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ABSTRACT

Results are presented from empirical evaluations of the per-
formance of solution procedures on random binary knapsack and
weighted set covering problems in which correlation is induced be-
tween the objective function and constraint coefficients. It is con-
cluded that the performance of the solution procedures degrades
as the correlation induced among the test problem parameters
is increased and that test problems with structured dependence
should be used for many empirical evaluations of solution meth-
ods.

Since structured dependence in discrete optimization test
problems is desirable, ways to characterize the joint distribution
of a discrete bivariate random variable for any feasible correla-
tion are needed. The problem of finding a characterization with
the maximum value of the smallest probability for any possible
point is formulated as a linear program. An efficient algorithm
based on the Northwest Corner Rule and a simple probability
reallocation scheme is presented and demonstrated on a small
example.

1. INTRODUCTION

When a new solution procedure for some discrete optimiza-
ton problem is developed, questions about the method’s perfor-
mance arise. In the case of an exact (or optimizing) procedure,
these questions are most likely to deal with execution time or
the number of iterations performed by the procedure, while in
the case of heuristic methods, additional questions dealing with
solution quality often arise. In some cases, analytical results that
describe the worst-case behavior of the solution method can be
provided. Another type of analytical result might describe the
average performance. Worst-case results often apply to unusual
problem instances, and average-case results are frequently based
on restrictive assumptions. Consequently, empirical evaluations
of solution methods are sometimes conducted on test problems
that are assumed to be representative of the problems the proce-
dure might be called upon to solve.

In most empirical evaluations of algorithms and heuristics,
there are not enough real examples of problems to provide a sat-
isfactory evaluation. As a result, many random test problems
are generated and solved in an effort to provide an “adequate”
evaluation. In most cases when the random test problems are
generated, iid observations from some discrete uniform distribu-
tion are used to provide the objective function coefficients, with
the constraint coefficients normally generated in the same man-
ner. This standard approach may be inadequate for evaluating
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solution procedures because the assumptions made in construct-
ing the test problems (e.g., independence, uniformly-distributed
parameters, etc.) may be violated in real problems and because
the test problems generated may not be sufficiently difficult to
adequately challenge the solution methods.

In the next section, the effect of correlation among problem
parameters in random binary knapsack and weighted set cov-
ering problems is investigated. Computational results indicate
that strong positive correlation between objective function and
constraint coefficients in these problems substantially degrades
the performance of implicit enumeration routines and heuristics.
This implies that more rigorous empirical evaluations of solu-
tion procedures could be conducted if strong positive correlation
were induced among the parameters in test problems, instead of
randomly generating the parameters independently.

In §3, it 1s shown that the problem of finding an “optimal”
characterization of a discrete bivariate distribution with a speci-
fied correlation can be formulated as a bottleneck transportation
problem with a side constraint (BTPSC). Here, a characteriza-
tion of a discrete bivariate distribution is considered to be opti-
mal if the smallest joint probability value is as large as possible,
given the correlation specified. In §4, bivariate distributions that
result from the solution of BTPSC are compared to bivariate dis-
tributions that result from probabilistic mixing, or composition.
An efficient algorithm for BTPSC is presented in §5. Sugges-
tions for additional research in the areas of evaluation of solution
procedures and characterizations of discrete multivariate distri-
butions are discussed in §6. The results presented here and the
suggestions for future research should be of interest to those who
evaluate solution procedures and to those interested in simula-
tion.
2. CORRELATION AND SOLUTION PROCEDURE
PERFORMANCE

It is reasonable to expect that the coefficients in discrete op-
timization problems are not independent of one another. Two
empirical studies of the performance of exact and heuristic pro-
cedures on random test problems in which dependence was in-
duced among the test problem parameters are reported below.
Some remarks about the computational results follow.

2.1 Binary Knapsack Problems

Consider a binary knapsack problem where the value of the
items that are included in a knapsack is to be maximized, subject
to a single restriction on weight:
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Maximize
Zvjzi
i=1
Subject to
n
ijz,- S W
i=1
z;=0o0rl, j=1,2,..,n,
where:

o = { 1 ifitem j is included in the knapsack;
7710 otherwise;

v; > 0 is the value of item j; w; > 0 is the weight of item j; W
is the capacity of the knapsack (in weight); and n is the num-
ber of items considered for inclusion in the knapsack. It is easy
to imagine a direct, although not perfectly direct, relationship
between the value of an item and its weight.

