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ABSTRACT

Multiclass queueing networks and stochastic loss networks
often give rise to a product form solution for their equilibrium
probabilities. But the product form solution typically involves
a normalization constant calling for a multidimensional summa-
tion over an astronomical number of states. We propose the
application of Monte Carlo summation to the problem of de-
termining the normalization constant and related performance
measures. We show that if the proper sampling technique is em-
ployed then the computational effort of Monte Carlo summation
is independent of population sizes for queueing networks and is
independent of link capacities for loss networks. We then discuss
the application of importance sampling and antithetic variates.
Importance sampling is shown to give significant variance reduc-
tion for a multirate loss network example.

1. INTRODUCTION

It is well known that many multidimensional stochastic pro-
cesses give rise to a product form solution for the equilibrium
state probabilities. One of the more important examples is mul-
tichain queueing networks [Baskett et al. 1975; Kelly 1979]
where the stochastic process models a queueing network with
multiple classes of customers circulating according to class-
dependent routing matrices. Another example is product form
loss networks [Kelly 1986], where the stochastic process models
a telephone network supporting calls with different bandwidth
requirements (e.g., voice, video, facsimile). The appeal of the
product form solution is that it enables one to circumvent solv-
ing the global balance equations. But if the state space is finite,
as for closed multichain queueing networks or for multirate loss
networks, then a summation must be performed over an ex-
cessive number of states in order to calculate the normalization
constant. Due to the occurrence of product form networks in nu-
merous important applications, over the past two decades many
researchers have considered developing efficient methods to cal-
culate the normalization constant and related performance mea-
sures. Currently, there are two principal schools of thought, the
first based on combinatorial algorithms, and the second based
on asymptotic expansions.

Buzen [1973] initiated the research on combinatorial algo-
rithms with an efficient convolution algorithm to determine the

normalization constant in single-class closed queueing networks.
Reiser and Kobayashi [1975] developed a generalization of the
convolution algorithm for closed multichain queueing networks,
and numerous variations and refinements have since been pro-
posed (e.g., see [Reiser and Lavenberg 1980; Lam and Lien 1983;
Sauer 1983]). Although these algorithms can offer considerable
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A
computational savings over brute-force summation, their com-
putational requirements continue to grow exponentially with ei-
ther the number of classes or the number of stations, render-
ing them of little use for many problems of practical interest.
Several efficient combinatorial algorithms for multirate loss net-
works have also been developed [Tsang 1988; Ross and Tsang
1988). However, these combinatorial algorithms require a loss
network with specific network topologies.

McKenna et al. (1981, 1982, 1986]; have pioneered the use
of asymptotic expansions for solvingproduct form queueing net-
works. Their idea is to expand the normalization constant in
1/N, where N is a “large parameter” reflecting the size of net-
work. This technique has given impressive results for large mul-
tichain queueing networks, rapidly solving problems that are
completely off limits to the combinatorial algorithms. However,
except for a very particular topology [Mitra 1987], no progress
has been made in developing asymptotic expansions for loss net-
works.

In this paper, we pursue a third school of thought, namely,
applying Monte Carlo summation to the problem of evaluating
the the normalization constant. Unlike the combinatorial meth-
ods, the Monte Carlo summation method has computational
requirements that grow polynomially in the problem size. Fur-
thermore, the Monte Carlo summation method is quite flexible
as it can be adapted to arbitrary product form networks.

Harvey and Hills [1979] have considered a related Monte
Carlo method - rejection sampling combined with conditional
Monte Carlo - for solving a class of loss networks. Our study
differs from theirs in its concern with the application of sampling
and variance reduction techniques that have a bearing on large
stochastic networks. We believe that conditional Monte Carlo
is unlikely to give a significant reduction in variance for a loss
network with a large number of links.

In Section 2 we discuss the application on Monte Carlo sum-
mation and importance sampling to product form “integrands”.

