Proceedings of the 1990 Winter Simulation Conference
Osman Balci, Randall P. Sadowski, Richard E. Nance (eds.)

THE RUNTIME CREATION OF CODE FOR PRINTING SIMULATION OUTPUT

John H. Reynolds

Computer Science Department
Mary Washington College
Fredericksburg, Virginia 22401-5358

ABSTRACT

Historically, the handling of output requirements for large
simulations has been one of annoyance and inconvenience for
developers. The unnecessary waste of computer resources, as
well as manpower, continues to mount as larger and larger
simulations are created.

The Automated Code Handler for Output Operations
(ACHOQO) is a tool that supports a methodology whereby output
requirements for a computer program, and the source code for
the statements to support them, are determined at execution
time based on user-supplied input. Thus, the user can tailor
output requirements to a specific need or scenario. The
function of the programmer is reduced to instrumenting
pre-designated areas where potential monitoring of program
behavior is desired. This instrumentation activity, consisting of
inserting calls to subroutines that ACHOO creates, eliminates
the need for manual creation of actual output statements and
accompanying format specifications during computer program
development and subsequent maintenance.

Even though ACHOO, in itspresent configuration, supports
FORTRAN programs only, this does not preclude its adaptation
to other languages. During design, attempts were made to
identify, isolate, and document language-dependent functions
so that module substitution could occur to accommodate other
languages.

ACHOO—coded in SIMSCRIPT II.5—was developed by the
author during consulting activities within the System Simulation
Branch of the Strategic Systems Department at the Naval
Surface Warfare Center (NSWC) in Dahlgren, VA.

1. INTRODUCTION

In today’s world of software engineering, heavy emphasis
is placed on tools, i.e.,, computer programs that aid in developing
and/or executing other computer programs. This emphasis is
in recognition of the fact that many of the manual, time
consuming, and error prone tasks performed in the past can
best be done by a computer. Some of the characteristics of
these tools are such that they may: (1) yield a reduction in the
time and cost to produce software, (2) reduce the execution
overhead of a model both in terms of memory and central
processor time, (3) simplify initial computer program develop-
ment and subsequent life cycle maintenance, (4) be reused
across different models, (5) provide the user population with
better methods for interfacing with their models by offering
standardized processing methodologies.

Since 1976, the Systems Simulation Branch at NSWC has
been using modern software engineering practices for develop-
ing large scale FORTRAN simulations, the first of which was
the TRIDENT Computational Simulation (TRICS) [Reynolds
1980). During the TRICS effort, some tools meeting the
criteria stated above were created. In particular, a general
purpose input processor was developed [Goyette and Owens
1982; Reynolds 1980] along with the notion of a Configuration
Description Language (CDL) and supporting processor [Lemoine

220

1978; Reynolds 1980].

The basic premise behind these earlier tools is to delay until
runtime the creation of source code, normally written by pro-
grammers, by making it dependent upon specific user require-
ments. To digress, the CDL approach permits any commitment
to a particular scenario or model configuration to be delayed
until runtime. This also implies that the source code represent-
ing the controlling executive (main program) does not exist prior
to execution. From the user’s point of view,the CDL provides
an alternative to specifying 0’s and 1's by offering a much
more natural and application-dependent vocabulary for describ-
ing model flow and the interconnectivity of model subsystems.
Furthermore, users need not be concerned with disabling those
unfamiliar areas of a large model that they are not interested in
exercising. Since the CDL processor translates user desires into
the source code supporting their specific intentions, program-
mers no longer need to create and maintain general purpose
executives to accommodate all potential users. Thus, at runtime,
users only pay for the address space necessary to contain the
support modules directed into memory by their tailor made
executives.

The Automated Code Handler for Output Operations
(ACHOO) was developed under a similar "delay-until-runtime"
premise. Specifically, it is a tool that can accept the names of
user-supplied output variables and automatically create the
source code of modules to support varyingoutput requirements
for a wide range of users exercising the same model. It is the
intent of this paper to provide an overview of the technique;
specific details for applying the concept are left to the ap-
propriate documentation [Reynolds 1988].

