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ABSTRACT

A significant source of randomness for many simulation
models of manufacturing systems is the unscheduled downtime of
machines. However, there has been little discussion of this subject
in the simulation or manufacturing literature. In this paper we
discuss how to model machine downtimes both when system data
are available and in the no-data case.

1. INTRODUCTION

The most important source of randomness for many
manufacturing systems is that associated with machine breakdowns
or unscheduled downtime. Random downtime results from such
events as actual machine failures, part jams, and broken tools.
The following example illustrates the importance of modeling
machine downtimes correctly in simulation studies.

A company is going to buy a new machine tool from a vendor
who claims that the machine will be down 10 percent of the time.
However, the vendor has no data on how long the machine will
operate before breaking down or on how long it will take to repair
the machine. Some simulation analysts have accounted for random
breakdowns by simply reducing the machine processing rate by 10
percent. We will see, however, that this can produce results that
are quite inaccurate.

Suppose that the single-machine-tool system will actually
operate in accordance with the following assumptions when
installed by the purchasing company:

®  Jobs arrive with exponential interarrival times with a mean of
1.25 minutes.

®  Processing times for a job at the machine are a constant 1
minute.

®  The machine operates for an exponential amount of time with
mean 540 minutes (9 hours) before breaking down.

® The repair time for the machine has a gamma distribution
(shape parameter equal to 2) with mean 60 minutes (1 hour).

® The machine is, thus, broken 10 percent of the time, since

the mean length of the up-down cycle is 10 hours.

In column 1 of Table 1 are results from five independent
simulation runs of length 160 hours (20 eight-hour days) for the
above system; all times are in minutes. In column 2 of the table
are results from five simulation runs of length 160 hours for the
machine tool system with no breakdowns, but with the processing
(cycle) rate reduced from 1 job per minute to 0.9 job per minute,
as has sometimes been the approach of simulation practitioners.

Note first that the average weekly throughput is almost
identical for the two simulations. (For a system with no capacity
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Table 1. Simulation Results for Single-Machine-Tool System
No
Measure of performance Breakdowns | breakdowns
Average throughput per
40/hour week* 1908.8 1914.8
Average time in system* 35.1 5.6
Maximum time in system# 256.7 39.1
Average number in queue* 27.2 3.6
Maximum number in 231.0 35.0
queue#

*Average over five runs. #Maximum over five runs.

shortages that is simulated for a long period of time, the average
throughput for a 40-hour week must be equal to the arrival rate for
a 40-hour week, which is 1,920 here.) On the other hand, note
that such measures of performance as average time in system for
a job and maximum number of jobs in queue are vastly different
for the two cases. Thus, the deterministic adjustment of the
processing rate produces results that differ greatly from the correct
results based on actual breakdowns of the machine.

Despite the importance of modeling machine breakdowns
correctly, as demonstrated by the above example, there has been
little discussion of this subject in the simulation or manufacturing
literature. Thus, we now present an introduction to modeling
random machine downtimes; see Law and Kelton [1] for a more
detailed discussion. Deterministic downtimes such as breaks, shift
changes, and scheduled maintenance are relatively easy to model
and are not treated here.

2. MODELS FOR WHEN SYSTEM DATA ARE AVAILABLE

A machine goes through a sequence of cycles, with the ith
cycle consisting of an up ("operating”) segment of length U;
followed by a down segment of length D,. During an up segment,
a machine will process parts if any are available and if the
machine is not blocked. The first two up-down cycles for a
machine are shown in Figure 1. Let B, and I, be the amounts of
time during U; that the machine is busy processing parts and that
the machine is idle (either starved for parts or blocked by the
current finished part), respectively. Thus, U; = B, + I,. Note
that B; and I; may each correspond to a number of separated time
segments and, thus, are not represented in Figure 1.

