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ABSTRACT

The multivariate batch-means (MBM) method of analyzing sim-
ulation output has the potential to be a widely-used tool by
practitioners. This paper presents a power comparison of se-
lected statistics that can be used for choosing the batches, which
is one of the key elements in the successful use of the MBM
method. Explicit procedures are given for five batch-selection
criteria, and some guidelines for the proper use of the MBM
method are stated.

1. INTRODUCTION

There has been some interest recently among researchers in
the problem of making statistical inferences simultaneously on
more than one output measure of interest in simulation model-
ing (Chen and Seila 1987; Yang and Nelson 1988; Charnes and
Kelton 1988). One technique that has received attention is the
multivariate batch-means (MBM) method, perhaps because it
is a generalization of the widely-used univariate batch-means
method and thus has the potential to be the most widely-used
multivariate technique. In light of this potential, the intent of
this paper is to examine more closely the procedure used to se-
lect the batches, which is a fundamental element of the MBM
method.

In making inferences on multivariate processes one must
recognize the autocorrelation that also exists with univariate
processes, and, in addition, the cross-correlation that may exist
among the individual univariate processes comprising the mul-
tivariate process. Data are said to be cross-correlated if they are
observations on a vector-valued stochastic process {X,} whose
specification includes not only the serial dependence of each
component series {X;;} but also the interdependence between
different component series {Xy;} and {X;;}. When such cross-
correlation exists, it may be useful to exploit the information
somehow.

The MBM method attempts to circumvent the autocorrela-
tion problem without losing the information on cross-correlation
by grouping the data into (nearly) uncorrelated batches. The
purpose of this paper is to compare selected statistics available
from multivariate-statistical theory with respect to their per-
formance in choosing batches. §2 describes the MBM method.
§3 presents the statistics that were selected for investigation in
this study. §4 gives the results of the Monte Carlo experiment
that was used to compare the selected statistics, and in §5 some
conclusions are drawn and recommendations made.
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2. THE MBM METHOD

The MBM method of constructing confidence regions is a gener-
alization of the univariate batch-means method of constructing
confidence intervals. Chen and Seila (1987) discuss the appli-
cation of the multivariate-batch-means method to steady-state,
synchronous simulation output. Consider a stationary process
that produces a sequence of d-dimensional vector-valued obser-
vations {X1,Xs,...,X,}. The analyst wishes to estimate the
mean vector ¢ = E(X,) with a joint confidence region. The
MBM method calls for dividing the sequence of output vectors
into m batches of k (vector) observations each (where n = mk)
and computing the batch-mean vectors as

Y=

El e

K(i-1)k+;
j=1
The m vectors of batch means are then treated as if they were
uncorrelated vectors of observations and standard multivariate-
statistical techniques are used to form a confidence region on the
mean vector, 4, as follows. Let S denote the sample variance-
covariance matrix for the Y,’s:

5= g S (%= Y - )

where ’ denotes matrix transposition and the point estimator of
 is the d-dimensional column vector

1 m
i==>Y.
mia
An approximate 100(1 — «)% confidence region for g is then
given by

{pemim-rs2a-0< 2D, )

where Fy.4m_a is the 100(1 — )% quantile of the F distribution
with d numerator and m — d denominator degrees of freedom.

3. SELECTING A STATISTIC FOR GROUPING

An important step in using the MBM method is the determina-
tion of the number of vector observations per batch, k (or, equiv-
alently, the number of batches, m). The usual method of mak-
ing this determination is to assume that the batch-means pro-
cess can be sufficiently approximated by the first-order, vector-
autoregressive (VAR(1)) model

Y, =®Y,_; 4 ¢ for i=1,...,m,
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where @ is a (d x d) matrix of autoregression coefficients and
the ¢; are (dx 1) independent and identically distributed vectors
of random error drawn from the multivariate normal distribu-
tion. Then k is chosen such that Hy: & = 0 is not rejected.
Implicit in the use of this model is the assumption that if the
first-order serial correlation is zero, then the higher-order serial
correlations will be zero also.

Anderson (1978) suggests that Ho can be tested with one
of the criteria given in Anderson (1984) for testing the general
linear hypothesis. The tests considered in this paper are the
Lawley-Hotelling trace criterion, the Bartlett-Nanda-Pillai cri-
terion, and three slightly different forms of the Wilks likelihood-
ratio criterion.

3.1 Test Procedures

All of the test procedures studied here use the following d x d
matrices in the calculation of the test statistics

m-—1
§*(0) = >_(Yi— )Y —a)

i=1

S(0) = 3(Y: — B)(Y: — Y

=2

s(1) = f;m CB)(Yir - Y

H = S(1)S7(0)"'S(1)’
G = S(0) — S(1)S*(0)~'S(1Y,

where the number of degrees of freedom of Gisdf = m—d—1.
The procedures are

1. The Lawley-Hotelling trace procedure, where significance
points for the statistic

_m-—-d-1

- d

are tabulated in Anderson (1984, pp. 616-629). (tr{Z} =

YL, Z;; denotes the trace of the (d x d) matrix Z.)