Moore (1989) has studied the performance of an implicit enu-
meration (branch-and-bound) routine on binary knapsack prob-
lems with several different correlations between the objective
function and constraint coefficients, including the uncorrelated
and independent case. (This study was suggested by an exer-
cise in Bratley, Fox, and Schrage (1983).) In this investigation,
a set of ten, 20-variable knapsack problems was generated for
each of the following correlations between objective function co-
efficients, vj, and constraint coefficients, w;: -0.99, -0.5, 0, +0.5,
+0.99. The objective function coefficients were generated uni-
formly over the integers from 1 to 100, and the constraint coef-
ficients were generated uniformly over the integers from 1 to 50.
The right-hand side constants, W, were given by [Zﬁ?__l w]-/2]. A
probabilistic mixing method that appears in Schmeiser and Lal
(1982) was used to generate the problem parameters. Common
random numbers were synchronized across correlation values.

See Table 1 for a summary of the implicit enumeration it-
eration counts observed. These results suggest that the number
of iterations required to solve a knapsack problem to optimal-
ity is an exponential function of the correlation of the problem
parameters. Let 7; denote the number of implicit enumeration
iterations and p; denote the target correlation among the param-
eters in test problem ¢. Moore fit the following regression line to
the data summarized in Table 1:

Inn; = 8.7+ 2.6p;.

The coefficient of determination for this regression line is 0.9137.

This phenomenon is explainable to at least a limited extent.
When the parameters of a knapsack problem are highly positively
correlated, many variables are likely to have similar v;/w; ra-
tios. Consequently, many items are likely to seem about equally
attractive for inclusion in the knapsack. Conversely, when the
problem parameters are highly negatively correlated, the items
corresponding to those variables with relatively large v; and rel-
atively small w; are the principal candidates for inclusion in the
knapsack; the other items (variables) with small v; and large
w; are almost certain to be excluded from the optimal knapsack
contents. The fact that the number of iterations increases as
the target correlation increases from near —1 to near +1 is not
surprising. However, it was not anticipated that the number of
iterations would be an exponential function of the target corre-
lation.

2.2 Weighted Set Covering Problems

Another investigation has been carried out by Moore (1990)
to evaluate the performance of two greedy heuristics and implicit
enumeration on the weighted set covering problem. The weighted
set covering problem has the following form:

Minimize
n
> _ciz;
i=1
Subject to
n
Za.‘JIjZ 1, i=1,2,...,m
=1
z;j=0o0rl, 37=12,..,n,
where:

2= { 1 if set 7 is included in the cover;
77 10 otherwise;
o = {1 if ¢ is an element of set j;
Y7 10 otherwise;
¢; > 0 is the cost of set j; and n is the number of sets considered

for inclusion in the cover.
If one thinks of a set covering problem as pertaining to the

Table 1. Statistics on Iterations to Optimality for Knapsack Problems

Statistic | p=~0.99 | p= —0.50 (i’x)ldze[?.) p=+05|p=+0.99

Mean 985.00 | 1,675.40 | 5,332.20 | 27,601.20 | 117,400.40
Median 585 1,320 3,465 | 19,661 95,943
Maximum || 2,595 3437 | 16,111 | 56,869 | 259,789
Minimum 185 473 929 3,769 28,001

Std. Error || 285.22 333.15 | 1,467.44 | 5844.99 | 21,899.32
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construction of warehouses, each with certain capacities that
would enable them to serve specified retail establishments, then
the constraints would guarantee that each retail outlet is served
by at least one warehouse. The problem is to build the cheapest
collection of warehouses that can serve all of the retail outlets. A
warehouse that would be able to serve many retail establishments
(ie., one with a large column sum, ¥; ;) would require much
capacity and, therefore, be relatively costly to build. Again, it
seems that standard approaches for evaluating solution proce-
dures would not include enough realistic weighted set covering
examples in which there is clearly dependence among the prob-
lem parameters.

All of the problems in this study had 50 variables and 20
constraints. The objective function coefficients were generated
uniformly over the integers from 1 to 100. The distributions of
the column sums (constraint coefficients) were chosen so that the
target constraint-matrix densities were 0.1, 0.2, and 0.3. Both
discrete uniform and binomial distributions were used for the
column sums: U[1,3], U[1,7], U[1,11], Bin(20,0.1), Bin(20,0.2),
and Bin(20,0.3). (Actually, zero-valued binomial variates were
rejected and replaced with positive variates. As a result, the
expected constraint-matrix densities were slightly higher than
the target densities.) Let ppmin and pme: be the minimum and
maximum achievable correlations between the objective function
coeflicients and the column sums. Five test problems were ran-
domly generated using synchronized common random numbers
and probabilistic mixing for each combination of column-sum
distribution and the following correlation values: ppnin, Pmin/2,
0, Pmaz/27 and Pmaz-

