Proceedings of the 1990 Winter Simulation Conference
Osman Balci, Randall P. Sadowski, Richard E. Nance (eds.)

A FUNCTIONAL APPROACH TO SIMULATION PROGRAMMING

Adrienne Bloss

Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061-0106

ABSTRACT

In this paper we explore simulation programming in Haskell,
a purely functional language. We show how a simple simula-
tion problem can be modeled in Haskell, and compare the result
to four traditional approaches. Functional languages are lower-
level than some simulation languages, but much higher-level than
traditional, general-purpose languages such as C or Pascal. We
claim that for modeling at least one class of simulation problems,
functional languages are better than other general-purpose lan-
guages, and may be as good as many simulation languages.

1. INTRODUCTION

Simulation is an important application of computer science,
and research in simulation has made great advances in the last
two decades. Most simulation programming is done in traditional
special-purpose simulation languages such as GPSS, SIMAN, SIM-
SCRIPT, SIMULA, or SLAM. More recent simulation languages
such as Maisie [Bagrodia 1990, Sim++ [Lomow 1989], ModSimII
[Bryan 1989], and CPS [Abrams 1989] are designed for parallel
execution. However, sometimes general-purpose languages are
appropriate for simulation programming [Balci 1988]. For ex-
ample, no simulation language may be available for a particular
system, or the simulation model may need to be integrated with
another system written in a general-purpose language. Further-
more, each simulation language is designed around a particular
world view, or conceptual framework, and the frameworks offered
by the available simulation languages may not be appropriate for
the problem to be modeled. Although every general-purpose lan-
guage is based on some model of computation, these models are
usually more general than the world views underlying simulation
languages.

In each of these cases, simulation languages are not appro-
priate and a general-purpose language should be used instead.
Unfortunately, traditional imperative languages such as C and
Pascal reflect the sequential execution of the Von Neumann ar-
chitecture, and are poorly suited for modeling the concurrent
logic inherent in most simulation problems. In this paper, we
explore simulation programming in Haskell [Hudak et al. 1990],
a purely functional language. We show how a simple simulation
problem can be modeled in Haskell, and compare the result to
four traditional approaches. Except for a brief discussion in an
otherwise unrelated paper [Hudak and Anderson 1988], we know
of no other work in this area.

In the next section, we introduce Haskell and describe the
features that play the most important roles in the simulation
program. In Section 3, we present the problem to be solved, and
in Section 4, we develop a solution in Haskell. In Section 5, we
compare the Haskell solution with traditional solutions based on

214

event scheduling, activity scanning, three-phase approach, and
process interaction. In Section 6, we present our conclusions,
and in Section 7 we discuss future work.

2. AN OVERVIEW OF HASKELL

Haskell is a purely functional language that has been devel-
oped over the last two years, and is expected to serve as a stan-
dard for functional programming. A Haskell program is a collec-
tion of functions, possibly mutually recursive, and the meaning of
the program is the value of the top-level identifier “main.” Func-
tion application is denoted by juxtaposition, so what would be
written as £(x,y) in most imperative languages is written £ x y
in Haskell. Unlike in LISP, parentheses are used only for group-
ing, and are often used redundantly for clarity. For example, the
following program computes the factorial of 3:

if n<=1 then acc
else factorial (n-1) (n*acc)

factorial n acc =

main = factorial 3 1

We will usually drop main, discussing only the function defini-
tions.

Although no type declarations appear in this example, Haskell
is statically typed. The programmer may specify types of func-
tions, but may also omit them. If a function’s type is not speci-
fied, the compiler will try to infer it from the function’s definition.
If it is unable to do so, it will generate an appropriate warning.

Many interesting and important features of Haskell are not
discussed in this brief introduction. In particular, modules, poly-
morphism, type classes, and stream I/O greatly influence the
style of programming encouraged in Haskell, but are omitted
here. The interested reader should refer to the Haskell Report
[Hudak et al. 1990] for more information. In the current discus-
sion, we will concentrate on imparting a reading knowledge of the
Haskell features that are important in Section 4, including lists,
pattern-matching, and lazy evaluation. The reader may find it
helpful to skim this section on first reading, and refer to it as
necessary when reading Section 4.

