Proceedings of the 1990 Winter Simulation Conference
Osman Balci, Randall P. Sadowski, Richard E. Nance (eds.)

FUTURE REAL-TIME TESTING AND EVALUATION COMPUTING ENVIRONMENTS

Douglas R. Goodman

Cray Research Inc.
894 Ross Drive, Suite 203
Sunnyvale, California 94089

ABSTRACT

Just as future aerospace programs will be more than simply
bigger or faster versions of existing systems, so too must future
computational systems be more than bigger or faster versions of ex-
isting capabilities. Future aerospace programs will be discriminated
from current programs by their ability to operate as an integrated
system-of-systems rather than as a loose collection-of-systems.
Similarly, the computational environment required to support the
analysis and operation of future aerospace programs cannot be de-
rived as a simple extension to, or collection of, existing computa-
tional capabilities. This paper explores the requirements for an inte-
grated, high performance, real-time computing environment capable
of testing and evaluating future aerospace systems.

1. A THIRD METHODOLOGY

The evolution of the role of computational simulation in the de-
sign, analysis and operation of modern aerospace systems is causing
an important transformation in the science of real-time testing and
evaluation. This evolution can be best understood from an histori-
cal perspective that highlights both the importance of computational
methods to the advancement of modern science, and its shortfalls in
terms of its completeness as a mature methodology.

Figure 1 depicts the emerging view of computational science as
a peer level methodology to traditional theoretical and experimental
methodologies. This view challenges the conventional view that
considers computational technologies as simply a support tool for
other sciences. This emerging view states that computational sci-
ences have introduced a third methodology for the design and anal-
ysis of modem systems.

Insights, Perspectives & Innovation
COMPUTATIONAL
METHODS

Computational Models
& Simulations

METHODS
Mathematical & Physical Models
Conceptual Models & Tests

Theories & Explanations Data, Facts & Measurements

Figure 1. A Third Methodology

This perspective was first recognized within the Department of
Energy’s Nuclear Weapon Design program and was well document-
ed in a report to Congress entitled “The Need for Supercomputers in
the Nuclear Weapon Design Program” [Wilson et al. 1986]. In this

- document experimental and theoretical methodologies are described
in terms of their relationships as well as their limitations. It first de-
scribes how experiments provide the real world data and measure-
ments from which theoretical models are built; and how theoretical

Robert G. Enk

Cray Research Inc.
Suite 1331 North
1331 Pennsylvania Avenue, NW
Washington, DC 20004

techniques are then used to develop predictive models that are
validated by experimental testing programs. Both methodologies
are, however, highly dependent upon direct human experience.
Current theories are based on what we perceive to be logical and
consistent with observations, and experiments can only test what
they are designed to measure. Where theory is incomplete we make
assumptions (particularly about relationships), and where physical
testing is impractical we conduct representative tests.

As the systems we design and analyze begin to exceed direct
human experience and human intwition, experimental and theoreti-
cal methodologies alone become inadequate. While this was first
encountered in the practical application of quantum mechanics and
relativistic physics to nuclear weapon design, it is true of any sys-
tem that cannot be completely physically tested or for which a fully
integrated theoretical model cannot be developed. Computational
methods provide a means of eliminating the assumptions inherent
within theoretical models and expanding the testing environment
beyond that which is physically practical. Computational methods
complement traditional methodologies by providing insights into
the operation of complex systems that would otherwise be over-
looked by theoretical methods or left untested by experimental
methods. These new insights are the source for not only better de-
signs but also the source for the identification of failure modes that
would have otherwise gone undetected until they are experienced
under real operational conditions.

Exploiting this emerging relationship between experimental
and computational methodologies offers significant potential in the
testing and evaluation of future aerospace systems. This work is
dependent upon our ability to provide an integrated computing envi-
ronment that integrates these methodologies. Some examples of
how these relationships are being exploited today will serve as a
basis for extrapolating future requirements and directions.

1.1 Nuclear Weapon Design Example

The Nuclear Weapon Design process is made exceptionally
complicated by the difficulties involved in physical testing.
Physical, economic, and political restrictions severely limit nuclear
weapons testing. As a result, nuclear weapon designers depend
heavily upon supercomputing as a platform for conducting exten-
sive computational tests. The capabilities of the computational sys-
tems define the limits of practical nuclear weapon designs, as
shown in Figure 2.