See Table 2 for a summary of the iteration counts observed
when implicit enumeration is used to solve the random weighted
set covering problems. The implicit enumeration program used
for the set covering problems was not the same program that
was used for the knapsack problems. Rather, it was specifically
intended for set covering problems and, therefore, permitted the
economical solution of problems with more variables. The im-
plicit enumeration results obtained are consistent with those ob-
served for the knapsack problem: the number of iterations tends
to increase exponentially as the target correlation between the ob-
jective function coefficients and the sums of the binary constraint

coefficients increases. However, it seems that the problems with
target correlation pma./2 were not as difficult to solve as those
with independent parameters (p = 0).

The performance of two set covering heuristics was also in-
vestigated by Moore (1990). She used a greedy primal method
that begins with the maximal cover, i.e, all z; = 1, and selec-
tively removes redundant elements from the cover until removing
any additional elements would result in an infeasible solution.
This method is referred to here as PRIMAL. She also used a
dual procedure, an extension of the method in Chvétal (1979)
and referred to here as DUAL, that begins with all z; = 0, adds
elements until a cover is formed, and finally calls PRIMAL to
remove redundant elements.

See Table 3 for a summary of the performance of the two set
covering heuristics. The results for the two set covering heuris-
tics indicate that the same problems that require many implicit
enumeration iterations are the most difficult problems for the
heuristics as well: fewer optimal solutions and poorer approxi-
mate solutions are found when there is high positive correlation
between the objective function coefficients and the constraint-
matrix column sums. This is true for both heuristics, although
DUAL seems to perform better than PRIMAL. As was observed
with the implicit enumeration results, the performance of the
heuristics is not a nondecreasing function of the target correla-
tion. In fact, the problems with uncorrelated and independent
parameters seem reasonably challenging, especially when the tar-
get constraint-matrix density is 0.1.

2.3 Discussion of Empirical Results

The results described for knapsack and weighted set cover-
ing problems suggest that empirical evaluations of solution pro-
cedures should include problems with structured dependence, at
least when a reasonable argument for dependence can be made.
The outcome will be that the evaluation of the solution proce-
dures will be conducted on test problems more similar to those
that may be encountered in practice. By evaluating the perfor-
mance of solution procedures on problems with independently
distributed parameters, the performance of the procedures being
scrutinized may not be adequately evaluated.

Table 2. Average Iterations to Optimality for Weighted Set Covering Problems

Column-Sum p=0
Distribution || p = pmin | p = pmin/2 | (indep.) | p = prmas/2 | p = Prmae
U[1,3) 157.2 541.6 3,090.0 674.4 9,310.6
U1,7) 63.6 80.8 280.2 212.8 5,873.8
U[1,11) 13.6 24.0 34.6 245.4 6,757.8
Bin(20;0.1) | 1138 284.2 1130.0 337.0 1,663.0
Bin(20;0.2) 89.8 54.4 590.2 607.8 4,103.8
Bin(20,0.3) 14.4 41.6 117.4 90.6 2,499.8
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Table 3. Average Relative Error for Set Covering Heuristics (%)

Column-Sum p=0
Distribution Method P = Pmin | p= pmin/2 (mdeP) P = pma:/2 P = Pmaz
U(1,3] PRIMAL 0.95 1.51 15.55 7.52 19.00
DUAL 0.42 0.06 6.57 1.11 4.81
U(L,7) PRIMAL | 0.71 7.20 175 17.19 19.80
DUAL 6.33 45.40 2.83 7.76 9.96
U[1,1]] | PRIMAL 0 6.60 9.6 10.68 16.28
DUAL 0.61 2.22 1.96 8.28 5.07
Bin(20,0.1) | PRIMAL 1.99 15.67 12.59 14.72 20.33
DUAL 1.03 4.68 4.55 2.73 14.99
Bin(20,0.2) [ PRIMAL 0 22.04 8.54 5.44 13.92
DUAL 0 3.75 7.64 3.89 9.94
Bin(20,03) || PRIMAL || 5.31 1.92 776 23.50 12.83
DUAL 0 1.50 2.42 0 10.25

The results for the weighted set covering problems are quite
interesting. It seems that the same problems can be used to test
both algorithms and heurisitcs. Although this is fairly common
practice, these results provide some justification for this conven-
tion. The pattern of performance degradation for the solution
methods for the weighted set covering problem is not as clear as
that for the implicit enumeration routine applied to the knap-
sack problem. Perhaps this is due to the fact that there were 20
constraints in the the weighted set covering problems and only
one in the knapsack problems. The interaction of the set cover-
ing constraints, which could be difficult to measure, may be an
important factor in solution method performance.