Special attention is given to ratio estimation since many perfor-
mance measures in stochastic networks can be expressed as the

ratio of two normalization constants. In Section 3 we apply the
Monte Carlo summation technique to loss networks. Significant
reduction in variance with the proper choice of importance sam-
pling function is shown possible for a test network. In Section
4, multichain queueing networks are discussed along with two
importance sampling techniques.

2. OVERVIEW OF MONTE CARLO SUMMATION

Let © denote the state space of the underlying stochastic
process. Each element in Q is a K-dimensional vector
n = (ny,...,nx). For the sake of simplicity we always assume
that € is finite. The normalization constant, g, for product form
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stochastic networks most commonly takes the form

K
g:= 3 [T aln), (1)

neq k=1

where qi(-), k = 1,..., K, are known functions (see Sections 3
and 4). Let

K
g(n):=1(n € Q) H gr(ni)

k=1

where 1(-) is the indicator function. We can rewrite (1) as follows

M Ny
g= . -y q(n)

n1=0 nyp=0

where N, := max{n, : n € }. Thus calculating g involves a
multidimensional summation. But it is now the believe of many
researchers that, in the absence of special structure, multidi-
mensional integration (or summation) is best solved by Monte
Carlo methods [Kalos and Whitlock 1986]. Specifically, let V' =
(Vl",“.,V,i-), i=1,2,..., be a sequence of i.i.d. random vec-
tors, where each V' takes values in A := {0,..., N} x -+ X
{0,...,Nr}. Let p(n) := P(V' = n), n € A, which is a sam-
pling distribution to be specified in order to obtain the maximum
efficiency from the Monte Carlo method. Then

6=ty 4 (2)

n =1 p(vt)

is an unbiased estimator for g (i.e., E[G,] = g). Moreover, we
have from the Central Limit Theorem, that for large n

c(a)o
T )

where c¢(a) is the critical value of the standard normal distribu-
tion and o is the standard deviation of ¢(V')/p(V'). In partic-
ular, with 95% confidence we have

P(|Gn—g| >

e
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>
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Note that for any fixed n, G, is an estimate of g whose accu-
racy can be accessed by the confidence interval provided by (3).
As the samples are being drawn, the sample variance can be
calculated and the confidence intervals can be given explicitly.
Furthermore, if better accuracy is desired, more samples can be
drawn, thereby decreasing the width of the confidence interval.
From (2) and (3) we observe that the effectiveness of the Monte
Carlo summation method largely depends on

1. the effort required to generate V' from the distribution
p(n), n € A;

2. the effort required to evalute the “integrand” ¢(-)/p(-) dur-
ing the sampling procedure;

3. o2, the variance of ¢(V')/p(V?).

If V{,...,V} are independent (i.e., p(n) = pi(m)---pr(nr)),
then V' can be generated in a total of O(K) time with the algo-
rithm of Ahrens and Kohrt [Ahrens 1981; Bratley et al. 1987].
Note that this effort is independent of Ny, k = 1,...,K, the
maximum values of the stochastic process! This means that the
method has potential to handle multichain queueing networks
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with large population sizes and loss networks with large link
capacities.

It has been repeatedly observed in the Monte Carlo integra-
tion literature that the variance o? can often be significantly
reduced if importance sampling is employed. The idea here is
to choose this sampling distribution p(n), n € A, in order to
reduce the variance of the estimator G,. In particular, it is de-
sirable to sample more frequently the points n at which g(n) is
“important,” which is typically done by considering functions
p(+) that are similar to g(-). Ideally, one would like ¢(-)/p(-) to
be nearly constant; however, there exists a tradeoff between this
similarity and the effort required to sample from p(-).

2.1 Ratio Estimators

The method described above can be useful in estimating the
normalization constant for a product form stochastic network.
However, most performance measures of interest typically take

the form > F(n)q(n)
._ 2neaJ\n)gn
¢= Ynea q(n) ’ )

where f(-) is a known function. A natural estimate for ¢ there-

fore is 5y
L 2im I
v A ©

where Y; := f(V')q(V*')/p(V') and Z; := ¢(V')/p(V").