3

107 — Specialized Output Warheads
1 02 | X-ray Physics~) D o...«‘
1 Enhanced Safety Warheads ~3, &
10" — Tailored Outputs — - on—D Directed Energy
10° | Spartan ABM—2@ Weapons

Small Strategic Warheads

/o Nuclear Arillery

\ Small Diameter Primary

& First Thermonuclear Weapon
< First High-efficiency Primaries

(CRAY-1S EQUIVALENTS)

| |
1950% 1960 % 1970 * 1980 ¢199O
UNIVAC CDC 6600 CRAY 1 CRAY Y-MP
1BM 704 CDC 7600 CRAY X-MP

Figure 2. Supercomputing Use In Nuclear Weapon Design

D.R. Goodman and R.G. Enk

In most design efforts of any complexity, experimental facili-
ties can be set up to obtain data on the device before actually bu1]¢~
ing a full scale prototype. Wind tunnels, for example, are used in
the aerospace industry. There is no parallel to the wind tunnel in
nuclear weapons design; no experimental facility exists which can
pretest critical nuclear design parameters. Processes which only
occur during a nuclear explosion itself cannot be evaluated. In ad-
dition the physical tests that are conducted are limited in scale (less
than 150 kilotons) and in environments (underground) such that the
performance of actual devices can only be inferred.

Therefore in Nuclear Weapon Design:

« Computational Methods are the Experimental
Environment - The limits to which computational experi-
ments can be conducted define the limits of practical de-
signs.

. Pﬁl;sical Tests Support Computational Experiments -
Nuclear tests are specifically constructed to provide data to
validate and evaluate computational experiments.

1.2 Crash Testing Example

Computational crash testing is used in aerospace and automo-
tive industries to optimize designs for structural integrity under
complex impact conditions. These techniques were originally de-
veloped to test designs under conditions that could not be physically
recreated (hypervelocity impacts), but have since been extended to
provide broader capabilities.

Physical tests are limited for two reasons. First, complete in-
strumentation is difficult to achieve. Most physical tests, therefore,
provide limited data on the intermediate effects and often only pro-
vide before and after results. Secondly, destructive testing often in-
troduces dust, smoke or other artifacts that obscure the testing pro-
cess, making techniques such as high speed photography ineffective
in capturing data.

Computational models are not subject to these limitations.
They can be instrumented at virtually any spatial or temporal reso-
lution desired by the tester to provide complete detail of the inter-
mediate dynamics. And the artifacts of the testing process can be
masked to provide direct evaluation of the parameters of interest.

Therefore, in crash testing:

« Computational Methods Provide Intermediate Detail -
They provide data that cannot be obtained with before and
after destructive testing methods.

« Computational Methods Eliminate Physical Testing
Artifacts - They allow removal of unwanted information
that would otherwise obscure the experimental data collec-
tion and analysis process.

As an example of computational crash testing, Figure 3a de-
picts the results of a 50 kilometer per hour frontal impact test. The
large finite element model used to obtain results for further vehicle
development is shown [Nalepa et al. 1987]. The model consisted of
7911 shell elements and 7233 nodes.

Figure 3a. Finite Element Model

An accurate description of the location of the center of gravity,
masses, and mass inertia was also provided. Figure 3b shows the
deformation of the vehicle 30 milliseconds after impact.

238

Figure 3b. Deformation After Crash

Among other information, the simulation showed that the
siderails greatly influence vehicle crash behavior, because more
than 40% of the kinetic energy of a frontal impact will be absorbed
by the siderails. Global variables such as forces, velocities and de-
formations can also be defined, enabling the development engineer
to evaluate crash behavior of different structural modifications at an
early stage.