For the investigations described in this section, observations
of correlated random variables were generated with probabilistic
mixing (see, for example, Schmeiser and Lal (1982)). A disad-
vantage of the mixing procedure is that, for a specified correla-
tion value, only one characterization of a bivariate random vari-
able is possible. Furthermore, when one is interested in sampling
uncorrelated random variables, one samples from independent
random variables by default. In the next section, a new, opti-
mization approach for the characterization of a discrete bivariate
random variable is proposed. By changing the objective function
and/or constraints in the optimization model, different character-
izations of a discrete bivariate random variable can be found for
a single correlation value. Furthermore, if the characterizations
found with this approach were used to generate observations,
uncorrelated random variables would not necessarily be indepen-
dent. Additional discussion of alternative characterizations can
be found in §4.

3. OPTIMAL CHARACTERIZATIONS OF BIVARI-
ATE DISTRIBUTIONS

It is useful for evaluators of solution procedures to be able
to randomly generate test problems with specified dependence
structures. In most cases, there is an infinite number of ways to
characterize a joint distribution of two discrete random variables
with a particular correlation value. Here, the concern is with
finding an optimal characterization of such a joint distribution. A
characterization of a joint distribution is considered to be optimal
if the smallest joint probability for any possible realization is
maximized.

The problem of choosing a preferred characterization of a
discrete multivariate random variable with a specified correla-
tion structure can be formulated as a linear program (Peterson,
1990). Suppose one wishes to generate observations from a dis-
crete bivariate random variable, (Y, Y>), where Y; is distributed
over the n; values y;;, according to the pmf fi(y:;), ¢ = 1,2;
Ji = 1,2,...,m;, and Corr(Y},Y;) = p. The decision variables in
this linear program are: zj j, = Pr(Y; = y1;,,Y2 = y2;) and
6 = minj, ;, {z;,.;,}. The complete formulation is:

Maximize
0 (1
Subject to
Tjijz — 6>0, Vi1, J2 (2)
nz
> i = Alwi), Vi (3)
j2=1
ny
Z 255, = fa(¥232), V2 (4)
n=1
n  n2
Y D Via¥enThg = E(NY3) (8)
n=1j=1
Ti1idz 2 0) le)jb (6)

where E(V;Y;) = p (Var(¥;)Var(¥))} + E(Y;)E(Y3).

The objective function (1) maximizes the smallest probabil-
ity value assigned to any realization (y1;,,92;) of (¥1,Y2). Con-
straint set (2) enforces the definition of §. The constraint sets
(3) and (4) insure that the bivariate probabilities conform to
the marginal distributions. Constraint (5) enforces a specified
correlation, p, between Y7 and Y3. Finally, since each decision
variable represents a probability, constraint set (6) is included to
guarantee that all of the probabilities are nonnegative. In this
formulation, there are n; + n, + 1 structural constraints in n;n,
variables. The structural constraint sets (3) and (4) are the con-
straints for a transportation problem, one of the easiest types of
linear programming problems to solve. The linear program above
can be classified as a bottleneck transportation problem with a
side constraint (BTPSC), where the side constraint is constraint
(5). This approach to representing probability assignment prob-
lems as transportation problems was used by Roach and Wright
(1977) to find optimal antithetic sampling plans.
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Evans (1984) has shown that the Northwest Corner Rule
(NWCR) can be used to find an optimal solution to the following
transportation problem:

Minimize o e

z Z: Y151 Y252 %5142 (7)

1=1j2=1

Subject to (3), (4), and (6),

when y11 29122 -+ 2 g1n, 2 0and 0 < yz 922 < -+ < Yo,
Peterson (1990) has shown that the nonnegativity restriction for
the y;; s 1s not necessary for Evans’ result.

Note the objective function (7) gives the minimum achiev-
able value for E(Y1Y?) when a valid probability assignment, i.e.,
one that satisfies (3), (4), and (6), is made to the ordered pairs
(Y15, Y2;,)- This is the minimum-correlation probability assign-
ment as well. Denote the value of E(Y7,Y;) associated with this
solution as K ;.

