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ABSTRACT

Flexible, interactive software is used to apply a two level
fractional factorial design with ten factors to the discrete
event simulation of a semiconductor manufacturing line. The
sensitivity of cycle time to the number of tools and the oper-
ator to tool ratio at five tool groups that tend to have large
queues preceding them is analyzed. The analysis confirms the
proposed model for cycle time and illustrates the efficiency of
using design of experiments for discrete event simulation.

1. INTRODUCTION

This paper presents the application of the design of ex-
periments to the discrete event simulation of a complex man-
ufacturing line. The discussion will use, as an example, a
large model of an operating semiconductor line. The model
contains on the order of one hundred tool groups processing
multiple products. The flow is highly re-entrant, that is, jobs
feed back through sequences of the tool groups up to fourteen
times. The model includes tool breakdown and repair, pre-
ventative maintenance, rework, test wafer sendahead, and
detailed operator schedules. The primary purpose of the
model is to study control rules proposed for the line [Hood
et al. 1989].

For the example discussed here, the line is assumed to be
under constant load and in a stationary state. That is, the rate
of output of product is assumed equal to the rate at which
orders are inputted. No portion of the system is saturated.
We are interested in the cycle time, the time from beginning
of manufacture to completion, of one of the products. In
particular we are interested in the sensitivity of this cycle time
to the number of tools and the operator to tool ratio at five
tool groups that tend to have more jobs queued than other
tool groups. Thus there are ten factors in all.

Two level, fractional factorial designs were selected be-
cause of their efficiency and simplicity, and because of the
broad range of design and analysis tools available for them.
Box, Hunter and Hunter [1978] is recommended as a general
reference. (In fact, it is interesting to note, that this reference
includes an example of the application of two level designs to
simulation. See Section 13.4.) The tool effects are labeled
A, B, C, D and E and the corresponding operator effects V,
W, X, Y and Z. In both cases a + effect corresponds to the
larger number of tools or an operator to tool ratio of 1:1 and
a — effect corresponds to the smaller number of tools or an
operator to tool ratio of 1:2. Changing any of these effects
will change the cycle time (waiting plus service time) at the
corresponding tool group but would be expected to only
negligibly interact with effects at other work stations. This
follows from the fact that the system is, for the entire exper-
iment, under the same load and is in stable, stationary states.
Hence the output rates from each tool group do not change
from experimental point to experimental point. The timing
of the tool group outputs would change but the overall output
rates would remain constant. This means that the input rates
would also remain constant. Hence the only two level inter-
actions one would expect to be significant would be AV, BW,
CX, DY and EZ. Thus, since the overall cycle time is a linear
combination of the tool group cycle times, we would expect a
model of the form
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where R is the mean cycle time for a particular run, u is the
mean cycle time over all runs, x,=+ 1, and y;,=+1. The
variables x; and y; reflect the levels, respectively, of the
number of tools and the operator to tool ratio at the
i=1,..,5 workstations. The coefficient y; represents the
interaction between tools and operators at the ith work-
station. The coefficients oy, ..., as, By, ..., Bs, y1,..., ys are
equal to one half of the estimated effects A, ... , E, V, ..., Z,
AV, ..., EZ respectively since they represent a unit change
and the variables x; and y; take on the values + 1. Hence
the proposed model has 16 possible parameters. As noted
earlier, in all cases x; = — 1 corresponds to the smaller num-
ber of tools and x; = + 1 corresponds to the larger number of
tools; y; = — 1 corresponds to an operator to tool ratio of 1:2
and y; = + | corresponds to an operator to tool ratio of 1:1.
Hence, a priori, we would expect «,, ..., as, fBi,..,0s all to
be nonpositive, producing a reduction in cycle time. We had
no expectations for the signs of the interactions, v, ..., ys.