2. MOTIVATION FOR DEVELOPING ACHOO

ACHOO could be described as an attempt to take the path
of least resistance. Specifically, it offers automation as a
substitute for any attempts at modifying the behavior or
changing the attitudes of analysts and programmers in their
usual handling of output requirements for large simulation
models. Outlined in this section are some of the classical
problems which inspired the development of ACHOO.

2.1 Total Output Requirements Not Always Known

At the onset of computer program design, the total known
output requirements sometimes range from "none" to "partial".
In some instances the reluctance to address these requirements
early is predicated by the SMOP attitude. That is, it’s a “simple
matter of programming" to add output support code on a
piecemeal basis as demand dictates. However, in other instanc-
es the analyst just does not know the totality of output require-
ments at program inception. For example, a favorite practice
is to add unplanned code to print the results of intermediate
calculations in trouble areas that crop up during testing and
debugging. Many times this code remains in the model, under
the control of input switches, for future activation if wholesale
program changes are ever made that require extensive retesting.

J.H. Reynolds

Regardless of the motivation, missing output requirements
make it difficult for the designer to create complete and intel-
ligently partitioned databases. Also, a well structured model
exhibiting strong modularity tends to deteriorate in these
attributes when new output activityrequires collecting variables
whose scopes are difficult to change from a local to global
status.

22 Expanding Output Requirements

Later additions of code to implement new and expanding
output requirements can best be described as a maintenance
headache for all concerned. First, analysts may have to inter-
face with programmers who, in turn, must insert and verify new
code or juggle existing output lists and formats. Second, care
must be taken to honor configuration control procedures
because of the usual permanency of changes made. Last, addi-
tional care must be exercised not to disturb existing databases
or files that other users do not want to see altered.

2.3 Too Much Overlap and Redundancy

It is extremely difficult to satisfy output requirements for
a wide community of users of a particular model. Each user
may have different reasons for executing the model, which is
usually reflected as differing output requirements. For the most
part, users can agree on a common kernel of information that
remains fairly stable. It is when extensions occur beyond this
nucleus, and the need to hide them from other users, that
overlap and redundancy tend to creep in. It can range from
multiple executions of the same case (with appropriate output
controls enabled/disabled) to partially redundant output opera-
tions that transfer identical data to more than one file. The
end result, not to mention the execution and memory overhead,
is that many output files end up as subsets of other files.

2.4 No Standardization of Post Processing

Too frequently, analysts rely on the printed page and the
process of pick and choose to isolate quantities of interest in
order to detect anomalies in generated output or to prepare
input to drive other simulations. It is just this frustrating
process that leads to the special capture-the-specifics output
changes which can contribute to the redundancy problem cited
earlier.

A partial solution to the problems already outlined is to
design models to create common databases that permit users
to take advantage of offline processing such as interactive
plotting. Quite frequently, plotting is accomplished by highly
specialized and inflexible code that has been locked into the
model. A better approach is to let analysts interact with a
graphics terminal and selectively create plots from a common
database. In this way, the pictorial behavior of a model can be
examined from many different numerical and analytical view-
points. In addition, analysts can be selective in those plots for
which hard copies are desired. In a similar vein, interactive
post processing also permits the selective reformatting of data
for generating special reports or preparing input for use by other
models.

2.5 Overhead of Output Code

Many of the large scale FORTRAN simulations developed
at NSWC run on Control Data Corporation (CDC) computers
under control of operating systems that do not support virtual
memory concepts. Hence, memory usage has alwaysbeen a big
concern in the CDC environment. It is not uncommon for
simulations to have 10% to 20% of their memory requirements

221

devoted to code to support worst case output requirements.
Yet, in many cases, only a small fraction of this code will be

exercised at any one time. The penalty for the inactive code is
degraded throughput and a more expensive run.

