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ABSTRACT

This research incorporates prior information in the analysis of
simulation experiments to reduce the number of observations
needed to estimate delay before service in a queuing system with
a specified precision. The research extends to simulation of
queuing systems a previous successful application of sequential
Bayesian analysis to interrupted time series experiments. The
results include methodologies that use sequential Bayesian methods
for analyzing batch means as well as observations of individual
entities within a single simulation run.

1. INTRODUCTION

Suppose there is an expert with knowledge about how the
performance of a system would change as result of design changes.
If a valid simulation model of the process began to produce
estimates of delay that are consistent with the expert’s judgement,
then the simulation could terminate relatively quickly. In this case,
the expert’s judgement would serve as a partial substitute for
computation. (However, if the simulation results were to surprise
the expert, he would have to make more computations and revise
his opinion.)

Accurate priors should be able to substitute for significant
amounts of computation. We test this proposition by developing
sequential Bayesian methods for analysis of batch means and for
estimation of the probability of long delays using data from
individual customers.

2. LITERATURE REVIEW

Litte published work deals with the application of Bayesian
methods to queuing systems. A few pioneering papers applied
Bayesian methods to analytical queuing theory, notably McGrath,
Gross and Singpurwalla [1987] and McGrath and Singpurwalla
[1987). These papers showed how to convert uncertainty about
input parameter values into uncertainty about state distributions and
performance measures. The only paper about Bayesian simulation
addressed the same problem. Glynn [1986] considered the
computational issues involved in translating priors on input
parameters into Bayesian confidence intervals for simulation output.
Glynn did not address, but called for research on, the important
problem we are exploring: exploitation of a practitioner’s priors on
outputs rather than inputs.

The present research extends to simulation analysis the results
of Willemain and Hartunian [1982] on the Bayesian analysis of
interrupted time series experiments. That work showed that, even
evaluating the results in a non-Bayesian framework, the Bayesian
approach to combining data with judgement can yield significant
improvements in efficiency.
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Willemain and Hartunian considered the evaluation of inter-
ventions designed to reduce the (Poisson) rate of serious crimes.
Their work examined the interrupted time series design, consisting
of a baseline data collection period followed by an experimental
period. They noted that the baseline period could be significantly
shortened if the baseline results unfold in a way consistent with the
evaluator’s prior beliefs about the existing crime rate. Holding
total resources constant, the sequential Bayesian estimates of the
reduction in crime rate produced Mean-Square-Error (MSE) up to
25% lower than conventional estimates based on equal allocations
of resources to the baseline and experimental phases. While this
work did not focus on queuing systems, it did demonstrate the
potential efficiencies of sequential Bayesian methods.

The other finding of Willemain and Hartunian with
significance for the simulation research concerned the sensitivity of
the efficiency gains to the bias and uncertainty of the evaluator’s
prior distributions. The degree of improvement depended on the
strength and accuracy of the evaluator’s joint prior for the baseline
crime rate and the proportional reduction in the rate. With diffuse
priors, gains were weaker but less sensitive to inaccuracies. With
firm priors, gains were greater but more sensitive to inaccuracies
in the prior estimate of the baseline rate, though quite insensitive
to the prior for proportional reduction in the rate. Accordingly, one
of the primary issues in our simulation research is whether
sequential Bayesian estimates can be successful using priors with
only modest accuracy.

3. SEQUENTIAL BAYESIAN ANALYSIS
3.1 Overview

We develop the Bayesian methods in the context of the M/M/1
queuing system. One method develops sequential Bayesian
estimates of mean delay from aggregated data, using averages
computed from batch means. The other method develops estimates
of the probability of long delay from disaggregated data, using the
(correlated) delay data of individual customers.

3.2 Sequential Bayesian Estimates from Aggregated Data

Consider the problem of estimating the mean customer delay
in a queuing system. In the conventional approach, the estimate is
calculated using averages computed either from several independent
replications or from a single long run divided into batches. The
independent averages or batch means form the basis for a
confidence interval using Student’s t-distribution. If the simulation
is non-terminating there may be an additional step of deleting
initial data from the transient period. In the sequential versions of
these methods, which are taken as the standards against which to
compare sequential Bayesian methods, the first step is to determine
a standard for proportional uncertainty in the estimate. Then the
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methods use some data, check whether the precision standard has
been satisfied, and, if not, gather and analyze more data. Banks
and Carson [1984] described the sequential independent replications
method, while Law and Kelton [1982] described the sequential
batch means method.