Figure 4 shows the comparison between the experiments done
and the computer simulation, for the velocity and deformation value
changes in the 50 kilometer-per-hour frontal impact.

mm
60 — Simulation -
— Test
50 Velocity -
% 40 — [Bg=
s o
< Displacement qu
Z 30 o i o
g T 2
— 7]
= 2
> 20 - B
10 — -
g T T T T T
20 40 60 8)(\100 120
-10 — Time (ms)

Figure 4. Comparison of Test and Analyses

Note that for accuracy reasons (round-off error accumulation)
only machines such as Cray Research computer systems with at
least 64-bit single precision are suitable for running crash simula-
tion programs. Large, high performance, real memories and high
storage capacity are also necessary .

1.3 Computational Fluid Dynamics Example

The science of Computational Fluid Dynamics (CFD) has long
been the “showcase” application for computational methods
[Peterson 1984, 1989]. As shown in Figure S5a, CFD and supercom-
puting technologies have evolved hand-in-hand since the mid
1970°s when the supercomputer of that day, the CDC-7600, was
used to computationally simulate the two dimensional airflow
around the cord of an aircraft wing. By 1983 the CRAY-1 was ca-
pable of simulating the three dimensional airflow around an entire
wing (Figure 5b), and by 1986 entire simplified aircraft structures
were being simulated by the CRAY X-MP/4 (Figure Sc). During
this period computational models have been primarily used to sup-

Future Real-Time Testing and Evaluation Computing Environments

port wind tunnel testing programs or to explore environments out-
side the performance limits of the wind tunnels. Recent advance-
ments, however, have resulted in a new relationship between com-
putational and experimental methods. With the availability of
CRAY Y-MP class supercomputers it is possible to not only model
complete aerospace structures, but to model them in a simulated
wind tunnel environment (Fig 5d). Computational wind tunnel ex-
periments are now sufficiently accurate that the anomalies intro-

duced by physical wind tunnels, such as wall and support interfer-
ence can be isolated.

Figure 5c. 1986 CRAY X-MP/4

Therefore, in CFD testing:

+ Computational Methods correct Physical Tests - They
isolate and subtract out the anomalies introduced by physi-
cal testing systems.

+ Computational Methods Account for Effects - They ac-

239

count for phenomena that cannot be physically simulated.

Figure 5d. 1989 CRAY Y-MP8/8
2. COMPUTATIONAL LIMITATIONS

Today’s high performance computing architectures have
evolved along three distinct paths in direct response to the computa-
tional requirements of the three methodologies described earlier.
Figure 6 depicts these three environments in terms of the principle
factors that have influenced their basic architectures. High perfor-
mance scientific computers (supercomputers) have been optimized
to support large scale, high fidelity scientific processing. High per-
formance operational computers (real-time systems) have been opti-
mized to support synchronization and interaction with external de-
vices and systems. And, high performance system analysis comput-
ers (studies and ops-analysis systems) have been optimized to sup-
port large scale data base management and correlation functions.
Unfortunately, the process of focusing on the requirements of one
methodology has resulted in computational incompatibilities be-
tween the methodologies and sub-optimal solutions for integrating
capabilities between the methodologies.

FIDELITY / SCALE

A

“I Calculated Physics (First Principles)

[Discrete Approx.
“T> Limited Physics
[Statistical Approx.

“T Table Look-up

Single Parameter
Single Phenomena
Multi-process

Batch

Interactive
1:1 Real-time

Multi-phenomena Hardware-in-loop

Multi-process/Phenomena Predictive
LEVEL OF LEVEL OF
INTEGRATION INTERACTION

Figure 6. Three Computing Environments

Supercomputers (in traditional configurations) have not been
specifically engineered to support real-time levels of interaction or
used for complex operational analysis of multi-process or multi-
phenomena systems.

Real-time computers are primarily designed to support high
performance 1/O, and are typically not robust enough computation-
ally to perform complex calculations in small frame times. Often
these complex calculations are done in advance and results are
stored as look-up tables that are accessible by the real-time applica-

D.R. Goodman and R.G. Enk

tion during real-time. Where multiple simultaneous applications
must be supported, real-time systems are often configured as dis-
tributed processors with one processor dedicated to each real-time
job. Process-to-process coordination must then be managed
through networks.

