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ABSTRACT

Multiple comparisons with the best (MCB) is one approach
for selecting the best of a finite number of system designs via
simulation. However, there is currently no MCB procedure for
steady-state simulation experiments. This paper proposes a pro-
cedure based on batching and derives the basic theory needed to
design a batching algorithm.

1. INTRODUCTION

In practice, stochastic simulation is invariably used to com-
pare alternative system designs and select a good, or ideally the
best, design. Because stochastic simulations are sampling exper-
iments, selection or optimization of system design must be done
in the presence of sampling error, meaning the best design can
never be determined with certainty. When the number of alter-
native designs is large and the simulation model is complex, the
simulation experiment may be computationally expensive. How-
ever, the most significant cost is often the cost of unknowingly
selecting an inferior system design. Thus, there is a need for
statistically efficient methods for optimization via simulation.

Optimization via simulation is currently an area of intense
research interest. Much of this research concentrates on systems
where the design or decision variables are continuous, and sys-
tem performance measures are (at least assumed to be) con-
tinuous functions of the decision variables. Developments in
this area include perturbation analysis, likelihood-ratio meth-
ods, importance-sampling methods, frequency-domain methods,
stochastic approximation and response-surface methods. Some of
these methods may be adapted to discrete-decision-variable prob-
lems, but they are most naturally applied when the variables are
continuous.

In many practical problems, however, there are a finite num-
ber of alternative system designs; these designs may arise from
combinations of equipment, schedules or facilities, subject to con-
straints on the available budget or technology (several examples
are listed below). Research on optimizing this class of problems
has concentrated on the methodology of ranking and selection.
Hsu and Nelson [1988] demonstrated that multiple comparisons
with the best (MCB) is a viable alternative to ranking and se-
lection. MCB is one of a family of multiple-comparison proce-
dures that are applicable in single-stage experiments and provide
simultaneous inference about relationships among all systems.
However, there are unsolved problems limiting the usefulness
of multiple-comparison procedures in general simulation experi-
ments. One of these problems is extending multiple-comparison
procedures to the class of steady-state simulation experiments.
We propose a solution to this problem based on batching.
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2. BACKGROUND

In his survey of optimization via simulation, Glynn [1986]
classified optimization problems based on their decision space.
Within his classification scheme, this paper addresses problems
with a finite-dimensional, discrete decision space, in which the
number of possible decisions (system designs) is also finite. Many
practical problems are of this type. Examples include, but are
not restricted to:

1. A combination of robots and material-handling equipment
is to be chosen to form a flexible manufacturing system
that maximizes the expected production rate, subject to a
budget constraint on the equipment purchased.

. Similar to the previous example, a computer system is to
be designed by choosing components from different manu-
facturers to minimize expected response time, subject to a
budget constraint.

. A limited amount of buffer space is to be allocated between
work stations in an assembly system in order to maximize
expected throughput. If buffer space is measured in units
of number of items stored, then there are a finite number
of possible system designs.

. One of a number of possible schedules is to be chosen for
a job shop to minimize the expected total tardiness of all
jobs due that week. The possible schedules may result from
applying a number of scheduling heuristics.

. A reorder point, s, and a stock level, S, are to be chosen to
minimize expected cost per period for an inventory system
containing discrete items. If there is a physical upper limit
on the stock level, then there are a finite number of (s, S)
combinations.

Unless some relationship among the system designs is known
a priori, any optimization procedure for this class of problems
must simulate all candidate system designs to guarantee a chance
of selecting the best design. We propose a method for the most
general case where no such relationships are known in advance.

For exposition, assume that k competing systems are to be
compared in terms of their expected performance, and denote
the expected performance of the ith system by 6;,i = 1,2,..., k.
The goal is to determine which design has the maximum expected
performance. The statistical methods of ranking and selection
have often been suggested to solve this problem.