2. THE DESIGN

To decide on an experimental design and later to analyze
this design, an internal IBM graphical-statistical package,
GRAFSTAT [Lane and Welch 1987] was used. It has a de-
sign of experiments component which allows the flexible de-
sign and analysis of two level fractional factorial experiments.
The initial design was a resolution 3 design in which the
interactions AV, BW, CX, DY and EZ were estimable. That
is, a design where none of the main effects and the inter-
actions AV, BW, CX, DY and EZ were confounded with one
another; a design where, given that the model is true, unbi-
ased estimates can be obtained for all the parameters. (A re-
solution 3 design is one in which none of the main effects are
confounded with one another.) Such a design was obtained
and required 16 runs. Thus, it was a 1/64 replicate design: a
design requiring only 1/64 of the number of runs required for
a complete study of the all 1024 possible combinations of the
10 factors. With 16 runs all the parameters of the model
could be estimated but there were no degrees of freedom for
estimating error because the state space spanned by the ex-
periment and the state space spanned by the model were
identical. Hence, confidence intervals could not be put on the
parameters of the model and there was no capability for test-
ing the assumptions of the model; namely that the five inter-
actions AV, ..., EZ were the only significant ones.

Hence the design was expanded to a resolution 3 design
with the interactions AV, BW, CX, DY and EZ estimable
and with 32 runs. This design left 16 degrees of freedom to
check for the accuracy of the model. The design matrix is
given in Table 1. Of the 16 degrees of freedom associated
with error: 14 are associated with two factor interactions, i.e.
two factor interactions are in their alias sets; and 2 are asso-
ciated with three factor interactions or higher. The alias
structure (out to 2 factor interactions) for the 15 effects in the
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Table 1. Design of Two Level Factorial Experiment

EXPERIMENT WORKSH

NAME OF EXPERIMENT
NUMBER OF FACTORS
RESOLUTION

NUMBER OF RUNS
DESIGN FRACTION
BLOCKING

NUMBER OF CENTER POINTS PER BLOCK :
NUMBER OF REPLICATIONS WITHIN BLOCK:

NUMBER OF BLOCK REPLICATIONS
FACTOR CODES

SPECIFIED ESTIMABLE INTERACTIONS
RUN A B C D E V W X Y
1 T T T S
2 + - + - + - + - +
3 -+ -+ - - 4+ -+
4 + + - - + + + + 4+
5 - + + + + + + - -
6 + + + + + + -+ -
7 - - 4+ + - 4+ + + +
8 - - - - - 4+ - + +
9 -+ - - 4+ + - - -
10 + + - -+ + + + -
11 - + + - - = - - +
12 - - - - - 4+ - + -
13 + - - - = + + - -
14 + - + + - + - - +
15 - + + - - - - = -
16 + + + - - - + + +
17 + - - + + - = - -
18 + + + + + + - 4+ o+
19 - - - 4+ + - + + +
20 + - - + 4+ - - - +
21 + + -+ - = - + -
22 - - 4+ - + - - + -
23 -+ + + + + + -+
24 - + - 4+ - - + - -
25 + - + - + - + - -
26 + + 4+ - - - + + -
27 + - 4+ 4+ - + - = -
28 -+ - - + + - - +
29 + - - - - + + - +
30 - -+ - + - - + +
31 - - + + - + + + -
32 + 4+ - + - - - + +

model is shown in Table 2. Notice that 8 of the 10 main ef-
fects and 3 of the 5 interactions are confounded with 2 factor
interactions. To investigate the cost associated with removing
this weakness we also requested a resolution 4 design with
AV, ..., EZ not confounded with any main effects, one an-
other, or with any other 2 factor interactions. In this design
the effects of the proposed model were not confounded with
any two factor interactions outside the model. In a resolution
4 design no main effect is confounded with any second order
interaction. However this design required 64 runs and the
advantages did not seem worth the extra cost of doubling the
number of runs.

Table 2. Alias Structure

EFFECT ALIASES
A BX DW
B AX EV
c DV
D AW CV
E BV
v BE CD
W AD
X AB
Y none
2 none
AV CW EX
BW DX
CX EW YZ
DY none
EZ

EET

TOOLS3
10
3
32
: 1/32
: NONE
0
: ABCDEVWXYZ
AV;BW;CX;DY; EZ
7 CYCLE TIMES EST. VARIANCES
+ 373.94 2.61
- 378.33 12.70
+ 370.94 5.30
- 377.09 6.08
+ 363.11 6.33
- 364.31 4.74
+ 378.25 1.50
- 384.40 6.90
- 373.22 6.67
+ 377.76 4.69
- 377.58 7.48
+ 387.75 5.01
- 385.08 6.16
- 367.26 4,53
+ 384.32 6.76
+ 376.60 4.39
- 370.00 7.86
+ 361.67 2.53
- 372.73 3.80
+ 368.92 3.84
+ 371.95 3.1
- 382.67 6.38
- 361.25 5.65
- 367.22 3.17
+ 373.44 12.22
- 371.35 13.07
+ 373.96 5.51
+ 375.54 5.99
+ 387.98 3.39
+ 379.30 10.18
- 368.96 2.28
- 367.69 3.26