Of course, there is the cost incurred for the manual creation
of the initial output support code during model development.
These manpower costs continue when output adjustments are
made during the lifecycle. Not insignificant are the ecological
costs in the unnecessary waste of paper, containing too much
information, when one continues to ignore the benefits of
interactive post processing.

An example of cost can be derived from the TRICS model
mentioned previously. Its output code, representing approxi-
mately 10% of the total code written, was estimated to have
cost nearly $40,000 to produce! Also, based on an estimate of
initial TRICS usage, the cost fortyingup memory with inactive
code containing rarely used output options was estimated, in
1976 dollars, at $8K to $10K per year.

3. OBIECTIVES OF THE 'ACHOO’ APPROACH

ACHOO offers a chance to reduce, significantly, the
intensity of the manual labor usually employed in creating and
modifying output source code. It does so by adopting the
philosophy that code generated automatically is expendable.
In turn, this implies that response to changing output require-
ments and better utilization of memory can best be done by
automatically recreating or suppressing affected output modules
to fit user needs.

Discussion of some of the available features should illustrate
how ACHOO attempts to meet the objectives of: minimizing
the roles of programmers, more user flexibility, and laying the
foundation for better post processing activity.

3.1 PROBE Concept Reduces Programmer Role

Although it is impossible to get programmers completely
out of the loop, it is certainly possible to minimize their
presence. For the most part, analysts can identify early in the
development cycle where they may want to monitor, or "probe",
program behavior. However, the content of what is to be
printed is usually subject to change.

The idea of a PROBE is introduced as any area withina
model for which the potential for formatted output exists.
(When output is generated it is in the form of mnemonic-value
pairs.) Each PROBE is assigned a subroutine name to be
invoked by the model; the actual code is not created for these
subroutines until runtime. Thus the role of the programmer is
reduced to inserting calls to probe subroutines while ACHOO
does the rest. For each area of the model to be monitored, the
programmer inserts the following:

CALL probe.name; (output.file, message.tag)

The name of the probe, probe.name;, represents the it
subroutine name chosen by the programmer for the i' probe.
The firstargument, output.file, is the integer unit designator of
the file on which probe output will be written. ACHOO
assumes that the model establishes this unit-file connection
based on conventions established within the model and the
environment under which it is executed. The message.tag
argument in this context allows access to the MESSAGES
routine (see next section) to occur from within PROBE routines
prior to printing the contents of probes. If a message is not
desired for any probe, then message.tag is passed as one or
more blanks.

At runtime, the content for those probes of interest can be
declared. It should be noted that the programmer does not

The Runtime Creation of Code for Printing Simulation Qutput

have to provide protection to suppress calls to non-existent or
inactive probes. ACHOO automatically generates stubs
(dummy routines) for those probes that are deactivated or for
which no content is specified. It should be apparent that the
PROBE concept does offer users a chance to control memory
requirements for their particular output operations within a
model. Also, programmer duties are simplified when and if
new probes are requested later in the lifecycle. Because of the
nature of such additions (inserting "calls") the modularity of a
well designed and structured program is preserved.

3.2 MESSAGES Feature for Output Annotation

In many large simulations, the appearance of short, informa-
tive messages throughout the output can go a long way in
describing the occurrence or passage of events such as
"THRUST INITIATION", "THRUST TERMINATION", and so
forth. In many instances only messages are desired. In others,
they may be accompanied by the printing of parametric values.

ACHOO offersthe MESSAGES feature which permits the
runtime definition or alteration of messages. The system will
create the code for a generalized message routine that can be
called directly by the simulation or indirectly from a PROBE.
The latter implies that differentmessages could be displayed if
a user wanted to invoke the same PROBE at different locations
within a program. Wherever an explicit call is required, the
programmer inserts the following:

CALL message.routine (output.file, message.tag)

The name of the routine, message.routine, is chosen by the
programmer. The first argument is the same as discussed in
the previous section. The last argument, message.tag, is a text
string representing a label identifying a specific message. The
labels and accompanying messages are supplied and maintained
as a part of the ACHOO input environment.