Ranking and selection procedures treat the optimization prob-
lem as a decision problem, typically either deciding which system
design is the best (indifference-zone ranking) or on a subset of sys-
tem designs that contains the best design (subset selection). The
decisions are guaranteed to be correct with a prespecified prob-
ability. Achieving this goal often requires two-stage sampling,
which means restarting simulation experiments after initial runs
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of all systems. In addition, ranking and selection inference is typ-
ically limited to the system or subset of systems selected as best.
A summary of the many ranking and selection procedures is given
by Gupta and Panchapakesan (1979]. Extensions of ranking and
selection procedures specifically to stochastic simulation include
Clark and Yang [1986], Goldsman [1985], Iglehart [1977], Koenig
and Law [1985] and Sullivan and Wilson [1989]. Some of these
papers address ranking and selection in steady-state simulation
experiments; Clark and Yang combine variance reduction with
ranking and selection.

Multiple-comparison procedures, on the other hand, treat
the optimization problem as an inference problem on the pa-
rameters of interest. Suppose that larger expected performance
implies a better system. For system i, the quantity 6; — max;y; §;
can be termed system i performance minus the best of the other
systems’ performance. In optimization problems, the parameters
0, —max;,;0;, fori = 1,.. .k, are often the quantities of primary
interest. This can be seen as follows: If 0 < 6; — max;y; 6;, then
system ¢ is the best, for it is better than the best of the other sys-
tems. If §; — max;z; 6; < 0, then system 7 is not the best, since
there is another better system. Even if 6; — max;z;6; < 0, if
—A < §; — max;y; §;, where A is a positive number, then system
i is within A of the best. Simultaneous statistical inference on
0; — max;;; 0;, for i = 1,...,k, is termed multiple comparisons
with the best (MCB).

An important property of multiple-comparison procedures is
that inference about the relative performance of all systems is
provided. In fact, Hsu and Nelson [1988] show that MCB in-
ference implies both the indifference zone and subset selection
inference of ranking and selection. Such inference may be criti-
cal if the performance measure of interest does not account for
differences in the cost or convenience of alternative designs; e.g.,
expected throughput of a manufacturing system does not account
for the cost of maintaining the system. In such cases an inferior
system design, in terms of expected performance, may still be
the one to choose if the difference in performance relative to
the optimal design is small. A second property is that multiple-
comparison procedures can be implemented in a single-stage of
sampling, which is important if restarting the simulation experi-
ment is cumbersome or expensive.

Let the output of the simulation of system design 7 be de-
noted by Y;;,Y, ..., Y, 2 = 1,2,..., k. In simulation research
and practice there are two important cases:

1. For system i, Yy, £ = 1,2,...,n; are independent and
identically distributed (i.i.d.) random variables with ex-
pectation §; = E[Y;]. This case would typically arise in
a terminating simulation experiment. The natural exper-
iment design is to generate i.i.d. replications of the pro-
cess, yielding i.i.d. observations of system performance Yy,
{= 1,2,...,71,‘.

2. For system i, Yiy => ); as £ — oo, and 6; = E[Y].
This case would typically arise in a steady-state simulation
experiment. The natural experiment design is to generate
a single (long) replication of the process. However, the
outputs Yy, Yi,. .., Yin, from a single replication may be
neither independent, due to the nature of the stochastic
process, nor identically distributed, due to the choice of
the initial state.

This paper derives and analyzes an MCB procedure for the
steady-state simulation case. MCB, in the form it might be used
in terminating simulations, is described next.

Suppose that we can represent the simulation output as
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Yie=6; + e, (1)

for£=1,...,n;andi=1,...,k, whereey,...,€n, areiid. nor-
mal random variables with mean 0 and unknown variance o°.
This model might be tenable in terminating simulations when
Y., is a summary statistic from the £th replication of system de-
sign 7. Let

Y; n;! E Y
i=1

SZ

Il

k ny
k! Z(ni - 1)-1;(},,1 - Y‘)Z

be the sample mean for the ith system and the pooled sample
variance, respectively. Let 2~ = min{z,0} and z* = max{z,0}.
Hsu [1984] showed that, under model (1), the closed intervals

(D7, D (2)
where
+
D = (min{':-— s+ 2}
J# n; n;
D; = | min {Y’.-—Yf,»-dg's —1—+l}
JEG Ty
i#
G = {;5: D}' > 0}
fori =1,...,k, form a set of (1—c)100% simultaneous confidence

intervals for §; — max;y; 6; given appropriate constants d¥ (if
the set G = {i} then D; is defined to be 0). Result (2) is the
foundation for our research. Examples in Hsu and Nelson [1988]
and Yang and Nelson [1989a] show that the MCB intervals are
easy to interpret for decision making.