Suppose that y;; < y2 < -+ < y1,, instead and the objec-
tive function (7) is maximized. In this case, NWCR can be used
to find the probability assignment with the maximum achievable
correlation between }] and Y, (Peterson, 1990). The value of
E(Y1,Y3) associated with this solution is denoted by K,..,. Note
that the minimum- and maximum-correlation probability assign-
ments for (¥3,Y3) can nearly be found by inspection.

A tight upper bound on the solution value to BTPSC for any
correlation value can be found.

Lemma 1. (Peterson, 1990) For all feasible values of p,

{fx(yu, )} {f2(y2jz)}} _

n n
Proof: Since ¥7'_ 2,5, = folv2i,), Via, and 8 <z, 5,
Vi1, J2, 8 < fa(y25,)/n1, Via. Therefore, § < min,, {L::’L)} A

similar argument yields § < minj {f'—(:'fL)} When the bounds
on 6 are combined, the desired result is obfained. O

,min
J2

min
n

(9§t9‘=min{

Let 2/ . = z;;, — 0. NWCR can be used to solve the
following transportation problem for the minimum-correlation
probability assignment for (¥7,Y>) in which the smallest joint
probability is 6:

Minimize
n n2
Z Z ylhyzjz(‘t;.,j; + 0) (8)
h=1j=1
Subject to
nz
’ .
Z Tiige = fl(y‘jl) = nyf, V]l
J2=1
ny
' .
Z Tivg = fz(yZJz) - n10) V]Z
n=1
i 20, Vi,
when yi1 > 1, > -0 > g and 3y, < Y2 < 0 < Yony-

The value of E(Y},Y;) associated with this solution is denoted
by Koin- yn <y < - < Yin, instead and the objective
function (8) is maximized, then the maximum-correlation proba-
bility assignment in which the smallest joint probability is § can
be found using NWCR. Denote the value of E(Y1, Y3) associated
with this solution as K __.
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Note that § = 6~ for all K € [K;,,., K ..]-

Proposition 2. (Peterson, 1990) If fi(y,;) = ni", Y71, and
fo(y2ir) = ny ", Vi, then Ky = Ko, = E(V1)E(Y).

maz
Proof: From Lemma 1, 8" = (nyn;)~!. If§ = (nynz)7?, then
z; 5, = (nim2)7', V31, Jo. Since this is clearly the only solution
to BTPSC for which § = 6, it must be that K, = K .
Furthermore, this solution represents the probability assignment
for the case when Y; and Y, are independent. Consequently,

Kpin = Kinaw = B(V1)E(Y3). O

maz

The proof of Proposition 2 is different from the one which ap-
pears in Peterson (1990). This propositon illustrates that there
are special cases of the results presented here for certain distri-
butions, like the uniform distribution. Other results for distri-
butions that satisfy certain symmetry properties can be found in
Peterson (1990).

Consider the following example:

(1) =02, £1(2) =038, f1(3) =032, fi(4) = 0.1

F(2) =01, fo(3) = 03, fo(5) = 0.2, fo(6) = 0.2, fo(7) = 0.2.

For this example, E(Y;) = 2.32, Var(¥;) = 0.8176, E(Y)
4.7, Var(Y;) = 3.01, and §° = 0.02. The NWCR solutions for
E(Y1Y2) = Konin (8 = 0), Ko (6 =0), K, (6 =67),and K,
(8 = 6°) are shown in Figures 1, 2, 3, and 4, respectively. For this
example, Kpmin = 9.40, K7, = 10.26, K, .. = 11.48, and Kpqz =
12.30. This means that the minimum and maximum achievable
correlations for any joint distribution of Y7 and Y; are -0.95 and
+0.88, respectively, and the minimum and maximum achievable
correlations when the probability of any possible realization is at
least 0.02 are -0.41 and +0.36.

Y,
2 3 5 6 7
41010 0 0.10
3 0.30 | 0.02 0.32
Y
2 0.18 (020 0 |0.38
1 0.20 | 0.20

0.10 0.30 020 020 020
Figure 1. NWCR Solution for E(Y;Y3) = Knin

4. COMPARISON TO PROBABILISTIC MIXING

The probabilistic mixture that appears in Schmeiser and Lal
(1982) is:

(1= p/Pmas) (Y YY) + p/pmaz(YiT, Y51), if p > 0;

.Y = L 0 .
(¥, %) {(1 _P/Pmin)(}{'r)zl)+P/Pmin(}'1 Y), ifp<o;
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Y,
2 3 5 6 7
1]0.10 | 0.10 0.20
2 0.20 | 0.18 0.38
"
3 0.02 | 0.20]0.10|0.32
4 0.10 | 0.10