Although it can be shown that @, converges (almost surely)
to ¢, ®, has the undesirable property of being biased. However,
this bias diminishes as n becomes large. Moreover, the ratio
estimator @, can be made free of bias to order 1/n with a simple
modification that requires an insignificant amount of additional
CPU time (see [Fishman 1978], pp. 55-59).

We should also stress that the confidence interval for |®, —
#| can again be constructed as the sampling proceeds. The
confidence interval is obtained on line from the sample mean,
variance, and covariance of Y, and Z, (see [Fishman 1978], p.
59-61), and its width is again proportional to 1/y/n.

3. PRODUCT FORM LOSS NETWORKS

Consider a loss network with links j = 1,...,J, where link j
has C; circuits. Suppose that the network supports K classes of
calls, where each class is distinguished by its route (i.e., a sub-
set of the J links), its bandwidth requirement (the number of
circuits required on each link), and the arrival and service rates.
Calls are assumed to arrive according to a Poisson process with
class-dependent rate A;. Let Ajc be the number of circuits re-
quired by a class-k call on link j. (In ordinary “single-rate”
telephone networks, Ajx is equal to 0 or 1.) When a class-k call
arrives, it is accepted into the network if the number of busy
circuits on link j is < C; — Aj for all j =1,...,J; otherwise it
is blocked and assumed lost. The holding-time distribution for
a class-k call has an arbitrary distribution; denote 1/u; for its
mean. Also denote py := Ay /py for k =1,..., K. Note that this
formulation allows us to model narrowband (e.g., voice), wide-
band (e.g., facsimile, video), point-to-point and conference calls.
Further note that the model does not require any restriction on
the underlying network topology.

Denote A for the J x K dimensional matrix with elements
Aji; denote A, and A;. for the kth column and the jth row,
respectively, of the matrix A. Let C = (C\,...,Cy) be the
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vector of link capacities. The state of the system is defined by
the vector n = (ny,...,nk), where n; represents the number
of class-k calls currently in the system. The set of all possible
states is given by

L) :={n: An < C}.

Denote 7(n) for the equilibrium probability of being in state
n. It is well known (e.g., see Kelly [1986]) that

- "k
HA Py
k=1 n,!

() ==56)

n € Q,

where P
PE
1
neQ(L)+=1 ™
Most performance measures of interest can be expressed in
terms of the normalization constant. For example, the proba-
bility that a class-k call is blocked is given by

9(C) =

which involves the ratio of two normalization constants. Note
that the above equation has the form (4). As another example,

the sensitivity of the blocking probabilities with respect to the
traffic intensities is given by

9B _ 9(C—Ax)g(C— A1) —g(Clg(C—As—Al)
o 9%(C) '

which is again a simple function of normalization constants.
Let us now apply the ideas of Section 2 to this class of

stochastic networks. First consider estimating the normaliza-

tion constant g(C). If we set @ = Q(C), Ni = min{C;/Aj :

Aj>0,57=1,...,J}, and gx(n) = pg/n!, then G, given by (2)
is an unbiased estimator for the normalization constant g(C).
Let us focus on importance sampling functions of the form

1Ay
n)=-J] X, 6
»( - kl;[l - (6)
where
K Nyl
=13 %
k=11=0

(Note that c is easy to calculate.) Then the estimator G, takes
the form

M:

c
Gn=2
N

(p/ 1) 1(V' € Q). (M

Il
E
Il

The software implementing the estimator would have two mod-
ules. The setup module would calculate and store (pi/vx)" for
n=0,...,Ni, k=1,...,K. The execution module would gen-
erate V!, V2 ... and recursively calculate the estimators G,
G, . ... Note that O(JK') operations would be required, in the
worst case, in order to obtain G,,; from G,.

