm(ﬁ). In fact, the latter set is unique
and has the same upper limiting point with Lj(a). The
decomposition of Lm(ﬁ) - LJ( @) produces the disjoint
undetermined subsets of Q(f)

(10)

R(B) = {v: lk[Lj(a)] <o <uy for k<,

L _(B)] < v, < l‘.[LJ( a)] -1 and
LIL (B)] € v, < w, for k> i} 1€ o,

where u is the common limiting point of LJ.( a) and L _(f).
The rectangles Lj(a) and R(f) are then added to %(f)
and the rectangle S is removed from both %(a) and %(f).

Once at most I subsets of Q(a) are decomposed, the
remaining undetermined subsets of Q(a) and Q(fB) form the
sets  %(a) = {U(a),...,Uy (a)} and  %(B) = {U,(B),,
Uy (B)} respectively. One ca‘; easily check that %(a) and

%(P) satisfy Property 1.

Let M=M 5 and define

and (11)

M e | HLU(B)]
=g+ £ 0| b
| e

As a result for a<c< g

(12)
) z Hno)P()
<gle)=g9,+ & B vc)P(v) < g, -
94 4 L U _(9) v
4. SAMPLING
For a<c<f let
v [U (8)]
H = % D. 1€ A4
m :
=1.(U 8] “
and (13)
a
T.=PrU (A= Plyy=1 H. .
n=PO= B PO A,
Then
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M
7l'=PI[2[(ﬂ)]= Eﬂ,ﬂ:gU—gL'
m=1
Define the binary functions

1 if veU(B
Im(v,ﬂ)={ © Ol (14)

0 otherwise m=1,...M

and the distribution

M
Quf) =E % 1 (sp). (15)
m=1
Suppose one draws N independent samples V(l),...,
v™ from {Q(v,8)}. It is easy to show that
: )
gfle)=g,+7 S YV™o/N ce ¥ (16)
n=1
are unbiased estimates of ¢g(c) with variances
var g,{c) = (g, - o(e)lg(e) - g,)/N
2
<lgy- a,2/an. (17)

When compared to crude Monte Carlo sampling, this sampling
plan leads to 2 worst-case variance ratio

(18)
var Gp(avar 3y(0)2 B = 1/ [agl1-0;) - Jo,01-9,) ] 21

which one can compute before sampling begins to determine
the minimal reduction in variance to be expected. Observe that
the form of the sampling distribution {Q (v0)} allows one to
draw a sample V= (V. sV ) in O(| £ ]) mean time by using
the cutpoint method in Fishman and Moore (1984) as follows:

a. Sample index m from {1,..,M} with probabilities
{7 [m,m=1,..M}

b.  For i=1,.,a: Sample V. from {piz/Him, LU (B)] <
z<ulU (B)]} .

Procedure RUN describes a Monte Carlo sampling

experiment that generates unbiased estimates of _Z]N(c) for

¢€ ¢ and of their variances. Steps II.2 through II.8 utilize

Property 1. Note that this procedure requires only the

rectangles in  %(f) and the labels LABEL[U (f)] =1 if

U_(B) € %(a), LABEL[Um(ﬁ)] =a+1if U (A) ¢ %(a) for
m=1,..M.
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T —
Procedure RUN
I. Initialization.
For a<j<f: Set SJ.=0.
II.  For N independent replications:
1. Sample V= (V,,..,V) from Q).
2. Set k= LABEL [Um(ﬁ)].
3. Compute the maximum flow value A(Vik) with

capacities V and be2 =k.
4. If A(Vik)>d: For k<j<p set SJ.= SJ.+ 1; end
replication.
If V,=1or A(Vk) + - k< d: end replication.
Set c=min{j: k<j<f and A(V,R) +j-k>d}.
Compute the maximum flow value A(V,c) with
capacities V and be2 =c.
8. If A(Vic)2d: For c<j<f set Sj= Sj+ 1.
III. Compute summary statistics.
For a<j<g:

':]N(J) =g+ 7rSJ./N.
VAR[g ()] = (95~ 9\(M[gp() - 9]/ (N-1).

The representation of [g(c) - g;]/m as a convex
combination
M
o) - g)/m= 3 (x,/mn (0 (192)
where
pe)= %  $(v0Q (vh) (19b)
™ v €Q(H) m
and
Im('u,ﬂ)
Q (vh) = T——P(v) veQ(h) (19c)
m
suggests an alternative sampling plan that guarantees

additional variance reduction. Let Nm = Nwm, for m=1,...