Let W; be the waiting time from the ith "failure" of the
machine until its subsequent repair begins, and let R; be the length
clyf this ith repair time. Thus, D, = W, + R,, as shown in Figure

We will assume for simplicity that cycles are independent of
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Figure 1. Up-Down Cycles for a Machine

each other and probabilistically identical, and also that U; and D;
are independent for all i.

We now discuss how to model machine-up segments in a
simulation model assuming that "appropriate" breakdown data are
available. The following two methods are widely used:

Calendar time. Assume that the uptime data U, U,, ... are
available and that we can fit a standard probability distribution
(e.g., exponential) Fy to these data using techniques discussed in
Law and Kelton [1]. Alternatively, if no distribution provides a
good fit, assume that an empirical distribution (see [1]) is used to
model the U;’s. (Standard and empirical distributions are available
in most simulation software.) Then, starting at time 0, we
generate a random value u, from F; and 0 + u; = y, is the time
of the first failure of the machine in the simulation. When the
machine actually fails at time u;, note that it may either be busy or
idle. Suppose that d, is determined to be the first downtime (to be
discussed below) for the machine. Then the machine goes back up
at time u; + d,. (If the machine was processing a part when it
failed at time u,, then it is often assumed that the machine finishes
this part’s remaining processing time starting at time u, + d;.) At
time u;, + d, another value u, is randomly generated from Fy and
the machine is up during the time interval [u; + d,, u; + d, +
uy), etc.

There are two potential drawbacks of the calendar-time
approach. First, it allows the machine to break down when it is
idle, which may not be realistic. Also, assume that the machine
in question is part of a larger system and has machines both
upstream and downstream from it. Then, for two different
versions of the larger system, the machine could fail at the same
points in time, but have significantly different amounts of actual
busy time.

Busy time. Assume that the busy-time data B,, B,, ... are
available and that we can fit a distribution Fy to these data.
(Alternatively, an empirical distribution can be used.) Then,
starting at time 0, we generate a random value b, from Fg. The
machine is up until its total accumulated busy (processing) time
reaches a value of b,, at which point the busy machine fails. (For
example, suppose that b, is equal to 60.7 minutes and each
processing time is a constant 1 minute. Then the machine fails
while processing its 61st part.) If f; is the simulated time when
the machine fails for the first time (f; = b,) and d, is the first
downtime, then the machine goes back up at time f; + d;, etc.

In general, the busy-time approach is more natural than the
calendar-time approach. We would expect the next time of failure
of a machine to depend more on total busy time since the last
repair than on calendar time since the last repair. However, in
practice, the busy-time approach may not be feasible, since uptime
data (U,, U,, ...) may be available but not busy-time data (B,, B;,
...). In many factories, only the times that the machine fails and
the times that the machine goes back up (completes repair) are
recorded. Thus, the uptimes U,, U,, ... may be easily computed,
but the actual busy times B,, B,, ... may be unknown. (In
computing the U;’s, time intervals where the machine is off, e.g.,
idle shifts, should probably be subtracted out.)

We now discuss how to model machine-down segments
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assuming that factory data are available. Assume first that the
waiting time to repair, W;, for the ith cycle is zero or negligible
relative to the repair time R, (for i = 1, 2, ...). Then we fit a
distribution (e.g., gamma) F,, to the observed downtime data D,
D,, ... . Each time the machine fails, we generate a new random
value from Fj, and use it as the subsequent downtime (repair time).

Suppose that the W;’s may sometimes be "large," due to
waiting for a repairman to arrive. If only D;’s are available (and
not the W;’s and R;’s separately) as is often the case in practice,
then fit a distribution Fy, to the D;’s and randomly sample from Fy
each time a downtime is needed in the simulation model. The
reader should be aware, however, that Fj is a valid downtime
distribution for only the current number of repairmen and the
maintenance requirements of the system from which the D;’s were
collected.