As an example, consider the star network with four links
as shown in the Figure 1. The link capacities are: C; = 90,
Cy = 100, C3 = 110, C4 = 120. We assume that there is traffic
between each of the 6 pairs of leaf nodes, with no traffic between
a leaf node and the central node. For each pair of leaf nodes we
assume two classes of traffic: one class that requires 1 circuit on
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each of the two links along its route; another class that requires
5 circuits on each of the two links along its route. The routes,
bandwidth requirements, and traffic intensities are specified for
the 12 classes in Table 1.

=90
Cl
_ =100
c4—120 Cz
=110
':3

Figure 1. Star Network

Table 1. Network Data

Bandwidith Offered Load

Class | Route | Requirement | Light | Moderate Heavy
1 1,2 1 9.0 10.0 15.0
2 1,3 1 9.0 10.0 15.0
3 1,4 1 9.0 10.0 15.0
4 2,3 1 9.0 10.0 15.0
5 2,4 1 9.0 10.0 15.0
6 3.4 1 9.0 10.0 15.0
K 1,2 5 1.0 2.0 3.00
8 1,3 5 1.0 2.0 3.00
9 1,4 5 1.0 2.0 3.00
10 2,3 5 1.0 2.0 3.00
11 2,4 5 1.0 2.0 3.00
12 34 5 1.0 2.0 3.00

There are over a trillion states in this example. None of

the known combinatorial or asymptotic techniques apply to this
network. Table 2 illustrates the performance of the estimate G,
for light, moderate, and heavy traffic. For each case, we have
estimates based on (¢) v« = pi, k = 1,..., K; (i) v # prs
k=1,...,K, and (33 7« = p&, k = 1,..., K, with antithetic
variates. 95% confidence intervals are also given in the chart
for n = 100,000. We see from Table 2 that importance sam-
pling and antithetic variates do not provide variance reduction
in light traffic. However, both techniques give a small reduction
in variance for moderate traffic and a significant reduction for
heavy traffic. Note that the importance sampling parameters 7,

k=1,...,12, are (slightly) smaller than the corresponding of-
fered loads.pk, k=1,...,12 (for both moderate and heavy traffic
cases), which causes the samples V" to fall more frequently in

Q(L).
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Table 2. Normalization Constant

Importance Sampling Antithetic Variants
Traffic ‘7k = Pk improvement improvement
(k= ,12)
Light! (41682, 41707) (41682, 41707) 0% (41682, 41707) 0%
Moderate® | (18179, 18212) | (18179, 18211) 3% (18181, 18213) 3%
Heavy® [ (33088, 33578) | (33022, 33421) 18% (33162, 33494) 32%

1. Confidence interval endpoints should be multiplied by 102

2. Confidence interval endpoints should be multiplied by 10%". For importance sam-

pling the following factors were used: v, = ---

1.985.

= Y6 = 999, Yr =

= e =

3. Confidence interval endpoints should be multiplied by 10*2. For importance sam-

pling the following factors were used: 3, = - - -

Now consider the problem of calculating blocking proba-
bilites via the ratio estimate ®, with the importance sampling
function (6):

1[V‘ € QC — A T (pa/76)"
L 1V € Q(O)) L 1(m/n Ve

Tables 3-5 illustrate the performance of the estimator for the
network of Figure 1 with n = 100, 000, again in light, moderate,
and heavy traffic. For each case we have estimates based on (z)
Ye=pi k=1,...,K; (i) 7 # pr, E=1,..., K. In contrast to
the results for the normalization constant, importance sampling
has given very impressive results for light and moderate traffic,
and only a small improvement for heavy traffic. Also note that
the importance sampling parameters are now larger than the
corresponding offered loads, which causes the samples to fall
near the boundary of (L) more frequently.

o, =1- (8)

