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ABSTRACT

Simulation models represent an abstraction of real life
systems in terms of their components, parameters, and relation-
ships. To obtain an acceptable understanding of any simulated
system, experiments must be performed on their elements
through representative simulation runs. Statistically designed
experiments can be employed to improve the efficiency and
effectiveness of experimentation with systems - real life or simu-
lated. This technique coupled with simulation modeling
provides a systematic and scientific approach to system analysis.
At GM, designed experiments are used extensively as part of
our simulation project methodology in many large scale projects.
This has helped in both reducing the number of simulation runs
needed to arrive at a given level of understanding of the system
as well as providing a structure for the learning process. This
paper discusses experimental design as part of the simulation
modeling process from a manufacturing perspective.

1. INTRODUCTION

Design of experiments is a structured approach to problem
solving using statistical concepts. A designed experiment is an
active (as opposed to passive) approach to understanding any
system through systematic and simultaneous manipulation of its
variables. This concept, as well as the supporting statistical
techniques, has been practised for some time. Statistical
experimental design was invented in England by R.A. Fisher in
the early 1920s. Fisher's factorial designs were used in the field
of agriculture and were aimed at improving crop yields. Since
then, designed experiments and related concepts have found
extensive application in such fields as medicine, education,
biology, engineering sciences, social sciences, and many other
areas [Montgomery 1976).

Regardless of the field of application or the type of design
chosen, the motives for conducting experiments can be categori-
zed into two main classifications: a) to investigate the relation-
ship of the response measure to the factors of study; and/or, b)
to find the optimum settings for the independent factors that
result in optimum system performance [Hunter and Naylor
1970]. While there exist other techniques for achieving the
above objectives (e.g., regression techniques), a properly
designed experiment provides the analyst with a systematic
framework to ensure that the efficiency and effectiveness in both
data gathering and data analysis are obtained. Efficiency is defi-
ned in terms of number of runs required to arrive at a con-
clusion and effectiveness refers to the accuracy in estimation of
main effects and the ability in estimating interactions [Kleijnen
1989].

Furthermore, through simultaneous manipulation of
experimental settings, interactions among two or more variables
of the system can be identified. This is not attainable in the
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more traditional "one at a time" approach where only one factor
is changed at any one time.

2. DESIGNED EXPERIMENTS AS PART OF THE PROJECT
METHODOLOGY

The representation and description of many large scale and
complex manufacturing setups can be achieved through simula-
tion modeling. Simulation models describe systems in terms of
their components, parameters, and relationships. Designed
experiments provide a structured framework for understanding
how a system is explained in terms of its elements.

Many issues that are addressed through design of experi-
ments overlap or complement those that are typically dealt with
in the simulation project methodology. Furthermore, for
maximum effectiveness this framework must be phased over all
stages of a typical simulation project. In the following discussion
we deliberate on steps in such a process and how it has been
applied in practice.

2.1 Forming a Project Team

The project team is formed as soon as it is determined that
simulation is the appropriate tool for the study. Typically the
team should be comprised of individuals from various depart-
ments and perspectives and from different levels of the or-
ganizational hierarchy. This ensures that a very thorough and
complete view of the system is attained. In addition, the
participation and commitment of various levels of the organiza-
tion is ensured. As an example, project teams may be com-
prised of a process or industrial engineer who is familiar with
the processes, a production supervisor, a production or area
manager, 2 maintenance supervisor, and the simulation analyst.
This exercise sets the stage for establishing proper objectives
and identifying factors that can potentially influence the system.

2.2 Setting Objectives

One of the most important steps in a simulation project is
stating a clear and complete purpose for the study. The
objectives of a study determine which aspects of a system are to
be studied and what work needs to be done. Stating objectives
determines what information is needed and a designed experi-
ment identifies how it can best be done. A designed ex-
perimental framework serves as a road map to help the project
team remain focused on the purpose and how it can most
efficiently be achieved.

2.3 Factor Selection and Screening

Two sets of factors must be identified. These are the
dependent (in designed experiments this is also referred to as
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the response measure) and the independent variables of the
study.

The choice of factors of any study depends on the objectives
of the study. In many manufacturing settings the primary
emphasis is on validating the system's design or performing
what-if analysis with respect to the throughput of the system.
With the implementation of synchronous manufacturing, a great
deal of emphasis is also placed on reducing the work in process
and the amount of time spent in the system.

Experimental designs tend to grow very rapidly as a result
of the many possible combinations of the independent factors
and their corresponding levels. This problem can be more
pronounced when experimentation is performed through a
simulation model since the analyst has control over the factors
and their settings. The greater the number of variables, the
more complicated the design becomes and/or effort (human and
computer) is needed to adequately study their impact on the
response variable (more on this is provided in the discussion of
the design matrix). Failure to identify the magnitude of the task
may delay project completion time and can be disastrous to the
credibility of the simulation project.