3.3 BINARY.LINE Concept for Offline Processing

The BINARY.LINE feature allows for unformatted,
"line-by-line" output from a programmer-designated area within
a model. (For trajectory simulations, this form of output is
usually referred to as "time line" output.) It can be viewed as a
special probe having the attendant features and benefits as-
sociated with the PROBE discussed earlier. The key to this
feature is that it allows users to get maximum information from
a single execution while deferring to offline processing the
plotting or editing of this information.

As with a PROBE, users delay their intentions regarding
the content of the BINARY.LINE until runtime. If the logical
BINARY.LINE envisioned by the user requires more than one
physical record, the routine generated by ACHOO will perform
the necessary multiple writes.

Only one BINARY.LINE routine is scripted for a model.
Of course, it could be called from different areas within a
model. However, from a purely functional point of view, it
would more than likely be invoked from one, centralized
location within the model hierarchy. Regardless, the program-
mer sets up the interface as follows:

CALL routine.name (binary.file)

Again, routine.name is chosen by the programmer and of
course must be unique with respect to all routine names
comprising the model, including probes. The unit designator,
binary.file, identifiesthe fileto receive the binary output where
it is assumed that the model opens the file prior to first usage.

222

3.4 General Features

At runtime, users have many options available when specify-
ing output requirements for a particular session [Reynolds 1988).
To mention a few, there are editing directives like ADD and
REMOVE for altering the contents of PROBE, MESSAGES,
or BINARY.LINE modules. Variables can be printed under
multiple formats; e.g., one may want to see a floating point
variable as just that and in hexadecimal as well. Entire arrays
can be printed by simply stating their names. Array elements,
including ranges of elements, can easily be specified. There is
a SYNONYM feature that allows a different name to be
printed for the actual program mnemonic. Global attributes
may be specified that apply to all probes unless overridden
within those probes that want contrary values. For example, it
can be specified that the output of each PROBE will be printed
starting at the current position within the output page. Thus,
the exceptions that want to start at the top of a new page can
override the current global setting from within.

ACHOO eliminates the need to go through the Boolean
orgies normally associated with testing input options to deter-
mine whether a particular section of a program will display
"brief,""medium," or "verbose" output. In these instances, each
subsequent level is usually an addition or extension of a previous
level. If a PROBE(s) exists for each level, then each logical
level can be captured using the MACRO feature offered by
ACHOO. Thus, one has a means to facilitate control of logi-
cal groupings of probes which can be referenced by macro name
instead of tryingto recall and reference individual constituents.

There are three directives (ACTIVATE, DEACTIVATE,
and NOGEN) that permit easy manipulation of probes and
macros as complete and unmodified entities. ACTIVATE
requests that code be generated for a PROBE or MACRO
unconditionally. DEACTIVATE requests that stub code be
generated for a named PROBE or all probes embedded in a
MACRO. This allows an instrumented simulation to continue
to call probes which are simply no-ops after deactivation. The
NOGEN directive forces ACHOO to suppress code generation
for a PROBE or MACRO. For example, it would be desirable
and efficient to inhibit code generation for invariant and
frequently used probes that have been transferred to the model
library.

4. SYSTEM CONFIGURATION

Figure 1 illustrates where ACHOO fits in the overall
execution of a simulation model. The input filesshown influence
the direction taken by ACHOO in satisfying any particular set
of output requirements. (Minimally, one of these files must
always be present.) The DEFAULT PROBE ENVIRONMENT
file is optional but is available as a master source for predeter-
mined and tested probes. The RUNTIME PROBE REQUIRE-
MENTS file must be an exact replica of a default file if no
default is supplied. However, if a default file exists then the
runtime file allows additional directives that delete, expand, or
modify the default environment. In addition, the runtime file
could contain the specifications for new probes appearing forthe
firsttime. Individual records appearing in both input files are
free-form, i.e., with the exception of some keywords, there is no
dependency on rigid formats or column boundaries,