Large scale operations analyses, such as strategic planning,,
generally rely on large data base computers that use parametric
models and statistical methods to describe complex system interac-
tions. These machines typically are limited in their scientific pro-
cessing capabilities. Complex interactions are often simplified to
probabilities that lend themselves to data base techniques. The slow
performance of data base technology limits these systems’ useful-
ness in real-time, operational environments.

3. INTEGRATED SIMULATION FRAMEWORKS

The computational systems required to support a future design,
analysis and operational environment must be a synthesis of all
three of these computing environments. The challenge of next gen-
eration computing systems is to integrate these discrete environ-
ments into a high performance, tightly-coupled framework.

Such an Integrated Simulation Framework (ISF) must be capa-
ble of simultaneously supporting 1) high fidelity multi-phenomena
analysis; 2) real-time, Hardware-in-the-Loop interfaces; and 3)
large-scale multi-process parametric modeling.

Such frameworks do not exist today. However, conceptual
frameworks and initial designs have been explored. One of the
more aggressive efforts was developed as part of the DETEC pro-
gram to support SDI National Test Bed requirements [Christman et
al. 1986]. While it is beyond the scope of this paper to describe
DETEC or represent its current functional capabilities at the
National Test Bed, the underlying concepts are instructive.

The ISF postulated by the DETEC project was composed of the
four major functional subsystems shown in Figure 7.

1) The Simulation Space Function provides a computational
environment within which all the physical phenomena models could
co-exist in an internally consistent format. The function also pro-
vides a mechanism for establishing and simulating the logical and
physical interfaces between all the simulated and real elements of
the system.

2) The Object Simulation Function allows the explicit defini-
tion and self contained simulation of each independent element in
the system including all its non-deterministic attributes.

3) The Simulator /Interface Function allows the interfacing of
externally simulated or real-world devices into the overall simula-
tion in a format identical to the internally simulated elements.

4) The System Management Function provides for the overall
control of the system as a discrete event simulation capable of inte-
grating and synchronizing real and simulated elements in a large-
scale system-of-system framework.

Inter-Process
Communication

i ~
System Management Functions -
User Interface Discrete
Event Queue

I Managcr]

~

Synchronization

Grid Space

Event Physics

[Executive]

J

~

N « Physical Phenomena
« Physical Processes
Rules Of « First Principles
Engage- 1 |- Deterministic Processes
ment
Object Simulation Simulators/
__Simulation J_ Space Interfaces)

Figure 7. Integrated Simulation Framework
3.1 Simulation Space Function
The Simulation Space Function is composed of three major

sub-functions; Grid Space Functions, State Vector Functions and
Event Physics Functions.

240

The Grid Space is the spatial definition of the physical environ-
ment within which the simulation will occur. This function main-
tains the current values of all the first principle parameters (temper-
ature, pressure, etc.) relevant to each grid point. The interface and
coupling between multiple phenomena is established and main-
tained through the Grid Space Function. That is, the initial condi-
tions for each iteration of a process are drawn from the same first
principle parameter set, and the resulting effects are shared between
the processes and are reflected as grid quantity updates and/or
changes to state vectors.)

The State Vector is the explicit definition of each independent
object (simulated and real) within the simulation space. In addition
to the traditional position, velocity and attitude state vectors are all
the explicitly definable values of each object such as health/status
conditions, geometric characteristics and intrinsic values such as
optical and radiation hardness.

Event Physics is the collection of all the physical phenomena
models that support the modeling of the Simulation Space, such as
atmospheric effects and terrain dynamics, and also all the physical
processes of the simulated and real objects, such as booster burn
physics and weapons effects physics. Event Physics is structured as
a collection of validated first principle algorithms not as one large
integrated code.

3.2 Object Simulation Function

The Object Simulation Function provides a uniform framework
for the simulation of the non-deterministic attributes of all the dis-
crete objects (aircraft, command centers, missiles, etc.) that operate
within the simulation space. Each object in the system is separately
identified and characterized in terms of its ability to sense or input
information from the simulation space, analyze or process that in-
formation, and to affect or ouzput back into the simulation space.

To characterize a real object, such as a missile system, a hierar-
chy of these I/P/O constructs may be necessary to define all the rel-
evant subsystems that compose the object. In addition to these
I/P/O modules, each object maintains a unique perspective of the
Simulation Space called its Perceived World that is built up from
the information accumulated through the sensing module including
all the misperceptions resulting from communications and sensor
€erToTS.