In this design selection phase the availability of flexible,
interactive software was essential. For example, the ability to
specify the estimability of a set of interactions subject to a
resolution constraint with a given number of runs was critical
to arriving at an effective design. Each design took just a few
minutes to generate, including the time to type in the input
data (the information at the top of Table I).

3. THE ANALYSIS OF THE INPUT DATA

Thirty-two runs were made with the parameter settings
shown in Table 1. Each run was slightly longer than four
thousand observations for the product studied. This corre-
sponds to an operating period of approximately three years.
The output series corresponding to the first run is shown in
Figure 1. It is representative of all thirty-two output series.
All the output series were first viewed to make sure the model
was in steady state and to assess the number of observations
to be dropped to eliminate the initial transient. In all cases
steady state was reached during the first 400 observations so
400 observations were dropped from the beginning of each
series to generate the series used to obtain the responses.
Specifically, each response is the mean of the truncated series.

In this environment it is desirable to obtain internal esti-
mates of the variance of the responses, independent of the
model fitting process. This is important for two reasons.
First, one can check that the estimates are consistent with the
assumption of a constant error variance. Second, one can
obtain a pure error estimate which is independent of any
model assumptions and which can be compared with the error
estimate obtained from the residuals to the fitted model. To
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Figure 1. Cycle Time versus Observation Number for Run 1

this end the method of batch means was used to obtain ap-
proximately uncorrelated replications at each experimental
point.

An examination of the thirty-two correlation functions

showed that the correlation drooped abruntlv but remained
significantly different from zero out to about 60 to 80 lags.

In Figure 2 the sample correlation function for the first run
is plotted. The dotted limits on the tail should contain the
function 95% of the time assuming the true correlation func-
tion is zero for lags greater than 60 [Box and Jenkins 1976
Sections 2.1.6 and 6.2.2.]. When we batched the data into
batches of size 100 they passed this correlation function test
for white noise so, applying a margin of safety, we generated
ten batches of 360 observations for each series and assumed
the batch means to be uncorrelated. Hence for each of the
thirty-two runs we obtained, as an estimate of the variance
of the mean, the sample variance of the ten batches divided
by 10. These variance estimates are given in Table 1.

The statistical tests and procedures underlying the design
of experiments assume that all the responses have a common
variance. To test this assumption Bartlett’s test was applied
to the thirty-two sample variances. They were found to be
consistent with the assumption of a constant variance. As an
additional graphical test the distribution of the sample vari-
ances was examined. Let s? be the sample variance for the
ith run and let s* be the average of these sample variances
then 9s?/s? should be distributed approximately as a chi-
squared random variable with nine degrees of freedom. The
sample distribution was compared with the theoretical dis-
tribution both graphically (Figure 3) and using goodness-of-
fit tests. The sample distribution was consistent with the
assumption of a common variance. The first plot shows the
histogram overlaid with theoretical density. The second plot
shows the empirical cumulative distribution function (c.d.f.)
overlaid with the theoretical c.d.f.. The third plot shows the
two c.d.f.’s on probability paper such that the theoretical
c.d.f. plots as a straight line. After fitting the model addi-
tional graphical tests of the common variance assumption
were made and will be discussed below. For a good dis-
cussion of this issue see Hald [1952], Section 11.6. The final
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internal estimate of the error variance was the average of the
sample variances, s? .