L “tr {HG-I}

2. The Wilks likelihood-ratio procedure, where values of the
statistic
1 G
W= _(m_d_l_E)IOg{|G+HI}

are compared to critical values of the x2(d?) distribution
adjusted with the values tabulated in Anderson (1984, pp.
609-615) for finite samples.

. The Bartlett-Nanda-Pillai trace procedure, where signifi-
cance points for the statistic

are tabulated in Anderson (1984, pp. 630-633).

. The F-approximation to the Wilks likelihood-ratio proce-
dure suggested by Rao (1951)

ks—r 1-=Ul/s
R_T'W
where Gl
U= ———.
|G + H|
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R has approximately the F-distribution with d? and ks—r
degrees of freedom, where

di—4
2d? — 5’

S =

andkism—%

. The statistic used in the Wilks likelihood-ratio procedure
can be shown to have an asymptotic x? distribution, and
was used for the fifth procedure in the comparison. This
statistic,

is computed identically to W, but is compared to critical
values obtained from the x%(d?) distribution.

€]
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4. EXPERIMENTAL DESIGN

The statistics were compared in a designed experiment with
factors: a, the Type I error rate; d, the dimension of the output
vectors; df, the number of degrees of freedom of G; and the cross
correlation among elements of the output vectors. The factors
and their levels are listed in Table 1.

Table 1. Experimental Design

Factor Levels
.01, .05
2,4
df 8, 15, 30, 60
Cross Correlation|High, Low

For each combination of factor levels, observations were
generated on the models

Y=Y +¢ (1)

fori=1,...,m(=df +d+1)and j = 0,1,...,5. The ®;s are
shown in Figure 1. & is the zero matrix and thus generated
observations for which Hy was true. &,,..., & generated ob-
servations for which Ho was false. The ¢; were generated from
a multivariate normal distribution with mean vector 0 and a
variance-covariance matrix, &, that was varied to induce either
high or low cross correlation. The different values for ¥ that
were used in the experiment are also shown in Figure 1. Ran-
dom numbers were generated with Marse and Roberts’ (1983)
portable generator, and normal deviates were obtained with the
“polar” method.

The response measured for each test procedure was the
proportion of times (out of 10,000 runs) that the test statistic
fell below the critical value at the o level. Thus the response
for ®, was the proportion of times that a test procedure indi-
cated correctly that Hy was true (which should be very close
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Figure 1. Power Comparison Results
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Figure 1. (continued) Power Comparison Results
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Figure 1. (continued) Power Comparison Results
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Figure 1. (continued) Power Comparison Results
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to 1 — o for a good procedure). The responses for &, ..., ®;
were the proportion of times that the test procedures indicated
incorrectly that Hy was true, and thus are point estimates of
B = P(Type II Error), or 1 — Power, for each procedure. Note
that the point estimates are quite precise, for if the actual power

level of a procedure is .5, the standard error of the estimate is
.005.

5. RESULTS

The results of the experiment for & = .05 are shown in Fig-
ure 1. The results for @ = .01 are similar and are not included
here to conserve space, but are available from the author upon
request. At the design points for which df = 8, responses for
the Bartlett-Nanda-Pillai statistic, P, are not plotted because
tabulated significance values of that statistic for low values of
df were not available.

Figure 1 shows that no test procedure appears to be uni-
formly more powerful than the others for the factors and levels
tested here. All of the test statistics perform quite well at &,
where nominal coverage is nearly obtained by all the statis-
tics. However, there is some degradation of performance of the
statistics, especially R, for those design points where df = 8
and d = 4.

The statistics seem to be slightly more powerful when cross
correlation is high rather than low, although the differences may
not be significant. None of the statistics tested here are very
powerful at low df, a fact that has implications for the minimum
number of observations necessary for successful use of the MBM
method.

6. CONCLUSION

Because action is taken upon not rejecting Hqy in the MBM
method, the probability of making a Type II error in testing Ho
is more important than the probability of a Type I error.

This comparison shows that one needs many more than 8
degrees of freedom for G to have a reasonable chance of not
making a Type II error with the alternative hypotheses that
were considered. Furthermore, even with df = 60, one will not
often detect small departures of ® from 0, such as &,.

The drop in power of the statistics in going from d = 2 to
d = 4 indicates that the number of simultaneous inferences one
wishes to make with the MBM method will significantly affect
the number of batches that will be necessary for good use of the
MBM method. Future research will involve the exploration of
that factor at other levels.
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