Table 3. Percent Blocking for Light Traffic

Class Y& = Pk Importance | Improvement
(k=1,...,12) | Sampling’
1 (.040, .069) (.042, .053) 62%
2 (.038, .066) (.037, .048) 61%
3 (.037, .065) (.037, .047) 64%
4 (0, .008) (-005, .008) 62%
5 (0, .006) (.004, 007) 50%
6 (0, .003) (0, .001) 67%
7 (.35, .43) (.34, .38) 50%
8 (.32, .40) (.30, .34) 50%
9 (.32, .39) (.30, .33) 57%
10 (.032, .058) (.046, .056) 62%
11 (.024, 048) (.042, .051) 63%
12 (.003, .015) (.004, .006) 83%

1. For importance sampling the following factors were used:
71_’72=’73=96 ‘74 Ts=7% =95 17T="T8="T =
To="1=72=22 m2=21
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=7 =147, 77 =

= =27

Table 4. Percent Blocking for Moderate Traffic

Class Ve = Pk Importance | Improvement
(k=1,2...,12) | Sampling’
1 (0.298, 0. 370) (0.328, 0.375) 35%
2 (0.261, 0.329) | (0.280, 0.325) 34%
3 (0.253, 0.320) | (0.273, 0.318) 33%
4 (0.044, 0.070) | (0.059, 0.075) 48%
5 (0.031, 0.064) | (0.052, 0.067) 55%
6 (0.005, 0.018) | (0.008, 0.012) 69%
7 (2.2, 2.39) (2.23, 2.37) 26%
8 (1.87, 2.05) (1.90, 2.03) 28%
9 (1.81, 1.98) (1.86, 1.99) 24%
10 (0.467, 0.557) | (0.461, 0.509) 47%
11 (0.403, 0.486) | (0.411, 0.458) 43%
12 (0.072, 0.110) | (0.066, 0.079) 66%

1. For importance sampling the following factors were used:

N=T2=T3="Y4 = 10.5,75 =

=% =70="1="2=275

104, %6 =102, 7 =3

Table 5. Percent Blocking for Heavy Traffic

Class Ve = P Importance | Improvement
(k=1,2...,12) | Sampling
1 (5.465, 5.910) | (5.307, 5.740) 3%
2 (4.421, 4.825) | (4.227, 4.617) 3%
3 (3.939, 4.321) | (3.756, 4.125) 3%
4 (2.310, 2.608) | (2.300, 2.596) 1%
5 (1.835, 2.102) | (1.836, 2.103) 0%
6 (0.772, 0.949) | (0.715, 0.886) 3%
7 (27.94, 28.80) | (27.76, 28.60) 2%
8 (23.18, 23.99) | (22.95, 23.74) 2%
9 (21.13, 21.93) | (20.92, 21.69) 1%
10 (13.14, 13.80) | (13.19, 13.83) 3%
11 (10.88, 11.49) | (10.91, 11.51) 2%
12 (4.631, 5.043) | (4.558, 4.965) 1%

1. For importance sampling the following factors were used:
N=re=71=149, y=71=7%=1485 yr=7=
Yo =10 =" = 2.9,712 = 2.85
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4. MULTICHAIN QUEUEING NETWORKS

It is well known that there is a product form solution for
the equilibrium state probabilities for a large class of queueing
networks. This class allows for

e Multiple types, or chains, of customers. Customers in
different classes can have different routing probabilities
and, at non-FCFS service centers, different service distri-
butions. Class hopping between customer classes is also
permitted, a feature often used for analyzing precedence
constrained sequences of actions in a queueing network.

Mixed networks, meaning networks with both open and
closed chains.

A variety of service disciplines including infinite server
(IS), processor sharing, FCFS, and multiple service sta-
tions with concurrent classes of customers [LeBoudec 1986].

General service distributions at infinite server and proces-
sor sharing centers. Exponential service at FCFS centers,
where the rates are permitted to depend on the center but
not on the class. Load-dependent service rates at each of
the nodes.