Two output files are always generated by ACHOO: the
PROBE REPORT file and the PROBE SOURCE CODE file.
The former lists probe modifications, activated/deactivated
probes, errors detected, and so forth. The latter contains the
routines, one for each probe, generated by ACHOO. These
can be compiled and, during the loading process, linked with
the "calls" previously inserted by the programmer throughout
the computational routines residing on the model library. Thus,

J.H. Reynolds

the final load module contains only the output support neces-
sary for this particular execution of the model. As mentioned
earlier, the runtime deactivation of probes does not require that
the corresponding code that invokes them be removed from the
model. That is, ACHOO will script stubs for these probes to
create the effect of a no-op if they are entered.

A third output file created by ACHOO
template that supports the BINARY.LINE feature. This
formatted file, which contains information necessary for
intelligent and responsive post processing activity, includes the
date of the run, number of physical records per logical record,
names and modes of each variable, and so on. As illustrated
in Figure 1, the executing model creates a fourth output file of
binary (unformatted) records by repeatedly invoking the
ACHOO-created BINARY.LINE routine whichrecords the line-
-by-line output.

represents a

COMPILER

MODEL
LIBRARY

5. SUMMARY

For years, simulation developers at NSWC have had to
contend with output requirements that seem to vary directly
with the number of users desiring access to a particular model.
ACHOO offers an automated alternative to the labor intensive
approaches employed in the past. It can be classified as a
generic, off-the-shelf software engineering tool in that it does
not embody the attributes of any particular simulation model.
Nor, to the degree possible, does it reflect the native environ-
ment in which it was developed.

Users of large simulations have the complete freedom to
modify and extend the contents of any PROBE through simple-
to-use editing directives. They also have the ability to ac-
tivate/deactivate, en masse, logical groupings of probes through
the MACRO feature. Thus, individual users can now force a

PROBE
REPORT

“"BINARY.LINE"

POST
PROCESSING
(E.C., PLOTS)

Figure 1. ACHOO-Model Interplay

4.1 Who Should Use ACHOO?

There is no doubt that ACHOO would be overkill for a
tiny model containing one invariant probe that is always
invoked. However, what about a fairly large model with
numerous probes that are always invoked, will "never change",
and "no additional probes will ever be needed? Experience has
taught most of us that the latter two conditions usually turn out
to be false, implying ACHOO would be beneficial. Regardless,
ACHOO could be used in a stand-alone mode to create the
source code for the original probes. The compiled probe
routines could be placed on the model library and ACHOO
forgotten. If, later on, the output requirements do become
unstable, then ACHOO could be reactivated, along with the
original input files, and dropped into the execution stream as
depicted in Figure 1.

The point being made is that users can flip flop on their
commitment to the ACHOO philosophy. Only the designer
and/or the user of the model who knows the output require-
ments, and their potential for instability, can decide to what
degree ACHOO will be used.

223

model to adapt to their specific output needs instead of contend-
ing with one that disappoints the majority.

REFERENCES

Goyette, PJ., and Owens, DJ. (1982), "INPUTP (General
Purpose Input Processor) User Guide", Technical Report
NSWC TR 3880, NSWC, Dahlgren, VA,

Lemoine, D.J. (1978), "Configuration Description Language
Processor Design Disclosure”, Technical Report NSWC TR
3881, NSWC, Dahlgren, VA.

Reynolds, J.H. (1980), "Evaluation of Contemporary Software
Engineering Techniques for a Large FORTRAN Simulat-
ion", The Journal of Systems and Software 2, 6, 131-140.

Reynolds, J.H. (1988), "User Guide for ACHOO (Automated
Code Handler for Output Operations)", Technical Report
NSWC TR 88-245, NSWC, Dahlgren, VA.