4. THE ANALYSIS OF THE EXPERIMENT

The thirty-two measurements of the response, the de-
pendent variable, are given in the column labeled “"CYCLE
TIMES” in Table 1. As described above, they are the means
of the thirty-two series after removal of the effects of the ini-
tial transient. Each of the truncated series was approximately
3600 observations long. In addition to this data the inde-
pendently estimated error variance, as described earlier, was
5.75. The GRAFSTAT system provides a number of tabular
and graphical outputs for the analysis of the experiment.
These include tables of estimates with t-confidence intervals,
an analysis of variance table, a probability plot of effects and
a number of plots and tables for analyzing the residuals.

In the discussion below three questions are addressed.
First, is the the 16 variable model described in Section 1 jus-
tified? That is, is it reasonable to neglect all higher order
interactions with the exception of AV, BW, CX, DY, and EZ?
Second, if so, do the results indicate a model with even fewer
parameters? That is, are any of the 15 effects of the model
negligible? Third, how does one summarize the meaning of
the final model?

Table 3 contains the estimates of the fifteen effects along
with 95% confidence intervals. If the confidence intervals do
not contain zero then the effects are significant at the 0.05
level. Care has to be used in viewing such a table because,
since there are fifteen such effects, a few are very likely to be
significant by pure chance. The confidence statement holds
strictly only for an effect chosen a priori, not for one selected
from amongst the group on the basis of the confidence inter-
vals. This matter will be discussed again later when the
probability plot of the effects is examined. In Table 3 the ef-
fects A, B, C, D, E are significant at the 0.05 level. Hence
all the main effects due to the number of tools are justified in
the model. Table 3 shows also that none of the main effects
due to the operator to tool ratio are significant except for Z
and that effect is positive! Furthermore, only two of the
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Figure 2. Sample Correlation Function for Run 1
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Table 3. Table of Coefficient Values and Confidence Intervals

32 OBSERVATIONS R-SQUARED = 0.95762 STANDARD ERROR = 2.0938
16 VARIABLES ADJ R-SQUARED = 0.91789
0.95 CONFIDENCE LIMITS

EFFECT ESTIMATE STD ERR T STAT SIG LEVEL LOWER UPPER
MEAN 374.21 0.37013 1011 8.3267E-17 73.42 74.99

A -1.7375 0.74026 -2.3472 3.2114E-2 -3.3069 -0.16876
B -5.7105 0.74026 -7.7142 8.8619E-7 -7.2798 -4.1411
(o) =3.1171 0.74026 -4.2108 6.6340E-4 -4.6864 -1.5477
D -10.641 0.74026 -14.375 1.4438E~10 -12.211 -9.072

E -4.2504 0.74026 -5.7418 3.0308E-5 -5.8198 -2.6811
v 0.037602 0.74026 0.050795 9.6012E-1 -1.5318 1.607

W -0.40675 0.74026 -0.54946 5.9027E-1 -1.9761 1.1626
X 1.142 0.74026 1.5427 1.4245E-1 -0.42736 2.7114
Y -0.22023 0.74026 -0.2975 7.6991E-1 -1.7896 1.3491
4 2.2677 0.74026 3.0634 7.4269E-3 0.69839 3.8371
AV 2.0652 0.74026 2.7898 1.3113E-2 0.49585 3.6346
BW -0.96322 0.74026 -1.3012 2.1162E-1 -2.5326 0.60614
CX -0.65953 0.74026 -0.89094 3.8616E-1 -2.2289 0.90983
DY -0.37269 0.74026 -0.50346 6.2150E-1 -1.942 1.1967
EZ -3.0077 0.74026 -4.0631 9.0393E-4 -4.5771 -1.4384

interactions, AV and EZ, are significant. The analysis of
variance table gave the estimate of the error variance ob-
tained from the sixteen degrees of freedom orthogonal to the
model (i.e. the degrees of freedom for error) as 4.38. This is
consistent with the independent assessment of the error vari-
ance of 5.75 obtained from the analysis of the estimated var-
iances of the batch means thus providing confirmation for the
legitimacy of the sixteen parameter model.