0.10 0.30 0.20 0.20 0.20
Figure 2. NWCR Solution for E(Y;Y3) = Kpas

Y
2 3 5 6 7
4| 0 0
310.02]0.20 0.22
Y
2 0.020.12 | 0.12 | 0.02 | 0.28
1 0.10 { 0.10

0.02 0.22 0.12 0.12 0.12
Figure 3. NWCR Solution for E(Y1Y2) = K i

Y,
2 3 5 6 7
1]0.02(0.08 0.10
2 0.14 | 0.12 | 0.02 0.28
Yy
3 0.10] 0.12 | 0.22
4 0 0

0.02 0.22 0.12 012 0.12
Figure 4. NWCR Solution for E(Y;Y?) = K.,
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where prmaz (Pmin) is the maximum (minimum) possible correla-
tion between Y] and Y,. YI’ and YZI are independent, and ¥;"
(¥7") and Y3t (Y;) have the maximum possible positive (nega-
tive) correlation. Note that if p = 0, then Y; and Y5 are indepen-
dent.

It is interesting to note that solutions to BTPSC actually
represent a new mixture of bivariate distributions that is an al-
ternative to the probabilistic mixture above:

(Y1, Y3) = 1n20(Uy, Uz) + (1 — nyna6)( 2y, Z,),

where U, and U, are independently distributed uniform ran-
dom variables with n, and n, possible values, respectively, and
(2., Z,) is a bivariate distribution with at most n; +n,—1 possible
points. This observation may provide insight for the construction
of an efficient composition-based variate generation procedure.
Recall the example that was introduced in §3. Figure 5 shows
the joint pmf of ¥; and Y, that is obtained using probabilistic
mixing for p = —0.64. The joint pmf of ¥} and Y, that results
from the solution of BTPSC with p = —0.64 is shown in Fig-
ure 6. Generally speaking, the corresponding joint probability
values are similar in magnitude in these two cases. This may
be explained by the fact that as p is decreased toward poin, the
two approaches will give increasingly similar joint pmfs. When
P = Pmin, both approaches yield the same pmf, that of (¥;7,Y;").

Y,
2 3 5 6 7
1| 0.0067 | 0.0199 | 0.0133 | 0.0133 | 0.1468 | 0.20
2 0.0126 | 0.0379 | 0.1454 | 0.1588 | 0.0253 | 0.38
Y
31 0.0106 | 0.2322 | 0.0346 | 0.0213 | 0.0213 | 0.32
4(0.0701 | 0.0100 | 0.0067 | 0.0066 | 0.0066 | 0.10

0.10 0.30 0.20 0.20 0.20
Figure 5. Probabilistic Mixture of ¥; and Y2 (p = —0.64)

Greater differences in the joint pmfs that result with these
two approaches can be seen if we consider the case where p = 0.
Figure 7 shows the joint pmf for probabilistic mixing, that of
(Y, Y]), and Figure 8 shows the joint pmf that results from the
solution of BTPSC. The probability values look more dissimilar
in this case. The minimum probability value for the BTPSC pmf
is twice as large as the minimum probability value for the other
pmf.

Note that most characterizations of ¥; and Y, have finite
probabilities for every possible point. The only cases where a
joint probability value is zero occur when p = prae 01 p = pmin.

5. SOLUTION PROCEDURE

Peterson (1990) has devised an algorithm that allows one to
find the probability assignment for (¥;,Y) that maximizes (1)
for any feasible correlation. (It is not possible to achieve perfect
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Y2

2 3 5 6 7
1{0.012| 0.012 | 0.012 | 0.012 | 0.152 | 0.20
210.012 | 0.016 | 0.164 | 0.164 | 0.024 | 0.38

¥

310.024 | 0.260 | 0.012 | 0.012 | 0.012 | 0.32
410.052 (0.012|0.012 | 0.012 | 0.012 | 0.10

0.10 030 0.20 020 0.20

Figure 6. BTPSC Mixture of ¥; and ¥; (p = —0.64)

Y,

2 3 5 6 7
110.020 | 0.060 | 0.040 | 0.040 | 0.040 | 0.20
210.038(0.114 | 0.076 | 0.076 | 0.076 | 0.38