3. MULTIPLE COMPARISONS FOR STEADY-STATE
SIMULATION

When system designs are compared on the basis of long-
run performance, problems related to the design and analysis of
steady-state simulation experiments arise. Standard multiple-
comparison procedures, which are based on observing i.i.d. repli-
cations of system performance, can be directly adapted to steady-
state simulation by employing an experiment design specifying
replications. However, because of the still unsolved initial-con-
dition bias problem, single-replication designs are often the only
practical designs (initial-condition bias is typically minimized by
allocating the entire computation budget to one replication). In
the subsections below we derive and analyze an MCB procedure
for steady-state simulation experiments employing a single repli-
cation for each system design.

Assuming that initial-condition bias has been mitigated by
making a single replication and taking appropriate remedial mea-
sures (such as deletion), the fundamental output analysis prob-
lem is estimating the Var(¥;]. This is a long-standing problem in
simulation research which arises because the outputs from a sin-
gle replication are typically dependent with unknown dependence
structure.

The problem is more difficult in the context of multiple com-
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parisons because variance estimators are required for all & sys-
tems and they must have suitable properties for deriving multiple-
comparison inference. Specifically, if the point estimators are the
sample means from the simulation of each system—7Y;, ..., Y} as
defined above—then exact MCB inference can be derived if the
joint distribution of the estimators is multivariate normal

- ( 0
T 6, &0
0 4 0
S ~N et N (3)
Y O 0 0 &
with 6,,8,,...,8; known, and an estimator of_ the un_knOWn pa-
rameter o is available that is independent of Y7, ..., ¥, and (ap-

propriately scaled) has a chi-squared distribution.

For model (1), o2 is the common variance of the observations
Yi, & = 1/n;, and §? is an independent estimator of o? that is
distributed as o?x%/df, where df = Sk (ni = 1). In steady-
state simulation, where the Y;;,¢ = 1,2,...,n;, are dependent
for fixed ¢, there is no unique interpretation for the parameters
o? and §;. The batch means method described below provides an
interpretation for o2 and §; and a way to estimate o2.
3.1 Batching
Batching or “batch means” is a well-known method for esti-
mating the variance of the sample mean of a stationary output
process (e.g., Schmeiser [1982]). In numerous studies this method
has been shown to be robust and dependable (e.g., Sargent, et
al. [1987)).

The idea behind batching is to transform the dependent out-
put process from system design i, Yy, = 1,2,...,n;, into a
(nearly) independent and normally distributed batch-means pro-
cess. Let the jth batch mean from system 7 be defined as

7bi
Yi(mi) = b;l Z Y, (4)
t=(j-1)bi+1
for j = 1,2,...,m;, where n;, = m;b;; the integers b; and m;

are called the batch size and the number of batches, respectively.
For convenience, we assume from here on that the number of
observations from each system is the same, n, but the number of
batches, m; (and the size of each batch, b;), may be different for
different systems. If m; is small enough, then it is hoped that
the following model approximately describes the batch means (4)
from the simulation of system i

Yii(mi) = 6; + &;(mi), (8)
for j = 1,2,...,m;, where the &;(m;), are (nearly) independent
and identically normally distributed. Let o?(m;) = Var[&;(m,)],
the variance of the batch means from system i when the number
of batches is m;.

Selecting a number of batches m; to achieve approximate in-
dependence and normality has been a longstanding research prob-
lem. In the multiple-comparison context, we propose to select the
number of batches for each system, m;,s = 1,2,... k, to satisfy
the additional condition that o?(m) ~ o2(m,) =~ - - - = o2 (m);
that is, we chose the m; so that the variances of the batch
means from all systems are nearly equal. This transforms a
problem with (possibly) unequal variances into a problem with
equal variances but unequal sample sizes. Thus, §; = 1/m; and
o? = o}(m;) in (3). The MCB intervals follow directly from (2)
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In summary, we propose to use batching to obtain approxi-
mately independent and normally distributed batch means that
have approzimately equal variances across system designs, and
then to apply the standard MCB procedure to model (5).