2.1 Lists

Lists are the basic data structure in Haskell. Lists are de-
limited by square brackets, and list elements are separated by
commas, €.g., [1,2,3]. [] represents the empty list. The poly-
morphic infix list constructor : has type & x [a] — [a] for any
data type «, where [o] signifies the type “list of a”. Selectors hd
and t1 select the first and rest of a list, respectively. Thus for

an element e of type o and a list 1 of type [a), hd(e:1) = e and
tl(e:1) = 1.

A.G. Bloss

2.2 List Comprehensions

List comprehensions provide a concise and elegant way of
specifying lists, taking much of their form from set notation. We
will begin with an example:

odds 1 = [x | x <- 1, odd x]

0dds is a function that takes a list (of integers) 1, and produces a
new list containing only the odd elements in 1. The list compre-
hension [x | x <- 1, odd x] specifies the list of all x such that
x is taken from 1 and odd x is true. In general, a list comprehen-
sion specifies a list whose elements are determined by evaluating
the expression on the left side of the | using the bindings gen-
erated by evaluating the expressions on the right side of the |
in a nested, depth-first manner. These expressions are of two
types: generators, such as x <- 1, which provide new bindings
for identifiers, and guards, such as odd x, which restrict which of
those bindings may be used. The expressions on the right side of
the | are evaluated from left to right; if a guard fails, evaluation
backtracks until it finds a generator, at which point it takes the
next element generated and proceeds forward again. When all
expressions have been evaluated, the left hand side is evaluated
using the resulting bindings. Evaluation then backtracks to the
last generator, takes the next value, and goes forward again un-
til the end, at which point the left hand side is evaluated again,
producing the second element of the list. This continues until all
generators are exhausted.

2.3 Pattern Matching

Pattern matching is a syntactic sugaring that enhances read-
ability of function definitions. A function’s formal parameters
may specify the structure of the actuals, and a function defini-
tion “matches” an invocation only if the structure of the actuals
matches that of the formals. Consider the following definition
of the standard map function, which applies a function to each
element of a list:

==[] then [J
else (f (hd 1)):(map £ (t1 1))

map £ 1 = if

Now consider the same definition, written using pattern match-
ing:
map £ 0 =[]
map f x:x8 = (f x):(map f xs)
This shows how : can be used to destructure, as well as construct,
lists. If the pattern a:b is bound to a list 1, a is bound to hd 1
and b is bound to t1 1.

When a function has multiple definitions due to pattern-
matching, they are tried in order from top to bottom, and the
first one to match is executed. Argument matching is attempted
from left to right until all arguments have matched or one fails.
As another example, factorial could be defined using pattern
matching as follows:

factorial 0 acc = acc
factorial 1 acc = acc
factorial n acc = factorial (n-1) (n*acc)

Function application has higher precedence than : or arith-
metic operators such as * and -, so the parentheses in both def-
initions of map are redundant, but the parentheses in factorial
are necessary.

215

2.4 Lazy Evaluation

Like most modern functional languages, Haskell uses a lazy
evaluation strategy. This means that an expression is not evalu-
ated until its value is demanded in some greater context. One of
the implications of this evaluation strategy is that infinite lists
can be defined and manipulated with ease. Three examples ap-
pear below.

ones = 1:ones
-- the infinite list of 1s

nums_from n = n:(nums_from (n+1))
-- the infinite list of integers
-- starting at n

odd_nums_from n = [x | x <- nums_from n, odd x]
-- the infinite list of odd integers
-- starting at n

Infinite lists, or streams, can be manipulated like any list —
they can be passed to or returned from functions, and can be
destructured into a head and tail. However, if a function such as
map tries to use every head, or every tail of an infinite list, it will
compute forever. Streams are often used in defining problems
where the number of elements that will finally be required is not
relevant to the form of the solution. An outer call usually takes
a finite prefix of an infinite list in order to produce a finite result.
In the program below, the use of prefix in main ensures that
only ten elements of squares will be produced:

nums = nums_from 1

prefix n [J = 0O
prefix 01 =[]
n =

prefix n x:xs = x:(prefix (n-1) xs)

square X X * X

squares = map square nums

main = prefix 10 squares
3. A SAMPLE SIMULATION PROBLEM

The problem used to illustrate simulation programming in
Haskell is taken from Balci’s [1988] paper. Briefly, it describes
the behavior of a multiple virtual storage batch computer system
with two CPUs and a printer, and with jobs entering from four
different sources. The problem is described in detail below.