Next consider Figure 4, a normal probability plot of the
effects. This is a plot of the effects on normal probability
paper. The fifteen effects of the model are labeled. The six-
teen effects orthogonal to the model are not. If none of the
.effects were significant, these 31 values would have a normal
distribution with mean zero and hence lie on a straight line
through the point (0,50). Notice that the effects A, B, C, D,
E, Z, AV and EZ are inconsistent with this. This confirms
the conclusions drawn from Table 3. Furthermore, viewing

effects in such a plot provides reasonable guidance in the
matter of judging the significance of selected effects because
they are viewed in the context of the expected normal dis-
tribution of insignificant effects. As an additional test Figure
5 shows a normal probability plot of the 23 effects orthogonal
to the suggested nine parameter model. The X axis scale is
the same as that of Figure 4 so an easy comparison can be
made. Notice that the 23 points do lie on a straight line
through (0,50). Hence the 16 error effects and the 7 effects
V, W, X, Y, BW, CX and DY are approximately normally
distributed with a variance consistent with the internal esti-
mate of 5.75 This is additional confirmation of a nine pa-
rameter model and hence of the sixteen parameter model.
Figure 6 contains a number of plots diagnosing the dis-
tribution of the residuals from the 9 parameter model. These
plots and the tests associated with them show the residuals to
be approximately normally distributed. The plot of the resi-
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duals against the fitted values indicates that the variance of
these residuals does not depend on the value of the response,
confirming the results of the common variance tests described
earlier. Finally, in Figure 7 the estimated variances at each
experimental point (the last column of Table 3) are plotted
against the fitted values. Again there appears to be no de-
pendence of the variance on the value of the response.
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Figure 7. Estimated Variances versus Fitted Values

Thus the final model is of the form

R(u, x5y X540 ¥ 005 5)

5
=u+ Z %X + Bsys + vy X + VssXsys-

i=1]

The situation with tool groups B, C and D is clear. Adding
tools reduces the cycle time by the estimated amounts of 5.71,
3.12 and 10.64 units respectively. Changing the operator to
tool ratio has no significant effect. The situation with tool
groups A and E is more complex because of the presence of
other significant effects. The estimated model can best be
understood by considering the 2 by 2 effect arrays. For tool
group A, where in addition to the main effect there is the
interaction AV, the array is

A+ -1.90 .16
- 1.96 -.16
- +

v

Because of the positive sign of the AV interaction, the benefit
of adding tools (row 1) is eliminated if the operator to tool
ratio is changed to 1:1. Again as with tool groups B, C, and
D, to reduce cycle time only the number of tools would be
“increased, not the operator to tool ratio. For tool group E the
situation is even more complex because of the significance of
the two main effects, E and Z, and the two factor interaction
EZ. In this case the array is

-1.76  -2.50
- .51 4,76
- +

z

E +

Here to change the operator to tool ratio to 1:1 (column 2)
without the addition of tools would result in an increase in the
cycle time. Further to change it to 1:1 with the addition of

tools results in only a marginal reduction in cycle time over
the addition of tools alone (element 1,2 vs. element 1,1).
These results for tool group E are puzzling and need to be
subject to further investigation.

5. SUMMARY

The analysis of the experiment indicates that the model
proposed in section 1 is a reasonable one. A review of ancil-
lary output data from each run corroborates the results of the
experimental analysis, namely that tool effects predominate.
It reveals that the main effects for the tools are ordered ac-
cording to utilization. At both levels for the factor, tool group
D, which has the largest tool effect, has less than 10% idle
time. The rest of the time is spent for processing jobs, setup,
preventative maintenance, and failure. Tool group B, which
has the second largest tool effect, is the next highly utilized,
and A, C and E all have approximately the same utilizations.
The fact that the tool groups spend so little time idle indicates
that operators are not the constraining resource.

The flexible, interactive software for designing the exper-
iments provided the capability of investigating several de-
signs. In just a few minutes we were able to improve the
design, going from 16 runs to 32 runs with specified estimable
interactions, and rejecting a 64 run design as not giving
enough benefit to make it worth the cost of doing the extra
runs. A full factorial design would have required 1024 runs
to estimate the effect of the ten factors, clearly out of the
question.

Thus with a highly efficient experiment we were able to
determine that the cycle time was sensitive to the number of
tools and insensitive to the operator to tool ratio. We were
able to order the tool sensitivity in a way consistent with tool
utilization. We determined that, in only two cases, was there
a significant interaction between number of tools and the op-
erator to tool ratio. Hence the experiment confirmed a simple
16 parameter model and suggested an even simpler 9 param-
eter model.
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