The Rules of Engagement function provides each object with a
set of directives for initiating actions based on its perceptions of the
state of the local environment. The Affecter module is implement-
ed as a parametric representation of the physical characteristics of
the relevant outputs such as thrust profile for a missile or frequency
and power output for a transmitter. The actual execution of the re-
sulting physical processes and the consequential effects on the local
environment and interaction with other objects is handled by the
Event Physics modules in the Simulation Space Function.
Therefore, there are no explicitly defined interactions between ob-
jects in the system; all interactions (intended and unintended) are
implicit to the simulation process.

3.3 Simulator/Interface Function

The Simulator/Interface Function provides a framework for the
interfacing of externally simulated or real-world devices into the
overall simulation in a format compatible with the Object Simulator
Function. The Sensor module allows simulated sensor information
from the Simulation Space to be interfaced to external devices that
are either physical simulators or actual systems that can be driven
from these simulated inputs. The Driver module allows outputs
from external physical simulators or actual systems to be interfaced
into the Simulation Space. This module also allows actual parame-
ters to be introduced into the Grid Space and State Vector Space as
real-world values in lieu of computationally derived values.

3.4 System Management Function

The System Management Function provides for the overall
control of the system as a discrete event simulation synchronized
with real-world time scales. The computing elements of the system
must, therefore, be sized to support this event driven processing and
the scheduling functions must be sufficiently predictive to provide
the necessary synchronization of outputs. The System Management
Function provides the resource management and scheduling of pro-
cesses to maintain this synchronization as well as the interprocess

Future Real-Time Testing and Evaluation Computing Environments

communications required to integrate the various functions.

3.5 ISF Benefits

The overall ISF is exercised through a series of cause and ef-
fect event threads, as shown in Figure 8, that are initiated by inter-
nally simulated deterministic processes within the Event Physics
module, by simulated non-deterministic processes within the Rules
of Engagement modules, and by real-world events and external con-
ditions stimulated from the Simulator/Interface Function.

Discrete
Event Queue

System Management Functions

User Interface]
|Manag, _IISy hronization | [Executive]

3 e i,
© Event Phics
@ . Phys‘i/cal Phenomena @ Man
® « Physical Processes ® In-the-loo;
« First Principles “ooP
@ @ « Deterministic Processes @ @
Hardware
0 St e,

Object
Simulation

Simulators/
Interfaces

Simulation
Space

Figure 8. Integrated Simulation Environment

An Integrated Simulation Framework offers the following
unique advantages over traditional, non-integrated computational
support systems:

+ It provides an implicit (versus explicit) modeling frame-
work for analyses. Models that depend on explicit defini-
tions for all the possible inter-relationships between the ele-
ments and processes of complex system-of-system simula-
tions have two drawbacks. They are logically limited by
their inability to predict all the intended and untended inter-
relationships, and they are computationally limited by their
inability to support the complex network of interprocess
communications required to support each explicit relation-
ship.

« It provides a mixed mode of digital simulation and physi-
cal simulators. By providing an environment that allows
digital models to interact with real-world systems, theoreti-
cal models can be directly and interactively compared with
real-world conditions, and real-world systems can be tested
in more complete system-of-systems environments.

» It provides real-time access to large-scale scientific pro-
cessing capabilities. Making first principle analytical capa-
bilities available to real-time processes minimizes the as-
sumptions that must be made with statistical or data base
techniques, and ensures a consistent application of physical
processes across all elements of complex system-of-system
simulations.

« It provides a Life-Cycle support base for the design,
analysis and evaluation of complex aerospace systems.
During the early design phases the ISF is structured as an all
digital simulation. During the development phases the ISF
supports the early analysis of subsystems and prototype ele-
ments as a mixture of digitally simulated and hardware-in-
the-loop components. As part of the OT&E of the system,
the ISF can then evolve to a simulator platform for full scale
system-of-system evaluations.