A multiple virtual storage (MVS) batch computer system op-
erates with two central processing units (CPUs). Users submit
their batch programs to the MVS by using the submit command
on an interactive virtual memory (VM) computer system run-
ning under the CMS operating system. The users of MVS via
VM/CMS are classified into four categories: (1) users dialed in
by using a modem with 300 baud rate, (2) users dialed in by
using a modem with 1200 baud rate, (3) users dialed in by using
a modem with 2400 baud rate, and (4) users connect to the local
area network (LAN) with 9600 baud rate. Each user develops a
batch program on the VM/CMS computer system and submits
it to the MVS for processing. Assume that the interarrival times
of batch programs to the MVS with respect to each user type are
determined to have an exponential probability distribution with
means of 3200, 640, 1600, and 266.67 seconds for the 300, 1200,
2400, and 9600 baud users respectively.

A Functional Approach to Simulation Programming

A batch program submitted first goes to the job entry sub-
system (JES) of MVS. The JES scheduler (JESS) assigns the
program to processor 1 (CPU1) with a probability of 0.6 or to
processor 2 (CPU2) with a probability of 0.4. At the completion
of program execution on a CPU, the program’s output is sent to
the user’s virtual reader on the VM/CMS with a probability of
0.2 or to the printer (PRT) with a probability of 0.8. Assume that
all queues in the MVS computer system are handled by a first-
come-first-served discipline, and that each facility (JESS, CPU1,
CPU2, and PRT) processes programs one at a time. The process-
ing times of these facilities also have exponential distributions,
with respective means of 112, 226.67, 300, and 160 seconds.

Assuming that the simulation model reaches the steady-state
condition after 3,000 programs, simulate the system for 15,000
programs in steady state and construct confidence intervals for
the following performance measures:

1. Utilization of the JESS.

. Utilization of CPUL.

. Utilization of CPU2.

. Utilization of the printer.

. Average time spent by a batch program in the MVS system.

(=2 B B N

. Average number of batch programs in the MVS system.

4. A FUNCTIONAL APPROACH

In this section we develop a Haskell solution for the prob-
lem defined above. First we show how to view random numbers
functionally, and generate distributions for the arrival times of in-
coming jobs, CPU and output assignments, and processing times
for the CPUs and printer. We then show how the behavior of
each component of the system is modeled, including the JESS,
the CPUs, and the printer. Finally, we show how to compute the
performance measures described above.

4.1 Preliminaries

The key structure in the functional approach is the infinite
list, or stream. There are conceptually a number of queues asso-
ciated with this problem, and it is natural to model these queues
with streams, but streams serve other purposes as well. First, we
define a stream of uniformly distributed pseudo-random numbers
called Rand. This stream may be created by using a multiplica-
tive congruential random number generator, where the i** ran-
dom number depends on the (z — 1)* number recursively, e.g.,
r; = a*r;_; mod m for some values of a and m. Given an initial
value r0, Rand is defined using a list comprehension as follows:

Rand = r0 : [a*r mod m | r <- Rand]

This definition should be read as follows: Rand is the list whose
head is r0, and whose tail is the list whose i + 1°* element is a *
rand; mod m, where rand; is the i** element of Rand. Thus Rand
= [r0, a*r0 mod m, a*(a*r0 mod m) mod m, ...]. An arbi-
trary number of independent streams of random numbers can be
defined by parameterizing Rand with respect to r0, but for ease
of presentation we will draw from only one such stream.

Given this stream of random numbers, a stream of exponen-
tially distributed numbers with mean lam is easily defined in the
usual way:

216

Expdist lam = [-(1n r)/lam | T <- Rand]

Of course, the elements of this list may be incrementally summed
to give the arrival time of each item:
Cumul_expdist lam =

10 : [x + -(1n r)/lam | x <- Cumul_expdist lam,
r <- Rand]

Given these tools, we can define the streams of times at which

jobs enter the MVS:

M300Dist = Cumul_expdist 3200
M1200Dist = Cumul_expdist 640
M2400Dist = Cumul_expdist 1600
LANDist = Cumul_expdist 266.67