From the brainstorming practices of all project team
members, a manageable number of factors must be chosen to be
included in the study. "Fish bone" or "cause and effect" diagra-
ms can help to organize the factors. There are general guide-
lines in literature for choosing the independent variables [Ove-
rholt 1969], and statistical techniques for screening when too
many factors are present [Kleijnen 1987]. In practice, past
experience with similar systems and manufacturing "know-how"
together with team synergy and focussed objectives play an
important and effective role in determining the factors. Due to
the large scope of many manufacturing models, other practical
considerations and limitations (such as deadlines, computer
time, etc.) can also influence the choice or number of factors.

2.3.1 Importance of Interaction Effects
Capturing the impact of factors of a study is one of the

strengths of a designed experiment. This can be achieved in the
"one factor at a time" approach only partially.
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Figure 1. The interaction of Factor A and Factor B in a
paint shop.

We emphasize the importance of this aspect of designed
experiments through an example of one project which involved
a car body paint system. The concern in this particular facility
was whether it would be able to meet its production goals. The
effects of a number of factors were of interest to the manufac-
turing plant because of their potential impact on the system'’s
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throughput. In particular the system was believed to be effected
by changes in two of the variables of the study; Factor A and
Factor B.

Upon analyzing the results from the experimental design the
only significant effect was due to the interaction of Factor A
and Factor B. When both Factor A and Factor B were at a
high level the throughput of the system was significantly lower
(see Figure-1).

When either Factor A or Factor B was considered in-
dividually, neither had a significant effect on the system
throughput. If the "one at a time" approach to experimentation
had been used in this situation the interaction might have been
missed since both Factor A and Factor B would not have been
simultaneously tested at their high levels.

2.4 Selection of Design Matrix

It is advisable to keep designs simple. Complex designs may
not be understood by other project team members. Further-
more, data analysis for determining the important factors and
building meta-models will be easier, less time consuming, and
less prone to mistakes. Generally in simulation projects, the
analyst has more flexibility in his/her choice of design to ensure
that simplicity is maintained (e.g., have balanced designs).

Other considerations in the choice of an experimental
design include the number of independent factors, potential
interactions, and the levels for each factor. From the brain-
storming and factor selection practices, if it is determined that
interactions can not be ruled out, then it is best to leave them
in. If all interactions are felt to be important then full factorial
designs are appropriate. If some of those interactions are felt
to be insignificant or non existent then a fractional factorial
design can be employed to provide information on the remain-
ing factors and interactions.

If a linear relationship is believed to exist between the
dependent and any of the independent factors, then those
factors can be set at two levels. If this can not be inferred
beforehand for some factors or a non-linear relationship is
suspected, then more than two levels of those factors should be
considered.

2.5 Model Coding

Identifying the key factors to be used in the designed
experiment is very useful for guiding the simulation analyst as
to how much detail is required in the simulation model. The
choice of variables and knowing exactly what forms of what-if
analyses are expected, will also influence coding style. The
model code can be built with the required flexibility in those
areas where changes are to be incorporated.

2.6 Data Collection

Having determined the important factors and what level of
detail to incorporate into the model, attention can be paid to
the collection or estimation of the appropriate model input data.

2.7 Model Verification

Often verification is accomplished through sensitivity
analysis. This implies changes in the input parameters and
monitoring the reasonableness of the results [Banks and Carson
1984, Law and Kelton 1982]. The decision regarding the sen-
sibility of the results can be better judged when simulation runs
are conducted with consideration to a designed experiment.

Since many what-if scenarios are presented in the form of
a design matrix, the analyst can choose those combinations of
factor settings (e.g., paired testing or balanced observations) that
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can yield the necessary information. Integration of designed
experiments into this phase of the project also encourages the
analyst to ensure that all aspects of the model are correct and
verified because a bug in the model could ruin the experimental
design runs and require rerunning the experiments.

2.8 Model and Experimental Design Validation

Model assumptions are validated as part of the project
team’s discussions. In addition, as part of the design of experi-
ments methodology many questions are raised and discussed that
otherwise may have been omitted. The involvement and active
participation of various levels of an organization in setting the
objectives, selecting factors, etc. further adds to the face validity
of the model and in general gives added credibility to the entire
project.

As in the verification phase, as a result of the design of
experiments, there is a greater incentive to ensure that the
model is valid and that no rerunning of any of the experimental
combinations will be required. Validation of model output is
more easily accomplished under a designed framework rather
than through an ad-hoc what-if analysis.

The same runs made for model validation can also con-
tribute to validation of the design matrix itself. If reasonable or
expected results are observed, it is likely that a proper design in
terms of the factors of study and their interactions has been
assumed. If on the other hand, unexpected results are obtained,
the analyst can determine if a pattern exists and lead the team
in identification of its source.

2.9 Output Analysis

Output analysis is accomplished with maximum efficiency as
a result of making observations according to a statistically
designed experiment. The purpose for this analysis can be
classified into two main categories.

2.9.1 Identification of Significant Factors

One of the most important features of a designed experi-
ment is that it enables the analyst to make use of statistical
techniques. By making ute of statistical methods, conclusions
can be drawn on the existence-of any relationships between the
dependent and independent factors of the study. Analysis of
Variance is performed to identify the sources of variation that
are statistically significant in terms of the response measure of
interest.