Finally, assume that the W;’s may be significant and that the
W;’s and R;’s are individually available. Then one approach is to
model the waiting time for a repairman as a maintenance resource
with a finite number of units and to fit a distribution Fy, to the R;’s.
If a repairman is available when the machine fails, the waiting
time is zero unless there is a travel time, and the repair time is
generated from Fy. If a repairman is not available, the broken
machine joins a queue of machines waiting for a repairman, etc.

Several simulation software packages have an option that allow
a user to specify the distribution of C; = U; + D; (the total length
of an up-down cycle or the time between failures) and the
distribution of D;. We do not believe that this is a good approach,
in general, since it theoretically allows the generated value of D;
to be larger than the generated value of C;, which should be
impossible.  Also, this approach makes D; and U; negatively
correlated (i.e., D, large makes U, small, and vice versa), since U,
= Ci - Di'

3. AMODEL FOR THE NO-DATA CASE

Suppose now that factory data are not available to support
either the calendar-time or busy-time breakdown models previously
discussed.  This often occurs when simulating a proposed
manufacturing facility, but may also be the case for an existing
plant when there is inadequate time for data collection and
analysis. We now present a tentative model for this no-data case,
which is likely to be more accurate than many of the approaches
used in practice (see the above example).

We will first assume that the amount of machine busy time, B,
before a failure has a gamma distribution with shape parameter oy
= 0.7 and scale parameter By to be specified. Note that the
exponential distribution (gamma distribution with o = 1.0) does
not appear, in general, to be a good model for machine busy times
(see Law and Kelton [1]), even though it is often used in
simulation models for this purpose.

We chose the gamma distribution because of its flexibility
(i.e., its density can assume a wide variety of shapes) and because
it has the general shape of many busy-time histograms when o <
1. (The Weibull distribution could also have been used, but its
mean is harder to compute.) The particular shape parameter o, =
0.7 for the gamma distribution was determined by fitting a gamma
distribution to four different sets of busy-time data, with 0.7 being
the average shape parameter obtained. In none of the four cases
was the estimated shape parameter close to 1.0 (the exponential
distribution). The density function for a gamma distribution with
shape and scale parameters 0.7 and 1.0, respectively, is shown in
Figure 2(a).

We will assume that machine downtime (or repair time) has a
gamma distribution with shape parameter oy 1.4 and scale
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parameter @, to be specified. This particular shape parameter was
determined by fitting a gamma distribution to six different sets of
downtime data, with 1.4 being the average shape parameter
obtained. The density function for a gamma distribution with
shape and scale parameters 1.4 and 1.0, respectively, is shown in
Figure 2(b). This density function has the same general shape as
downtime histograms typically experienced in practice.
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Figure 2. (a) Gamma(0.7,1.0) Distribution

(b) Gamma(1.4,1.0) Distribution

In order to complete our model of machine downtimes in the
absence of data, we need to specify the scale parameters 85 and
Bp- This can be done by soliciting two pieces of information from
system "experts" (e.g., engineers or vendors). We have found it
convenient and typically feasible to obtain an estimate of mean
downtime p;, = E(D) and an estimate of machine efficiency e,
which we now define. The efficiency e is defined to be the long-
run proportion of potential processing time (i.e., parts present and
machine not blocked) that the machine is actually processing parts,
and is given by
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e = pp/(up + pp)

where pp = E(B) is the mean amount of machine busy time before
a failure. If the machine is never starved or blocked, then up
uy = E(U) and e is the long-run proportion of time during which
the machine is processing parts. Using the values of pp and e (and
also the fact that the mean of a gamma distribution is the product
of its shape and scale parameters), it is easy to show that the
required scale parameters are given by

Bs = € pp/0.7(1 - €)

and By = pp/l.4

Thus, our model for machine downtimes when no data are
available has been completely specified.

4. SUMMARY

We have discussed above basic models for the breaking down
and repair of machines. However, in practice there are a number
of additional complications that often occur, such as multiple
independent causes of machine failure.
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