We would like to merge these four queues into one, the queue of
jobs entering the system. To do this, we define a Merge function
that merges two queues of times:

Merge xs [] = xs

Merge [] ys = ys

Merge x:xs y:ys = if x < y then x:(Merge xs y:ys)
else y:(Merge x:xs ys)

To merge the four queues above, we simply apply nested calls to
Merge:

InitDist =
Merge M300Dist
(Merge M1200Dist
(Merge M2400Dist LANDist))

Queues of the JESS, CPU, and printer processing times may be
computed in the same way:

JESSDist = Cumul_expdist 112
CPU1Dist = Cumul _expdist 226.67
CPU2Dist = Cumul _expdist 300
PrinterDist = Cumul_expdist 160

Finally, we need to represent the probability that a job will go to
CPU1 or CPU2, and the probability that it will go the printer.
CPUDist is a stream of Os and 1s, where 1 indicates a job to be
executed on CPU1, and 0 indicates indicates a job to be executed
on CPU2. OutDist is similar, with 1 indicating a job to be
printed.

filter rand limit = if rand < limit then O else 1

CPUDist = [filter r 0.4 | r <- Rand]

OutDist = [filter r 0.2 | r <- Rand]

4.2 Modeling the JESS

The first stop for a job is the JESS. A job enters the JESS
when all of the following conditions hold:

1. The job has entered the system.
2. All jobs before it have entered the JESS.
3. The JESS is free.

Jobs entering the JESS are modeled by the stream EnterJESS.
Ent:,erJESS is based on InitDist and the stream of times at
which the JESS is available, which is defined below as JESS.

EnterJESS = [max init jess_avail |
init <- InitDist,
jess_avail <- JESS]

A.G. Bloss

This definition may be read as follows: The next job will enter
the JESS at the maximum of the time at which the job enters
the system and the time at which the JESS is next available.

The stream of jobs leaving the JESS depends on the jobs
entering the JESS and the time it takes the JESS to process each
job:

LeaveJESS = [enter + jess_proc |
enter <- EnterJESS,
jess_proc <- JESSDist]

Finally, the availability of the JESS depends on the time at
which it finishes processing each job. It is also available at time
zero, so we cons 0 onto the front of the stream of available times:

JESS = 0 : LeaveJESS

4.3 Modeling the CPUs

Once a job leaves the JESS, it waits to be executed by the
appropriate CPU. The stream of jobs entering each CPU depends
on the stream of jobs leaving the JESS, the CPU scheduling
distribution, and the availability of the CPU. First we define a
new stream, Job&CPU_pairs, in which we pair the elements of
LeaveJESS and CPUDist. Job&CPU_pairs is used in EnterCPU1
to select only the jobs that are scheduled for CPU1.

Job&CPU_pairs = [[t,cpu]l | t <- LeavelESS,

cpu <- CPUDist]

EnterCPU1 = [max leave_jess cpul_avail |
[leave_jess, cpu] <- Job&CPU_pairs,
cpu = 1,
cpul_avail <- CPU1]

As for the JESS, the stream of jobs leaving each CPU de-
pends on the stream of jobs entering it and the processing time
required for each job. The availability of the CPU depends on
the stream of jobs leaving it.

LeaveCPU1 = [enter + cpul_proc |
enter <- EnterCPU1,
cpul_proc <- CPU1Dist]

CPU1 = 0 : LeaveCPUl

A similar characterization holds for CPU2.
4.4 Printing and Leaving the System

After leaving the CPU, some jobs are printed, while others
go directly to the user’s output device. OutDist contains a 1 for
each job to be printed and a 0 for each job not to be printed. Since
printing and non-printing jobs may come from either CPU, we
need to merge the streams leaving the CPUs to get the stream of
jobs to print. As when modeling the CPUs, we pair the elements
of this stream with the output distribution before defining the
jobs entering the printer.