A limited form of state-dependent routing [Towsley 1980;
Yao 1987].

In order to simplify the notation, we limit our discussion to
closed multichain queueing networks where (7) no class hopping
is permitted; (i7) each node is either a FCFS or an IS service
center; (i) service times are exponentially distributed and do
not depend on the class.

Suppose there are J classes, where class j has N; customers.
Suppose there are M service centers, where each server at center
m works at rate p,,. at center m is denoted by . Let A, be
the relative visit ratio of class-j customers at service center m,
and denote pjm := Ajm/pm. The state of the system is denoted
by n:=(njm:1<j <J,1 <m < M), where nj, denotes the
number of class j customers at service center m. The set of all
possible states is given by

Q={n:nj+--+nuy=N;, j=1,...,J}.
Denote np, := (njm: 1 <3< J)and ny = nypn + -+ + 1ym. It
is well known that the equilibrium probability of being in state
n € Q2 is given by

1M
m(n) == [ fm(na),
[ ——
where
ym
npy,! ]'[;'=1 ‘—;1"‘—, if center m is FCFS
fm(nm) = B o ym!
i=1 if center m is IS,
and

M
9= > II fm(nn).

neam=1

Moreover, many performance measures of interest, (including
average throughputs, the moments of the queue lengths, and
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the gradients of these measures) can be expressed as simple func-
tions of normalization constants.

Let us now apply the ideas of Section 2 to this class of net-
works. We focus our discussion on determining the normaliza-
tion constant g. The estimator G, given by (2) becomes

G =23 47 (9

whereV:(Vj‘;":lsjsJ,

M
g(n)=1n € Q) [[ fu(nm), neA.
m=1

Note that for multiclass queueing networks, the sampling distri-
bution p(-) is defined over

A=A1X'~~XAJ,

where A;j := {0,..., N;}*. Thus in each iteration of the algo-
rithm, JM variates are drawn from a uniform distribution. The
JM variates are then transformed so that they correspond to a
sample from A with distribution p(-).

Importance Sampling Technique #1

Recall that the method of importance sampling is to choose a
distribution p(-) from which it is easy to sample and which keeps
the variance of ¢(V*)/p(V*) to a minimum. One possibility is
to choose p(-) so that Vj'm, 1 <7< J,1<m< M, are
mutually independent. Although such a distribution would be
easy to sample from, this may be a bad choice because with high
probability Vi + .- + Viy # Nj, which in turn leads to large
variance for the performance estimators.

A more fruitful approach might be to choose a sampling dis-
tribution such that Vj + .-+ Vixg = Njforall1 <j < J and
all © > 1. This could be done with sampling functions of the
form

J
p(n) = [T pi(nj, - onum), (10)
j=1

where p;(-) is a distribution over
Qj = {(njl,. .. ,77.]‘1\/) Tt oty = N]}

This would indeed guarantee that Vi4-+ Viy = N;. Note
that a sampling distribution of the form (10) calls for indepen-
dent sampling across classes but dependent sampling across ser-
vice centers within a given class.

Unfortunately, this method has its drawbacks since the inte-
grand g(n)/p(n) becomes difficult to evaluate. More specifically,

q(n) _ ﬁ N ,11[ Pim [Mjm!
o _ !
p(n) oo S (e ngm)

contains the term [T¥_ n,,!, which can become exceedingly large.

Importance Sampling Technique #2

We now discuss another approach to importance sampling,
which does not have the integrand evalulation problem discussed
above. This method requires at least one node, say node 0, to
be an IS center. (It is interesting to note that the method of
asymptotic expansions always requires that at least one node be
an IS service center.)

If for any n € 2 we know n,, ..

., My, then we also know ng
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through the relation njo = N; — n;; — - -~ = n;ar. Therefore, the Fishman, G. (1978), Principles of Discrete Event Simulation.
normalization constant can be expressed as John Wiley, New York.