The batching approach has one major advantage over other
methods: Estimators of Var[Y;] from many standard methods do
not lend themselves to deriving a pooled variance estimator with
well-defined degrees of freedom. The proposed batching approach
facilitates using a standard pooled variance estimator (based on
the batch means) with % ,(m; — 1) degrees of freedom.

The next subsection presents the basic research necessary to
design a batching algorithm to implement this MCB procedure.
In particular, batch-size effects on the probability of correct and
useful inference (defined below) are derived so that a batching al-
gorithm can search for an appropriate number of batches within a
range that balances the trade-off between degrees of freedom (and
thus sharp inference) and the need to have nearly independent
batch means. This analysis is analogous to the batch-size effects
examined by Schmeiser [1982], Yang and Nelson [1988, 1989b]
and Nelson [1989] in other contexts, but is somewhat more diffi-
cult because of the performance criterion we consider.

3.2 Batch-Size Effects

Multiple-comparison procedures construct simultaneous con-
fidence intervals for selected differences in expected system per-
formance. If C is the event that the intervals simultaneously con-
tain all of the selected differences, then Pr{C} = 1 — a when the
assumptions underlying the procedure are satisfied. The event
C could be called correct inference, since the procedure correctly
identifies a region that contains all of the parameters. Let & be
the event that the intervals exclude zero when the true differ-
ence is not zero. The event U could be called useful inference,
since the procedure distinguishes differences in expected perfor-
mance. Given two multiple-comparison procedures for the same
estimation problem that both have Pr{C} = 1 — a, the superior
procedure is the one with larger Pr{C NU}; that is, the one that
has a larger probability of correct and useful inference. Notice
that Pr{CNU} < 1 - a.

The event C NU implies that differences, and the direction
of the differences, are correctly identified. For MCB, this means
that the true best system design is identified as the best. In this
section we examine the effect of the number of batches (equiva-
lently batch size) on Pr{C NU}. We are looking for a range in
which the performance of MCB is not sensitive to the number of
batches, m;. Thus, nothing is lost if we assume a common batch
size m = m; = --- = my in the analysis, which implies that
the critical values d* in (2) will be a common d*, which is v/2
times the 1 — & quantile of the maximum of a (k — 1)-dimensional
multivariate-t random variable with correlation 1/2 and k(m —1)
degrees of freedom.

Since Pr{CN} is problem dependent—depending on the ac-
tual differences among the parameters 6;,6,, . .., 6,—we consider
a related measure

Pr{ENN} = Pr{Y) — O 2 Y — 6; — d*S(m)/y/m, Vi # (k)
and d*S(m)/y/m < A} (6)

where (k) is the index of the unknown true best (maximum )
system design, S?(m) is the pooled variance estimator based on
the batch means, and A is a fixed value. The expression (6) is the
probability that the sample best system design (largest sample
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mean) will be correctly inferred to be within A of the true best
system design [Hsu 1988]. Stated differently, it is the probability
that intervals are correct (£) and sufficiently short (A) so that
the system design selected as best is no further than A from
the true best system design. The Pr{£ N AN} is independent of
01,0,,...,6.

To investigate the effect of number of batches on (6) we did
a worst-case analysis:

o We assumed that the output data Yi;,£ = 1,2,...,n, from
each system design 7 is actually i.i.d. normal with common
variance, meaning that batching is not needed at all. Thus,
batching only penalizes us in terms of Pr{€ N A’} because
of the loss of degrees of freedom.

We set A to be the smallest attainable difference that can
be distinguished with a fixed total sample size. Recall that
the total sample size, n, is fixed and does not increase with
the number of batches, m; some A values are too small to
distinguish without increasing n. The minimum value of
A, in units of 1/Var[Y], is equal to the critical value d*
at an infinite degrees of freedom. By taking the smallest
possible A we make degrees of freedom (number of batches)
the most important.