Job&Out_pairs = [[t,out] |
t <~ Merge LeaveCPU1 LeaveCPU2,
out <- OutDist]

EnterP = [max leave_cpu printer_avail |
[leave_cpu, out] <- Job&Out_pairs,
out = 1,
printer_avail <- PRINTER]

LeaveP = [enter + print_time |
enter <- EnterP,
print_time <- PrintDist]

PRINTER = O : LeaveP

Finally, the times of the jobs that will not be printed com-
prise JobsNoPrint, and the stream of system departure times is
the merge of the streams of times of non-printing jobs leaving the
CPU and printing jobs leaving the printer:

JobsNoPrint =
[t | [t,out] <- Job&Out_pairs, out = 0]

LeaveSys = Merge LeaveP JobsNoPrint
4.5 Performance Measures

The problem outlined in Section 3 states that the simulation
model reaches the steady-state condition after 3,000 programs,
and requires that a number of performance measures be evaluated
for 15,000 programs in steady state. Let SS_length be the num-
ber of steady state programs to be sampled, and Trans_length
be the number of programs that must go through the system be-
fore the steady state is reached. Nth_tail simply finds the nt
tail of a list, and Interval takes two integers i and n and a list 1
and returns the list of the n elements starting at the i** element
of 1. Sample takes a stream and returns the elements of that
stream that comprise our sample.

SS_length = 15000
Trans_length = 3000

Nth_tail O list
Nth_tail n x:xs

list
Nth_tail (n-1) xs

Interval i n 1 = prefix n (Nth_tail (i-1) 1)

Sample 1 = Interval Trans_length SS_length 1

In addition, the total time spanned by the processing of these
15,000 jobs is a useful piece of information:

Entry_times = Sample InitDist

Exit_times = Sample LeaveSyé

First_in = hd Entry_times

Last_out = hd (Nth_tail (SS_length - 1) Exit_times)
Total_time = Last_out - First_in

We now address the performance measures one at a time.

1. Utilization of the JESS. The utilization of a resource is the
total time the resource is busy divided by the total system
time. For the JESS, this is easily computed by summing
over the stream of JESS processing times and dividing by
the total time:

Sum_list [J =0

Sum_list x:x8 = x + Sum_list xs

JESS_util =
(Sum_list (Sample JESSDist)) / Total_time

217

A Functional Approach to Simulation Programming

2. Utilization of the CPUs. Utilization of the CPUs can be de-

termined in much the same way as utilization of the JESS,
but only the jobs that are executed on the specified CPU
are in each list of CPU intervals. Also, the number of tran-
sient and steady-state jobs for each CPU must be com-
puted. Recall that CPUDist contains a 1 for each CPU1
job and a 0 for each CPU2 job.

CPU1_trans =
Sum_list (prefix Trans_length CPUDist)

CPU1_SS = Sum_list (Sample CPUDist)

CPU1_times =
Interval CPU1_trans CPU1_SS CPU1Dist
CPU1_util = (Sum_list CPUi_times) / Total_time

Utilization for CPU2 is determined in a similar manner.

3. Utilization of the printer. Again, only the jobs that are

scheduled for printing are in the list of printer intervals.

Print_trans =
Sum_list (prefix Trans_length OutDist)

Print_SS = Sum_list (Sample OutDist)

Print_times =
Interval Print_trans Print_SS PrintDIST

Printi_util = (Sum_list Print_times) / Total_time

4. Average time spent by a batch program in the MVS system.

This can be computed by first computing the area under the
curve representing the number of programs in the system at
each time t. We compute this area by computing, for each
job arrival and departure, the product of the number of jobs
in the system and the time interval immediately preceding
the arrival or departure. These values are summed for the
total area under the curve. In function area, jobs is the
current number of jobs in the system, t is the time at which
the area was last computed, e:es is the list of entry times,
and d:ds is the list of departure times.

Area jobs t [J O =0
Area jobs t e:es 1:1s = if e <1
then (e-t)*jobs + (Area (jobs + 1) e e
else (l-t)*jobs + (Area (jobs - 1) 1 e:es 1ls)

Total_area =
Area O First_in Entry_times Exit_times

The average time spent in the system is simply the area
divided by the number of jobs:

Avg_time_in_sys = Total_area / Steady_state_length

. Average number of batch programs in the MVS system.
This can also be computed using the area defined above.
In this case, the area is divided by the total system time.