Sequential Bayesian methods have the potential advantage of
substituting a prior distibution for part of the computation.
However, they run the risk that the possibility that the analyst’s
priors may either be vague and unhelpful, or firm but wrong (and
therefore require more sample values before converging on a good
estimate). This paper presents results that show the net effect of
sequential Bayesian methods can be positive.

Sequential Bayesian estimation from aggregated data would
proceed as follows.

1. Establish a precision standard for the estimator. This standard
is expressed in terms of the relative half-width of a 90%
highest density region or credible interval (CI), the Bayesian
analog of a confidence interval.

Elicit a prior distribution. For estimates of mean delay, the
prior must be a joint distribution for the mean and standard
deviatdon of delay. Assuming that the batch means are
independent and Normal, there is a conjugate prior: the
Normal/Chi-squared, also known as the Normal/Inverted
Gamma [Lee 1989). This prior has four parameters: two
relating to the presumed values of mean and variance and two
relating to the strength of belief in these presumed values. In
stochastic service systems, the mean and variance tend to be
positively associated, so an issue for further study is how to
reduce the need for four prior parameters to a more
manageable two. We present the results of one such selection
below.

Run the simulation to obtain a few sample data, i.e., the means
of some number of batches, say three or more. From these,
compute the sample mean and variance of the new batch
means.

Update the posterior distribution. Since the Normal/Chi-
squared is a conjugate prior, the updating calculations are
straight forward.

Evaluate the convergence of the posterior distribution. The
posterior is characterized by the relative half-width of a 90%
CL

If the relative half-width of the CI satisfies the precision
criterion of step 1, go to step 7; otherwise, go to step 3.

7. Report results and stop.

3.3 Sequential Bayesian Estimates from Disaggregated Data
The method described above concerns substitution of
sequential Bayesian estimates for conventional estimates when each
datum is the average delay of many simulated customers. We also
present a more innovative approach, based on continuous updating
of estimates as each simulated customer finishes processing.

Continuous updating promises to be even more efficient,
further avoiding the simulation of more customers than needed to
achieve a given level of precision in estimates of system
performance. However, continuous updating also has problems.
One is the added computational overhead of the updating
calculations. Another is the difficulty of expressing the likelihood
function simply, given that successive delays are highly correlated
at the level of individual customers.

To cope with the problem of developing a likelihood function,
we restrict our choice of performance measures to an important
special case: the probability that queuing delay before service
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exceeds a specified level. This restriction reduces the data set to
a binary sequence, no matter what the nature of the queuing
system. Then we assume that the binary sequence can be
adequately modeled by a first-order Markov process. A Markov
model provides a feasible route to a likelihood function since it
expresses the dependence in the data in a compact and manageable
way.

The inspiration for this approach comes from the work of
Kedem [1980], Daley [1968] and Stanford et al. [1987]. Kedem
shows that any “clipped” or “hard-limited” stationary sequence
(such as the binary sequence of long delays) can be approximated
by a Markov process of some order. In particular, Kedem shows
that a clipped AR(1) process can reasonably be modeled by a first-
order Markov process. Plots of the results of Daley and Stanford
et al. on serial correlations of delay in M/M/1 and GI/M/C systems,
respectively, show that the stochastic process of delay values in
those systems can indeed be plausibly approximated by a simple
AR(1) model (i.e., the log autocorrelogram is essentially linear).
This suggests that the stochastic process of occurrences of long
delays can profitably be modeled as a first-order Markov process.
West and Mortera [1987] showed that a second-order Markov
process generated by clipping an MA(1) process was well-
approximated by a first-order Markov model.

The Markov modeling approach developed here contrasts with
the two alternatives we have identified in the literature. Law
[1983] suggested applying the sequential batch means method to
the binary data. Fishman and Moore [1979] developed a method
based on the theory of recurrent states. It would be useful to
compare these methods with the Bayesian approach we outline
next.

Let d; represent the delay of the i th customer and x; the value
of the delay clipped at level T, i.e.,

;=1ifd;>T
= ( otherwise.

The performance measure we wish to estimate is the probability of
a long delay

n=Prix=1]
We will assume the sequence of binary values {x;} to be a
stationary, first-order Markov process characterized by transition

probabilities

p=Prixgl lx; =01
g=Prix=01x;;=1]

Given values of p and ¢, the performance measure is

. = pl(p+q)
The basic data for this process are the counts of state transitions.
Define indicator random variables to denote the four types of

transitions

51k=11fxl=kandx,_l =j j,ke(o,l]
= 0 otherwise.