4. SUPERCOMPUTING AND INTEGRATED
SIMULATION FRAMEWORKS

Supercomputing technologies will play a critical role in devel-
oping Integrated Simulation Frameworks. While supercomputers
are most commonly associated with their ability to deliver very high
levels of performance on large scientific applications, the underly-
ing technology is much broader than just raw CPU performance.

241

Modern supercomputer technologies, typified by Cray Research
products, represent a balance of high performance processing, 1/O,
memory, networking and software technologies. What distinguish-
es supercomputing from other forms of high performance comput-
ing systems is a balanced architecture that can deliver this perfor-
mance across a range of applications and user environments.

Of specific importance to the development of Integrated
Simulation Frameworks are both the internal parallel/vector archi-
tecture, and the very high performance internal and external I/O ca-
pabilities. The parallel/vector architecture of multiple CPUs thh
scalar and vector functional units is uniquely suited to supporting
tightly coupled multi-phenomena analysis. The very high perfor-
mance I/O structure is an ideal platform for implementing a very
high performance real-time, hardware-in-the-loop capability that
can be tightly coupled with the high performance processing re-
sources.

Cray Research supercomputer hardware and real-time software
enhancements provide several orders of magnitude more processing
power than is presently available for real-time applications. This
processing power can be applied to real-time simulation applica-
tions, supporting submillisecond real-time frame times.

Figure 9 provides an overview of a typical Cray Research Y-
MP system, which is described below.

2 Very High SSD | Solid-state Storage Device (SSD)
Speed Ch 1 (512 Mwords)
(1000 Mbyte/sec) I] /O Subsystem 0
7 Low Speed Channels
CPUO MIOP (12 Mbytes/sec)
12 Disk Channels
CPU 1 BIOP (10 Mbytes/sec)
12 Disk Channels
CPU2 DIOP (10 Mbytes/sec)
1 HSX Channel
CPU 3 Central XIOP (100 Mbytes/sec)
Memory
(128 I/O Subsystem 1
CPU 4 M
words) MIOP 7 Low Speed Channels
CPU S (12 Mbytes/sec)
12 Disk Channels
BIOP (10 Mbytes/sec)
CPU 6 12 Disk Channels
DIOP (10 Mbytes/sec)
CPU7 1 HSX Channel
\ XIOP (100 Mbytes/sec)
/ 8 Low Speed Channels
32 CPU to Memory Channels (6 Mbytes/sec)
(1333 Mbytes/sec) 8 High Speed Channels
(100 Mbytes/sec)

Figure 9. Cray Research CRAY Y-MP8/8128 Architecture

The CRAY Y-MP8/8128 is an eight-processor, 128 Mword
(64-bit word) supercomputer with a 6 nanosecond clock. The high
performance of the eight CPUs is complemented by the very high
memory bandwidth, high speed solid-state storage bandwidth, and
broad connectability to the external world. The 8 processors of the
CRAY Y-MP8 share a common central memory, and can simulta-
neously process separate programs or, under user control, different
portions of a single program. The CRAY Y-MP8 system includes
one or two high performance I/O Subsystems (IOS) that provide up
to 14 low speed (6 or 12 Mbyte/second) external channels, one or
two high speed (100 Mbyte/second) external channels, and the ca-
pacity to support up to 48 independent disk channels, each rated at
10 Mbyte/second each. Total disk storage supported is 480 Gbytes.
A solid-state storage device (SSD), accessed from the CPU over
one or two 1000 Mbyte/second channels, is available with up to 512
Mwords of storage.

Each CRAY Y-MP8 processor is theoretically capable of pro-
viding 333 Mflops for a total theoretical performance of 2.667
Gflops. On kernel codes, the CRAY Y-MP8 has demonstrated
2.144 Gflops on the 1000x1000 LINPACK kernel, and 2.36 Gflops
on a matrix multiply kernel. Real CFD codes such as ARC3D, a

D.R. Goodman and R.G. Enk

three dimensional CFD code, has been demonstrated to execute at
1.134 Gflops, and THRED, another CFD code, at 1.397 Gﬂopg. A
128 code aerospace job mix was demonstrated to run at a sustained
1.156 Gflops.