M . If one samples V(l),..., v from {Qm(v,ﬁ)}, then
y o gy ()
B = YV LN ces ()
n=1
are unbiased estimates of p_(c) and

. M .
gl =g, + mfl T u(c) ce? (21)

are unbiased estimates of ¢(c) with

. - M
vt gpl0) = var 3y(0) - T 7l (0) - N

<var g MO (22)
where

M
b= mfl T k(e

and var gN(c) = var §N(c) only if p_(c), m=1,..M areall
equal. The estimates gN(c) of g(c), in Eq. (21), have an

additional advantage over _?]N(c), in Eq. (16): Since no need
exists 0 sample the stratum m on each replication, the time
to sample V is slightly less.

Confidence intervals based on the sample means ?)N(c)

and gN(c) that are valid for every sample size N can be
computed using the procedure in [Fishman 1986b] based on a
result in [Hoeffding 1963].

5. EXAMPLE

An example with 7, = 2 (two-state arc capacity levels)
for all ¢ €.£ illustrates how the proposed method works in
practice. Figure 1 shows a network of 10 nodes, 25 arcs, s =
1, t=10, and e = 3. Except for arc 3, the notation i/gq on
an arc denotes arc 1 with capacity level bi2 = ¢q. We assume
that b, =0, and take p, = Pr[Bi = bi2] =09 and 1-p, =
Pr[Bi= 0] = 0.1 for all 7= 1,..,25. The objective is to
estimate g{c), the probability that demand d = 56 at node ¢
is satisfied when b32 takes each of the 31 values ¢ = 20 +
k,k=0,..,30. The maximum flow value with all capacities at
their upper levels and b32 =20 is 67.

Figure 1. Network

For this special case of two-state capacities, we can
simplify the presentation by defining the set of “on’ arcs as

U, (c)={ied: 1[U (o) =2

m
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and the set of “off”’ arcs as
U (o= {i€A: u‘.[Um(c)] = 1]

for each undetermined rectangle Um(c). Conversely, if

Um+(c) and U _"(c) are given, the lower and upper boundary
elements of Um( ¢) can be determined as

2 if i€ U ()
g U’"(C)] - { 1 otherwise
and
1 if ieU (o)
a7, (01 = {

2  otherwise

Note that only the capacities of those arcs ¢ not explicitly in
these sets need to be sampled, thus reducing the computation
time.

The decomposition procedure in Sec.3 produced 13
undetermined subsets of £(50) with two rounds of iterations,
where in each round all the existing undetermined rectangles in

%(20) were decomposed. The resulting bounds g, = 0.4651

*
and gy = 06226 and the minimal variance ratio R = 40.01
show a clear advantage over crude Monte Carlo sampling.
Table 1 presents results for estimating g¢(c) for sample

size N = 65,536. Note that the variance ratio var §N/var ;’N
measures the overall benefit that derives from combining both
importance sampling and stratified sampling in the same

estimator g when compared to crude Monte Carlo sampling
N

as in g, , whereas var g, /var g measures the effect of
adding stratification to the importance sampling scheme. For
example, for capacity b32 = ¢ = 20, crude Monte Carlo
sampling would have required 1335 observations for every
observation using importance and stratified sampling together,
whereas it would have required 14 observations when compared
to importance sampling alone. While notably an improvement
by itself, augmenting importance sampling by stratified
sampling offers a guaranteed advantage, especially since the
cost of using these two sampling techniques in the present
context is no greater than the cost of stratified sampling alone.

Table 1. Monte Carlo Results for Demand d = 56 and
Capacities ¢ for Are 37 (V= 65,536)

. 8 . var g, Var g, varg,
c Iy 10°xvar g

var EJN var -;’N var ;]N

20 48442 .28554 93.60 14.26 1334.71

21 53432 1.25676 40.74 3.63 147.87
22-23 54495  1.21108 40.02 4.48 179.27
24-25 54512 1.20697 40.00 4.57  182.82
26-30 .54565  1.97368 40.01 479 191.67

31 54572 1.95757 40.01 483 193.25
32-33 .54654  1.82205 40.07 5.18  207.56
34-35 55000  1.98425 40.15 474 190.33
36-43 55335  2.08923 40.48 446  180.52
44-45 59677  4.82953 71.06 1.07 76.03
46-50 .60023  4.40047 79.25 1.05 83.21

t Entries for var Z’K’ var QK and var ;;K are based on (5),

(17) and (22), respectively, with estimates substituted for the
true parameters.
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