After each transition, the Bayesian analysis converts a joint prior
distribution for p and q into a joint posterior distribution, using the
likelihood of the observed transition

Posterior (p,q) o { (1-p)8yp+p8y;+9d1g+(1-¢)8;; } x Prior (p.q)
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Given the joint posterior distribution of p and ¢, one can derive the
cumulative distribution function (CDF) of the performance measure

Pin<myl= Prip<qmny/l-ny ]

Given the CDF, one can compute the 90% CI for n. Comparing
the CI to the precision standard provides the stopping rule for the
sequential analysis.

An important practical issue is how to specify the joint prior
distribution for the Markov parameters p and g. In practice, the
system expert providing the prior is unlikely to think in terms of
p and g; rather, he will think directly in terms of x. It is possible
to convert estimated quantiles for © into a smooth joint prior for p
and q. However, for this research, we adopt the expedient of
expressing the joint prior more simply as

Prior (p,q) = Prior (plq) x Prior(q)

where Prior (¢ ) is uniformly distributed over (0,1) and Prior (plg )
is uniformly distributed between the lines qmy/(1-my) and g, /(1-
TtL)

4. EXPERIMENTS
4.1 Preliminary Results

An empirical test of sequential Bayesian methods is presented
in this section. We generated ten datasets containing customer
delays before service in an M/M/1 queuing system with utilization
0.5. We use these datasets to compare the conventional sequential
batch means procedure against a Bayesian sequential analysis of
the same batch means (the aggregated analysis). We also used
them to test the Markov approximation in making a sequential
Bayesian estimate of the probability of long delays (the
disaggregated analysis).

A thorough empirical test would involve much more
experimentation, including larger sample sizes, analysis of systems
more complex than the M/M/1 queue, wider variation of parameter
values such as system utilization, and exploration of alternative
prior distributions.  Nevertheless, this limited test serves to
demonstrate the concept and point the way for future
experimentation.

4.2 Aggregated Analysis

We generated ten test datasets for an M/M/1 queue operating
at 50 percent utilization. For this system, the known steady-state
delay was 0.5. Each dataset consisted of 40 batches created
according to the procedure of Law and Carson [1979], resulting in
batch sizes ranging from 40 to 80 customers. For each dataset, we
determined two performance measures for the 90 percent
confidence intervals: whether the confidence interval did include
the known value of 0.5, and the relative half-width of the
confidence interval. Averaging over the 10 datasets provided a
characterization of the performance of the various confidence
interval procedures.

Using the ten sets of 40 batch means, the Law and Carson
procedure produced 90 percent confidence intervals that included
the true value in nine of ten cases. The average relative half-width
over the ten simulators was 0.143. Normally, a value of 0.143
would be insufficiently precise, and more batches would be needed.
However, we were able to reduce the relative half-width using the
original 40 batches by as much as 50 percent while maintaining
coverage, using priors of sufficient accuracy and precision.
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As noted above, the Bayesian analysis requires specification of
four prior parameters. We believe that the system expert could
specify a normal prior for the mean delay given the variance, but
would find it difficult to specify a prior for the variance itself. We
experimented with a heuristic that takes advantage of a property of
GI/G/C queuing systems [Kollerstrom, 1974]: in heavy traffic, the
distribution of delay is approximately exponential, so the variance
is roughly the square of the mean. Accordingly, we set the prior
estimate of the variance to the square of the prior estimate of the
mean, and we set the degree of confidence in the estimate of the
variance equal to half the confidence in the estimate of the mean.

This heuristic reduced the problem of specifying a prior from
a four-parameter to a two-parameter problem. Then we tested the
sensitivity to those parameters by varying the degree of bias and
imprecision in the prior for the mean delay. Figure 1 shows the
results of the sensitivity analysis. When the prior was perfectly
accurate and highly confident (upper left of graph), the Bayesian
CI was over 50 percent narrower than that produced by Law and
Carson’s procedure. At each level of confidence, adding bias to
the prior had only a small effect on relative half-width, though at
some point the bias was great enough to ruin the coverage (right
side of the graph). As long as increased bias was accompanied by
a reduction in confidence, it was possible to achieve notable
reductions in relative half-width (e.g., when the prior mean was
0.57 — representing a 14 percent positive bias, a confidence
parameter of 100 resulted in an 18 percent improvement in the
precision of the estimate.
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Figure 1. Sequential Bayesian Analysis of Batch Means

This analysis is clearly not exhaustive, but it does show : (1)
that sequential Bayesian estimation can produce dramatically more
precise estimates without sacrificing coverage; (2) that is is
possible to create workable prior distributions; and (3) that even
quite imperfect priors can still lead to notable improvements in
precision.