CRAY Y-MP8 memory bandwidth is equally impressive. Each
CPU communicates to memory over four ports, two write and one
read, plus an I/O port, each rated at 1333 Mbytes per second. If a
situation were to occur wherein all these ports were active, total
memory bandwidth would be 42.6 Gbytes/second.

The optional SSD provides a very fast auxiliary memory which
can be used for I/O caching to disk devices, user or system file
space, or as shared memory between processes. Actual data trans-
fer rates of 1.8 Gbytes per second (using two 1 Gbyte/second chan-
nels) have been demonstrated to and from this device.

The one or two IOS subsystems provide the interface between
the CRAY Y-MP8 mainframe and the external world. The 14
available low speed (6 Mbyte or 12 Mbyte/second) channels can be
connected to medium speed networks such as NSC HYPERchannel,
or to VME-based devices such as Sun or Motorola workstations.
These workstations or IP routers such as the NSC EN643 can be
used to connect to Ethernet, FDDI, or other low speed networks.
In addition, a number of direct point-to-point links to other vendor
computers are supported over these channels, including DEC, IBM,
CDC, and others.

The two available high speed (100 Mbytes/second) channels
can be connected to UltraNetwork Technologies’ UltraNet network,
to HiPPI, or to special customer-fumnished devices.

With high performance CPUs, memory bandwidth, extensive
high performance I/O capability, and large memories and disk ca-
pacity, the CRAY Y-MP8 demonstrates the balanced architecture
required to to allow the integration of multiple computational capa-
bilities to support the integrated simulation frameworks needed for
future aerospace systems.

Cray Research’s UNICOS operating system supports the bal-
anced architecture described above. Based on AT&T’s System V
UNIX, UNICOS provides interactive, local batch, and remote batch
user interfaces. Among many other enhancements for supercom-
puter users, the TCP/IP and ISO networking standards are support-
ed. This networking support allows Cray Research supercomputers
to provide extensive capability for scientific visualization to users.

The Cray Research Multi-Purpose Graphics System (MPGS) is
designed to take full advantage of the Cray Research supercomputer
running UNICOS and a high-performance Silicon Graphics work-
station in a distributed environment. The workstation runs the easy-
to-use user interface, and performs local transformations by use of
workstation hardware. Processor and memory intensive tasks are
distributed to the Cray Research supercomputer. MPGS performs
and creates transformations, hidden surfaces, hidden lines, contour-
ing, vectors, particle traces, clipping and a false color map.

Use of such graphics capabilities greatly enhances the ability of
users to understand and expand the complex interactions of physical
phenomena within simulation work. Such understanding is vital to
the continued development of complex simulations within the
Integrated Simulation Framework described above.

5. SUMMARY

The effective testing and evaluation of future aerospace sys-
tems will require the integration of theoretical, experimental and
computational methodologies. Integrating these methodologies will
require the development of an Integrated Simulation Framework
that couples the computational capabilities that have evolved inde-
pendently of one another to support these disciplines. The balanced
architectures inherent within current and future supercomputing
technologies can provide a high performance platform for facilitat-
ing this integration.

REFERENCES

Christman, R.D., Dana, A.L., Henderson, D.B., Shafer, B.P., Wood,
J.A., and Wood, M.M. (1986), “Conceptual Specification for
Defensive Technology Evaluation Code (DETEC)”, Technical
Report LA-10547-MS, Los Alamos National Laboratory, Los
Alamos, NM.

Nalepa, E.J., and Le-The, H. (1987), “Crashworthiness Simulation:
An Emerging Tool for Vehicle Design Optimization, Cray
Channels, 8, 4, 8-11.

Peterson, V. (1984), “Impact of Computers on Aerodynamics

242

Research and Development”, Proceeding of the IEEE 72, 1, 68-
79.

Peterson, V. (1989), “Supercomputing: A Way to Leadership in
Aerospace”, a briefing, NASA Ames Research Center,
Mountain View, CA.

Wilson, W.D., Gallagher, R., et al. (1986), “The Need for
Supercomputers in Nuclear Weapon Design”, Report to
Congress, U.S. Department of Energy, Los Alamos National
Laboratory, Los Alamos, NM, Lawrence Livermore National
Laboratory, Livermore, CA, Sandia National Laboratories,
Sandia, NM.