Harvey, C. and C.R. Hills (1979), “Determining Grades of
=3 H fm(np) Ht =Ny — s — ), Service in a Network,” In 9th International Teletraffic
neq m=1 i=1 Conference.

where . Kalos, M and P.A. Whitlock (1986), Monte Carlo Methods,
t(n) := £(l'.1_ Volume 1: Basics. John Wiley, New York.

n! Kelly, F. (1986), “Blocking Probabilities in Large Circuit-

and Switched Networks,” Advances in Applied Probability

Q= ceny)iny 4ty < <j<J} 18, 473-505.

{tn,omar) sy 4o dmum <N, 1< <} Kelly, F.P. (1979), Reversibility and Stochastic Networks.
Note that 2’ has been defined with inequality constraints. Wiley, Chichester.

Now consider the following importance sampling function Lam , S.S. and Y.L. Lien (1983), “A Tree Convolution Algo-
p(-). First we choose ny,...,ny from a distribu- rithm for the Solution of Queucing Networks,” Com-
tion r(ny,---,npr). Then for each m, we choose nim,...,nym munications of ACM, 26, 203-215.
according to placing n, balls into J boxes, where the prob- LeBoudec, J.Y. (1986), “A BCMP Extension to Multiserver
ability that a ball is placed in the jth box is pjm/pm, Where Stations with Concurrent Classes of Customs,” In Per-
pm = Pim + ...+ pjm. Thus formance '86, pages 78-91.

M I (o] ) McKenna, J. and D. Mitra (1982), “Integral Representation
p(n) =r(ny,...,np) H ! H %, neA (11) and Asymptotic Expansions for Closed Markovian Que-
m=1 i=1 jm: ueing Networks: Normal Usage. Bell Systmes Technical
For the sake of presentation, suppose the nodes 1 through M Journal 61, 661-633.

are FCFS service centers. Then the “integrand” becomes McKenna, J., D. Mitra, and K.G. Ramakrishnan (1981), “A
Class of Closed Markovian Queueing Networks: Integral
g(n)/p(n) = 1(n € Q)LL_PM ot Ht = =) Rel?rese’ntations, Asymptotic ‘Expansions. and Generali-

(nl, e ) zation, ” Bell Systems Technical Journal, 60, 559-641.

(12) Mitra, D. (1987), “Asymptotic Analysis and Computational
Methods for a Class of Simple, Circuit-Switched Net-

We could further set r(ny,...,np) = cy™ -+ 9™ so that (12) works with Blocking, Adv. Appl. Prob., 19, 219-239.
becomes Mitra, D. and J. McKenna (1986), “Asymptotic Expansions
l(n ey X for Closed Markovian Queueing Networks with State
q(n)/p(n) = —— H Prm )"”‘ H ti(N; —nj— - —njn), Dependent Service Rates, Journal for the Association
¢ m=1 of Computing Machinery, 33, 568-592.
. . Ramakrishnan, K.G. and D. Mitra (1986), “An Overview of
which is easy to evaluate. However, other choices of 7(n,, ..., nar) PANACEA, a Software Package for Analyzing Marko-

may give better variance reduction. vian Queueing Networks,” Bell Systems Technical

Journal 61, 2849-2872.

5. CONCLUDING REMARKS Reiser, M. and H. Kobayashi (1975), “Queueing Networks

Monte Carlo summation and importance sampling have been with Multiple Closed Chains: Theory and Computa-
considered for solving large-scale product form stochastic net- tional Algorithms,” [BM J. of Research Development.
works. We have shown that for a loss network with a star 19, 283-294. i
topology, confidence intervals can be greatly reduced. We have Reiser, M. and S.S. Lave.nberg (1950)» “Mean-Value Analysis
also outlined two importance sampling techniques for multichain of Closed Multichain Queueing Networks, Journal of

Assocation for Computing Machinery. 27, 313-322.
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