Goldsman {1990], using results in Hsu [1988], derived an ex-
pression for (6) that can be evaluated numerically. Figure 1 shows
a plot of Pr{€ NN} versus number of batches m for k£ = 3,5 and
10 system designs. Notice that Pr{€ N A} initially increases
rapidly as m increases, but then slows so that the marginal in-
crease from additional batches is negligible. This is comforting,
because it is at small numbers of batches that the approxima-
tions of independence and normality in batching are most likely
to be valid. In addition, performance is relatively insensitive to
the number of system designs for 3 < k < 10; however, larger &
does cause Pr{€ N N} to level off more quickly.

Another view of the same results is given in Table 1, which
shows the increase in Pr{€ N A} obtained by going from m = m,
to m = oo batches; m = oo gives the theoretical upper bound on
Pr{€ N N'}. The increase is dramatic for less than 20 batches,
but negligible for greater than 40 batches.

4. BATCHING ALGORITHM

The results above have been used to design an algorithm to
compute MCB intervals for steady-state simulation experiments.
This section gives a brief overview of the algorithm, which is still
a topic of ongoing research; details are given in Goldsman [1990].

For 3 < k < 10 systems designs—which is all that we con-
sider here—the algorithm batches the output from a single repli-
cation of each system into 20 < m < 40 batch means. A premise
of the algorithm is that the replication lengths, ny, ny, ..., ny, are
long enough that, within the range of 20 < m < 40 batches, the
dependence and nonnormality of the batch means are negligible.
However, a statistical test of independence is applied to the batch
means to check for a serious departure from the independence as-
sumption.

In addition to obtaining approximately independent and nor-
mal batch means, the algorithm attempts to obtain batch means
with approximately equal variances across system designs. More
precisely it searches for a vector 7 = (m,,m,,...,m;) such that
o?(my) = 02(my) & - - = o?(my), with m; € [20,40].
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Figure 1. Pr{€ N N} as a Function of m for k = 3,5 and 10

Table 1. Percentage Increase in Pr{€ N N} from m = m, to
m = oo
k
mo 3 5 10
5 1039]033]0.26
10 |1 0.23 [ 0.19 | 0.15
15 | 0.18 { 0.14 | 0.11
20 { 0.15]0.10 | 0.09
30 | 0.12 | 0.09 | 0.07
40 | 0.100.07 | 0.05
60 | 0.08|0.05| 0.04
120 | 0.06 | 0.03 | 0.02

Let o2(m;) be estimated by the sample variance
Si(ms) = (mi = 1)1 Y (¥i(mi) - ¥o)*.
=1
The problem formulation we use is
k
minimize Z(m) = Y (S%(it) — §(m.))?
i=1

k
§*(m) = k'Y SH(my)
i=1

m; € [20,40]

(7
subject to
which attempts to minimize the sum-of-squared deviations be-

tween the sample variance from each system design and the re-
sulting pooled sample variance. We use a branch and bound

technique on (7) to search for m~ = (m;, m;,... ,m;) that min-
imizes Z(ri). A test for variance homogeneity is applied to
S(my), S3(m3), ..., Si(my) to check for a serious departure from

the equal variance assumption.
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The algorithm follows the outline below:
Algorithm BMEV

L. Collect a single replication, Y, Yoz, .. ., Yin,, from each sys-
tem 7 = 1,2,...,k (the algorithm assumes that remedial
measures for initial-condition bias, such as deletion, have

already been applied).

. Batch the data from each system into (about) 40 batch
means. Apply the test of independence. If it fails, reduce
the maximum number of batches further.

. Solve (7) for m*. Apply the variance homogeneity test. If
it fails, note this in the final results.

. Form the MCB intervals as in (2) with 5?(m~) substituted
for 5 and m; substituted for n;.
5. EXPERIMENT RESULTS

To gain some insight into the performance of BMEV we ap-
plied it to the output of an AR(1) process

Yie = 0; + ¢i(Yieo1 — 0:) + €ur,

fori=1,2,...,kand £ =1,2,...,n, where ;4 ~ 1.i.d N(0, ¢?),
and —1 < ¢; < 1. The AR(1) process was selected to control the
properties of the output process.