Y
3(0.032 | 0.096 | 0.064 | 0.064 | 0.064 | 0.32
41 0.010 | 0.030 | 0.020 | 0.020 | 0.020 | 0.10
0.10 030 020 020 0.20

Figure 7. Joint p.m.f. - ¥ and Y; Independent

Y,

2 3 5 6 7
1] 0.0400 [ 0.0755 | 0.0200 | 0.0200 | 0.0445 | 0.20
2 0.0200 | 0.0400 | 0.1400 | 0.1400 [ 0.0400 | 0.38

Y

3 0.0200 | 0.1645 | 0.0200 | 0.0200 | 0.0955 | 0.32
41 0.0200 | 0.0200 | 0.0200 | 0.0200 | 0.0200 | 0.10

0.10 0.30 0.20 0.20 0.20

Figure 8. Joint p.m.f. - Y] and Y; Uncorrelated
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correlations (i.e., 1) for all pairs of random variables ¥; and
Y2.) This method begins by finding the four solutions mentioned
in §3 with NWCR. If any of the Kpin, K;i, Koy OF Koz 50-
lutions corresponds to the specified correlation value, the desired
instance of BTPSC is solved. If not, the procedure reallocates
probability in such a way that (3), (4), and (6) are always sat-
isfied and terminates when the reallocation process produces a
probability assignment that satisfies (5) for the specified correla-

tion value.

Suppose that the BTPSC solution is sought for E(Y;Yz) = K,
where K € (K[, Knaz)- In this case, there is no change in the
optimal solution value, §°. If one starts from the K, solution
to BTPSC, one simply has to reassign the excess probabilities,

ie., the 2 s, from realizations which contribute little to

ny n2

z z ylj‘yzjz(w.li!.iz + 0') = E(YIYZ)

f1=1j2=1

to those realizations that contribute more to this expectation,
until this expectation equals K.

If K € (Kmin, Kjnin) of K € (Kjuz) Kimaz), the objective
function value will continually change as K is decreased below
K., or increased above K,,,. A reallocation process that re-
duces 6 by some A > 0 and reallocates probability to all of the
possible realizations can be used in this case. Essentially, this
process works like a parametric analysis for the parameter K.

NWCR finds a basic feasible solution to a transportation
problem. Define the NWCR path,

{plyPZy ~~;pn|+nz—l})

to be the ordered list of cells in the transportation tableau that
correspond to the basic variables chosen by NWCR, and let the
cells in the path be referenced by row and column numbers. The
first cell in the path is always (1,1), and the last cell in the path
is always (n,,n,).
Let 7;, ;, be the reallocation coefficient for the cell in row j;
and column j,. The 7j, j,s are integer and denote the multiple
of A that is to be added to each cell when probability is redis-
tributed. For all cells (ji,7,) that are not on the NWCR path,
T3 = 0. If p, = (1,2), then 7y, = n;. Otherwise, ry; = ny. If
Pritnz-2 = (M1, 2 — 1), then 7, ., = n;. Otherwise, 7., = n2.
The remainder of the reallocation coefficients are determined so
that: e
Z Tz = M2, Yja
n=1

and
nz
z T =M1, Vi
J2=1

If K € (Kmin, Kpin) (K € (Kine, Kimaz)), start the real-
location process from the solution for K = K, (K.,.)- Let
T = Yia1 Y1 W13 ¥25,T5, 5, be the working value of K. The
nominal reallocated probability value is:

{

If A= (K —7)/§, then the BTPSC solution is updated and the
solution procedure terminates. Otherwise, the BTPSC solution
is updated, the solution path (basic feasible solution) is modified
by flipping the cell that provided the limiting value for A over
the solution path, and the process is repeated until the solution

K-7

§

I
T

A = min , min
Tiz<O T
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for the desired value of K is found.
The algorithm can be stated as follows:

- Find K,;, and K,,,, solutions with NWCR.
If K < Ky or K > Koz, stop as the problem is infeasi-
ble. If K = K,;, or K = K az, stop.
Otherwise, continue.

2. Find K, and K, solutions with NWCR.
HK=K,, orK=K,,., stop.
If K € (K, Kraa), g0 to Step 3.

If K € (Kmin, K4:i), g0 to Step 6.
If K € (K a2 Kmaz), 80 to Step 7.

maz)

- Begin with the NWCR solution for K = K7, .
Let (61 f) = pl a'nd (T, S) = pm+n—l~
T= Z;"|I=1 Z?;=1 Y151 Y252 Tj1 52

L= (yzf - yz:)(ylr =~ Y1e)-

- B =min{(K —1)/¢,2.4,2,,}.
:c;.f4—:n:f+ﬂ. zb«—zéf_’@,

I:s — ‘rtlu+ﬂ‘ I:.‘ A E:,, _/3'

If ﬂ = (K - T)/¢, then Tj 52 =

stop. Otherwise, 7 «— 7 + (G¢.