2.9.2 Metamodels and Prioritization of Improvement Initiatives

If the factors of a study are quantitative, regression models
(metamodels) can be constructed which explain the dependent
factor in terms of independent factors of the study. This
relationship can help the analyst in determining which factors
have a greater impact on the response variable. On the basis of
this information, improvement efforts can be prioritized
accordingly.

2.10  Conclusions
Simulation projects of manufacturing systems can result in

significant savings. Results gain more acceptance when they are
based on a systematic and thorough approach. There is more

credibility and confidence in the conclusions because all possible.

combinations of importance are examined. The recommenda-
tions are much easier to justify because confirmation runs have
validated the conclusions of the metamodels.

3. EXPERIENCE AT GENERAL MOTORS

At General Motors Corporation, designed experiments in
general and Taguchi’s contributions in particular have been
extensively used for such purposes as quality improvement and
product design for some time.

The application of designed experiments as part of our
simulation methodology is relatively new. Over the past few
years many simulation studies have been conducted that have
utilized designed experiments to analyze large and complex
systems. These highly automated systems involve a large
number of machines, modern sophisticated material handling
systems, and are employed in the high volume production of
automotive related parts and assemblies. Without a systematic
approach to problem definition and systems analysis, it is
difficult or impossible to fully understand these systems.
Designed experiments have provided the simulation methodol-
ogy with such a framework for learning about the systems
modeled. Furthermore, through designed experiments efficient
output data analysis is achieved and has helped in the accep-
tance of the recommendations by management and engineers.

There exists a lot of overlap and common ground between
simulation methodology and designed experiments - both in
theory and practice. It has been our observation that the two
complement each other very well throughout the entire project
lifecycle. The project methodology that has been discussed in
this paper has helped our simulation projects to remain focused
on the objectives, identify important factors and evaluate their
interactions, determine the required level of detail, assist in
verification and validation phases, and build more credibility for
the results and conclusions.

Our experience with manufacturing systems has been that
for the most part little or no interactions of factors can be
expected. Through the analyses of many diverse and complex
environments, we have found some two factor interactions to be
statistically significant. Interactions of three or more factors
have rarely been found to be statistically significant. As a result,
many of our experimental designs are based on fractional
factorial design matrices. These designs are particularly attrac-
tive because one can estimate the effects of the key factors
more efficiently (by pooling the interactions effects with the
error term) with a fewer number of simulation runs.

While there are many advantages in applying designed
experiments in simulation projects, in practice we have also
recognized a number of considerations. Designed experiments
can become large, complex, and time consuming. The more
complicated the design and the subsequent analysis, the more
the likelihood for human error in design or analysis. Further-
more, the value of the additional information must be weighed
against the additional effort and time for data collection, model
coding, and subsequent analysis [Hatami 1990].

Excessive analysis can also lead to over confidence in the
results. One must never loose sight of the fact that the results
and all the subsequent analysis are only as good as the data that
has been included in the model.

We believe that for the maximum effectiveness, simulation
and other forms of decision support must be made available to
the people who are most familiar with the processes. This belief
is shared by other groups in other industries as well [O’Loughlin
et al. 1988; Tumay 1989]. Through transferring decision support
tools to the plant floor engineer’s level, a number of advantages
are rea}ized. For example, one of the greatest challenges to
simulation analysts is to determine those significant charac-
teristics of the system that need to be included in the model.
Process experts know their systems best to make key assump-
tions and recognize the significant characteristics that must be
included in the study. In line with that belief, our goal at
General Motors is to transfer this tool and supporting techni-
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ques to the plant level engineers and system designers as much
as possible. Design of experiments requires expertise and
sufficient know-how in the field. The efficiency of this techni-
que in data analysis is achieved at the expense of more com-
plexity in designing of experiments and subsequent data analysis.
Simulation modeling alone can be a daunting task for engineers
who are not full time simulationists. Implementation of
experimental design as part of this project methodology further
complicates this form of analysis and further distances the part-
time users from simulation.

4. CONCLUSIONS

The experience with the application of designed experiments
as part of GM's project methodology has been very positive.
Although this methodology is more time consuming and requires
more effort, it is found to be very effective and efficient.
Through team discussions and brainstorming, potentially
important factors are identified upfront. This sets the level of
model detail and data requirements. The simulation project
always remains focused on the objectives, and the experimental
design shows very clearly what further work needs to be done.
The credibility of simulation projects is also increased by this
exercise because of its thoroughness and scientific approach to
factor selection and data analysis.

Through this methodology important factors and potential
interactions are identified and priorities can be placed on
improvement efforts. Recommendations are much more just-
ifiable as confirmation runs on the simulation model are
performed and results bear scientific significance.

In practice the fact remains, however, that designed
experiments and simulation modeling require expertise and
know-how. The acceptance of such tools and techniques by
casual users (e.g., engineers with other responsibilities) in
manufacturing facilities has not been wide-spread. Efforts are
currently underway at GM to address organizational issues,
educational and training requirements, and other considerations
aimed at institutionalizing modeling techniques.
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