Avg_jobs_in_sys = Total_area / Total_time

5. COMPARISON TO TRADITIONAL APPROACH

We have shown how a simple simulation problem can be spec-
ified using a purely functional language. How does this solution
compare to a solution in a traditional general-purpose language?
The main difference is the absence of an explicit time-flow mech-
anism in the functional solution. Time flow is an integral part
of each of the world views used in traditional simulation pro-
gramming, and must be programmed explicitly in most general-
purpose languages. Another difference is that the functional so-
lution is more easily developed and understood in pieces, with-
out knowing the exact context in which each piece is used. This
modularity supports the use of modern software engineering tech-
niques. Finally, each world view has its own differences from the
functional model; these differences are discussed briefly below.

Event scheduling is perhaps the most different from the func-
tional approach, and also the lowest-level of the traditional ap-
proaches. The central event queue inhibits a descriptive solution,
and suggests a step-by-step execution of the simulation. Activity
scanning is a higher-level approach, as the activities and their as-
sociated conditions can be defined declaratively, but the machin-
ery to scan the activities and manage the time-flow mechanism
can obscure the overall program structure. In a simulation lan-
guage, this machinery would be embedded in the system, and the
solution would be much closer to the functional solution. Activ-
ity scanning is often implemented with the three-phase approach,
which sacrifices logical structure for efficiency by separating out
solely time-dependent actvities. This is clearly a step away from
the functional model. Perhaps the conceptual framework closest
to the functional approach is process interaction. Here, objects
in the system are divided into static and dynamic, and the dy-
namic objects are moved through the system, consisting of static
objects, as conditions for their motion permit. The dynamic ob-
jects correspond to the times in the Enter_ and Leave_ queues in
our example, and the static objects correspond to the queues as-
sociated with availability of the JESS and other resources. How-
ever, in process interaction the dynamic objects are ezplicitly
moved through the system, and are classified by execution status
instead of by their logical role in the system.

6. CONCLUSIONS

We have presented an elegant way of modeling a simulation
problem using the lazy functional language Haskell. We have
shown that infinite lists, or streams, provide a natural way of
modeling queues, and that the properties of a simple queueing
problem can be expressed declaratively by specifying the inter-
relationships between queues. Lazy evaluation allows the func-
tional solution to avoid the time-flow mechanism used in most
simulation frameworks, and we argue that the resulting solution
is simpler and more intuitive. As a result, we believe that func-
tional languages are preferable to traditional high-level languages
for modeling some classes of simulation problems. Although we
have not explored the relationship between functional languages
and simulation languages, we suspect that for at least some prob-
lems, functional languages will offer elegant and concise solutions
as well as a more general framework.

This paper has provided only a brief look at the possible
role of functional programming in simulation, and much further
study is required. Two of the most important remaining issues
are discussed in the next section.

218

A.G. Bloss

7. FUTURE RESEARCH

Two important issues remain to be addressed:

1. Is the functional approach appropriate for all types of sim-
ulation problems?

2. Can our functional solution be executed efficiently?

We discuss these individually in the next sections.

7.1 Other Types of Simulation Problems

What aspects of our problem make it well-suited to a func-
tional solution? First, it is a queueing problem, and queues are
very naturally modeled with streams. We have not explored mod-
eling non-queueing problems in functional languages, but we hope
that by drawing on the full expressive power of Haskell, we will
be able to develop elegant functional solutions for these problems
as well. We will report on this as we explore it further.

Even as a queueing problem, our example is relatively simple
in that it uses only FCFS service disciplines. This allows us to use
streams of times without having to retain any other information
about each job. In general, however, we might want to use a
different service discipline. For example, our CPUs might use a
FCFS-preemptive resume queue, where each of the job sources is
assigned a priority, and an arriving higher-priority job preempts a
running lower-priority job. This type of service discipline is easy
to model functionally, but requires that we maintain the source
of a job along with the times at which it enters and exits various
queues. Of course, this same information must be maintained in
a non-functional solution as well.

Our problem is also simple in that the mappings represented
by the queues are such that each element of a new queue is a
simple function of a small number of inputs. There are a number
of ways in which the definition of a queue might be complicated.
For example, an element of a queue might depend on previous
elements of that same queue, or of its inputs. Consider modeling
a binary AND gate in a logic circuit with output OUT and inputs
IN1 and IN2. We would like the queues to contain times corre-
sponding to signal changes, but this means that when the signal
changes in one of the input queues, the output may or may not
change. (Consider the case where both inputs are 0, then one
changes to 1). We are essentially relying on the current state of
the gate to determine its next state. We can do this functionally
by maintaining the state information (in this case, the last values
of IN1, IN2, and OUT) in the queue itself, and having each new
element of the queue rely on its previous elements.