If B =z, then (e, f) = pe+s. Otherwise, (r,5) = p,y,_s.

Go to Step 4.

+ 01 le:ij and

'
T2

. Begin with the NWCR solution for K = K,
T = E;"‘l=1 E?::l Y151 Y25, Z5, 52 GO to Step 8.

. Begin with the NWCR solution for K = K

maz’
— 2 . .
T= Zjl =1 2.7'2=1 Y151 Y252 5y gz -

in®

. Calculate reallocation coefficients, 7, ;,, V41, j2.
n2 . . P
2]‘2=1 Yi yn(":n J2

S 8= Z;’?:l 1).
A = min { £=2 '_’u_lz}}

5 My, <0\ 70,

10. § — 6 —A. 7 — 7+ 8A.
z.’il Jz zfin.j: + rJ'LJ'zA> le,jz-
If r = K, then z; ;, = 3;1.:‘: + 4,
Otherwise, go to Step 11.

V1, J2, and stop.

11. Modify the NWCR solution path and go to Step 8.

Suppose that § = +oo for all K € [K, ., K;...]. Peterson
(1990) points out that —1/§ is the shadow price of the side con-
straint (5).

Recall the example problem presented earlier and suppose
a probability assignment with E(Y;Yz) = 9.90, or p = —0.64,
is sought. The algorithm begins with the NWCR solution for
K = K, (see Figure 3). The reallocation coefficients are shown
in Figure 9. After one iteration, the desired solution is found.
This solution is displayed in Figure 10.
6. SUMMARY AND CONCLUSIONS
From the empirical evaluations of the performance of implicit
enumeration routines on binary knapsack and weighted set cover-
ing problems and of greedy heuristic procedures on the weighted
set covering problem, it seems that standard approaches for em-
pirically evaluating solution procedures do not sample enough
difficult and realistic test problems; i.e., those problems in which
there is high positive correlation between the objective function
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Y,
2 3 5 6 7
4( 5 5
3| -1 6 5
Y
2 -2 4 4 -1 |5
1 5 |5
4 4 4 4 4

Figure 9. r;, ;s for E(V,Y2) = K7, Solution

Y,

2 3 5 6 7
41 0.040 0.040
3(0.012]0.248 0.260

Y,

2 0.004 | 0.152 | 0.152 | 0.012 { 0.320
1 0.140 | 0.140

0.052 0.252 0.152 0.152 0.152

Figure 10. Optimal Solution (2! . s) for E(Y,Y3) = 9.90

1.2

and constraint coefficients. In order to conduct better evalua-
tions of solution procedures, methods for characterizing discrete
bivariate distributions that provide more realisitic and more chal-
lenging test problems are needed.

The problem of finding the characterization of a discrete bi-
variate random variable for which the smallest joint probability
value is as large as possible was shown to be a bottleneck trans-
portation problem with a side constraint, BTPSC. An algorithm,
based on NWCR and a simple probability redistribution scheme,
was devised to solve BTPSC for any correlation value.

It is suspected that this new characterization, regardless of
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correlation value, would provide more challenging test problems
for empirical evaluations of solution procedures for integer pro-
grams than conventional problem generation methods. Evalu-
ations of solution methods would be conducted over the same
space of problems as in the case where problem parameters are
distributed independently. But, the problems generated would be
increasingly likely to have some dependence structure as |p| —
+1.

There are many opportunities for more research in this area.
For example, the studies by Moore (1989, 1990) could be repeated
for more positive correlation values to learn more precisely how
correlation affects the performance of implicit enumeration and
greedy heuristics. Peterson (1990) has shown how the problem
of maximizing the smallest joint probability value for a multi-
variate random variable with any feasible correlation structure
can be formulated as a linear program. Perhaps an algorithm
can be devised to solve this linear program. The linear program-
ming approach might be extendable to include distributions with
a countable number of possible values (e.g., the Poisson distribu-
tion). It would be interesting to consider other objective func-
tions that would lead to different characterizations of discrete
bivariate and multivariate distributions. Also, an empirical eval-
uation of the performance of solution procedures when test prob-
lems are generated using the bivariate characterization based on
probabilistic mixing and the one based on BTPSC mixing should
be undertaken. Finally, efficient schemes for generating observa-
tions of discrete bivariate random variables characterized by the
approach described here should be developed.
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