For each system the AR(1) process was initialized in steady-
state and a single run of n = 1000 observations was generated.
MCB 95% confidence intervals were formed from the data, and a
success was recorded if the intervals provided correct and useful
inference. We ran 1000 replications of the entire experiment to
obtain a standard error of approximately 0.01 for the estimate of
Pr{Cnu}.

The results from BMEV were compared with results from an
algorithm that ignored the problem of unequal variances (BM).
Algorithm BM batches the observations from each system into
m = 20 batch means and forms MCB intervals.

Results were obtained for k = 3 and 5 systems. For k = 3
systems the variances o7 were fixed so that m~ = (20,25,40)
gives equal variances; for k = 5 systems the variances o? were
fixed so that m- = (20, 20, 25, 25,40) gives equal variances.

In the experiments reported here, ¢ = ¢ = -+ = ¢,
¢. Hence, for a given ¢, the systems have identical dependence
structure.

To set values for the process means, 8;,0,,...,0;, the least

favorable configuration (LFC) from ranking and selection was
used:

0 ifi=(k)

v otherwise

where f() is the largest mean. Based on the analysis of Pr{€N
N}, we chose a worst-case initial value of 7 to be 2A = 2d°% x

max; {\/Var[}—’,']}, where d®% is the critical value at an infinite

degrees of freedom. We also ran experiments with values of 7 <
2A, values of ¥ > 2A, and an additional configuration where the
6;’s were equally spaced 2A apart.

Results were obtained for the following two cases:

1. 8y is associated with the system that has the minimum
variance, and

2. 0y is associated with the system that has the maximum
variance.
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Tables 2 and 3 summarize the results of our experiments for
both cases for ¢ = 0.9 with » = 3 and 5 systems, respectively
(Goldsman [1990] presents results for a range of ¢ values).

When 6,) is associated with the system having the mini-
mum variance (case 1, the top half of each table), BMEV shows
an improvement over BM. This improvement is more dramatic
for small differences in expected performance; that is, when y
is much smaller than 2A. As 4 approaches 2A the improvement
from BMEV over BM decreases until it is negligible. When 4 is

Table 2. Estimated Pr{C N U} for » = 3 Systems

Pr{CnU}
6, 6, 6; | BMEV BM % Increase
0.0 00 A 0.23 0.19 0.21
00 00 2A| 094 0092 0.02
0.0 0.0 3A 1.0 1.0 0.0
0 2A 4A| 096 0.95 0.01
A 00 00| 022 0.19 0.16
2A 0.0 0.0 093 0.92 0.01
3A 0.0 00 1.0 1.0 0.0
4A 2A 0.0 0.95 0.95 0.0
Table 3. Estimated Pr{C N} for r = 5 Systems
Pr{CNU}
6, 6, 63 6, 6;|BMEV BM % Increase
0.0 0.0 0.0 00 A 0.10 0.07 0.43
00 00 0.0 00 2A| 091 0.88 0.03
0.0 00 0.0 0.0 3A 1.0 1.0 0.0
0 2A 4A 6A 8A | 098 0.96 0.02
A 00 00 00 0.0 0.10 0.09 0.11
2A 00 00 0.0 0.0| 0.88 0.87 0.01
3A 0.0 0.0 00 0.0 1.0 1.0 0.0
8A 6A 4A 2A 0.0 0.95 0.96 -0.01

associated with the system having the maximum variance (bot-
tom half of each table), the difference between BMEV and BM
is negligible. These results are preliminary, and a more thorough
empirical evaluation is required.

6. DISCUSSION

The batch-size analysis presented in Section 3.2 provides the
framework for an algorithm to form MCB confidence intervals
for steady-state simulations. Deriving a comparable theory for
batching outputs from different system designs to obtain batch
means with nearly equal variances, and an analysis of the effect
of such batching on the resulting inference, remains to be done.
However, the empirical studies completed to date indicate that
even our heuristic approach to the batching problem is effective.
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