4.3 Disaggregated Analysis

Our first step was to test the validity of the assumption that the
binary sequence of clipped delay times could be considered a first-
order Markov process. For this investigation, we generated an
additional five datasets drawn from an M/M/I queue with
utilization 0.9. We chose this heavily loaded system because the
problem of serial correlation worsens with utilization. We analyzed
each series using three threshold values for delay: 2, 5 and 10; for
comparison, the mean delay in this system is known to be 8.1.
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We made an informal, graphical test of the hypothesis that the
binary sequence is first-order Markov. We did this by estimating
the second-order transition probabilities, Piio» Where i and k are
either 0 or 1. In a first-order process, Pgoo and Py, both equal
the same number, while Pg10 and Pno both equal some other
number. The results of this test are shown in Figure 2. The
conclusion is that the process is actually of at least second order,
since Pyog # Py and Pgio # Pyjg- However, the first-order
approximation may still work reasonably well, since the bulk of the
transitions are of the form 0—»0—0 and 151-51.

S. CONCLUSIONS AND EXTENSIONS

Simulation is a proven, viable tool for the analysis of large,
complex systems. One of its major drawbacks, however, is the
cost of the experimentation. Even with the development of faster
and cheaper computers, the cost issue will probably always exist.
Just as the advent of supercomputers has not met the demands of
weather forecasters or particle physicists, so simulators keep
ratcheting up their ambition for modeling and analyzing more
complicated systems in more time-critical applications.
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Figure 2. Graphical Test of Order of Markov Process

Our second step was to execute the sequential Bayesian
analysis on two delay datasets from the M/M/1 queuing system
with utilization 0.5. We chose as a threshold value the 75th
percentile of the known delay distribution. Thus, the estimates of
the probability of long delay should be 0.25. Figure 3 shows the
90% confidence interval for the Bayesian estimate as a function of
the number of customers processed for one of the two datasets.
(Note that the prior distribution is neither accurate nor precise.)
After 2500 customers, the 90% confidence interval centered on
0.254 with a half-width of 0.022. Figure 3 also shows the simple
empirical estimate that one would get by treating the binary
sequence of delays as a Bernoulli sequence. Ignoring the serial
correlation among delays would have resulted in using this simple
estimate of 0.257 with a half-width of only 0.015. This result
would surely be too optimistic, and we prefer the Bayesian analysis
with its wider but more realistic confidence interval. For
comparison, the second dataset yielded a Bayesian 90% confidence
interval of 0.243 with a half-width of 0.020; the simple empirical
estimate was 0.238 with a half-width of 0.014. In both cases, the
Bayesian confidence intervals were about 45 percent wider.
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Work by Willemain and Hartunian [1982] established that
sequential Bayesian methods can improve the efficiency of
resource-constrained interrupted time series experiments. Bayesian
methods are just beginning to appear in the queuing theory and
simulation literature. We expect sequential Bayesian methods to
play a role in pushing out the “edge of the envelope” in simulation.
Although sequential Bayesian procedures run some risks (i.e.,
additional effort in the case of wrong prior information), the
savings are potentially significant. The empirical results reported
here strongly suggest that the sequential Bayesian approach is
worth pursuing. In the analysis of aggregated data from the M/M/1
queue, we found that excellent priors could decrease the relative
half-width of confidence intervals for mean delay by 50 percent,
and moderately good priors could provide gains of about 20
percent. In the analysis of disaggregated data, the Bayesian
method produced confidence intervals about 45 percent wider than
those ignoring serial correlation. Subject to extensive empirical
testing of coverage, we argue that this is a step in the direction of
more valid inference.
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Figure 3. Sequential Bayesian Analysis of Individual Delays

We expect that there are a number of obvious extensions of
this work. The analysis of aggregated data should apply to
independent replications as well as batch means, and to total time
in system as well as delay before service. The analysis of
individual customer data should apply to the probability of loss in
systems with finite queue capacity as well as to the probability of
long delays in systems with unlimited queue capacity.

Another possible extension of the work would use Bayesian
methods to cope with start-up bias in non-terminating simulations.
A prior distribution for queue length might be used in either of two
ways. One approach, analogous to an idea by Kelton [1988],
would reduce the warmup period by using prior information to start
the simulation at different initial conditions. The other approach
would use the prior mean to determine the deletion point.
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