We have only outlined solutions to these issues, and we ex-
pect to pursue them more rigorously in future research.

7.2 Efficiency Issues

Recent work has produced a number of efficient implemen-
tations for lazy functional languages, but the execution time re-
quired for a particular application is hard to predict. Unfortu-
nately, only a preliminary version of Haskell is currently available,
so this point cannot be fully addressed at this time. However,
based on past experience with functional languages, some issues
can be anticipated. For example, it is well-known that lazy eval-
uation carries with it some overhead in the creation and evalua-
tion of delayed objects. Some of this overhead can be eliminated
through strictness analysis [Mycroft 1981], a compile-time anal-
ysis that eliminates lazy evaluation when doing so cannot change

219

the semantics of the program. However, some laziness is nec-
essary when streams are used, and we know of no data on how
well strictness analysis performs on the sort of program described
here. Other potential sources of inefficiency include list compre-
hensions and updatable structures, but much recent research has
been directed at optimizing these constructs.

Overall, a functional solution to a large simulation problem
may run slower than a solution in a traditional imperative lan-
guage. However, the gain in readability, writability, and main-
tainability is considerable, and will likely outweigh any loss in
execution efficiency. Furthermore, because functional programs
have no notion of step-by-step execution, they contain implicit
parallelism. For example, the solution described in this paper
could be executed on a sequential or parallel machine without
modifying the program. In the parallel case, a smart compiler
such as that described in [Goldberg 1988] could automatically de-
compose the program into parallel units with appropriate gran-
ularities. Alternatively, some functional languages permit the
programmer to annotate the program to assist the compiler in
generating parallel code. The parallel execution of functional
simulation programs is yet another area for future exploration.

ACKNOWLEDGEMENTS

Many thanks to Osman Balci for inspiring this work, and to
Osman Balci and Marc Abrams for their helpful comments.

BIBLIOGRAPHY

Abrams, M. (1989), “A Common Programming Structure for
Bryant-Chandy-Misra, Time-Warp, and Sequential Simula-
tors,” In Proceedings of the 1989 Winter Simulation Confer-
ence, E.A. MacNair, K.J. Musselman, and P.Heidelberger,
Eds. IEEE, Piscataway, NJ, 661-670.

Bagrodia, R.L. and W. Liao (1990), “Maisie: A Language and
Optimizing Environment for Distributed Simulation,” In Dis-
tributed Stmulation, Society for Computing and Simulation,
San Diego, CA, 205-210.

Balci, O. (1988), “The Implementation of Four Conceptual Frame-
works for Simulation Modeling in High-level Languages,” In
Proceedings of the 1988 Winter Simulation Conference, M.A.
Abrams, P.L. Haigh, and J.C. Comfort, Eds. IEEE, Piscat-
away, NJ, 287-295.

Bryan, O.F. Jr. (1989), “ModSimII: An Object Oriented Simu-
lation Language for Sequential and Parallel Processors,” In
Proceedings of the 1989 Winter Simulation Conference, E.A.
MacNair, K.J. Musselman, and P.Heidelberger, Eds. IEEE,
Piscataway, NJ, 172-179.

Hudak, P. and S. Anderson (1988), “Haskell Solutions to the
Language Session Problems at the 1988 Salishan High-Speed
Computing Conference,” Research Report YALEU/DCS/RR-
627, Department of Computer Science, Yale University, New
Haven, CT.

Hudak, P. and P. Wadler et al.(1988), “Report on the Program-
ming Language Haskell,” Research Report YALEU/DCS/RR-
777, Department of Computer Science, Yale University, New
Haven, CT.

Lomow, B. and D. Baezner (1989), “A Tutorial Introduction to
Object-Oriented Simulation and Sim++,” in Proceedings if
the 1989 Winter Simulation Conference, E.A. MacNair, K.J.
Musselman, and P.Heidelberger, Eds. IEEE, Piscataway, NJ,
140-146.

Myecroft, A. (1981), “Abstract Interpretation and Optimizing
Transformations for Applicative Programs,” Ph.D. Thesis,
University of Edinburgh, Department of Computing, Edin-
burgh, Scotland.

