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ABSTRACT

As simulationists strive to make their simulations more accu-
rate, and more efficient, they are forever looking for new, more ad-
vanced programming techniques. Artificial Intelligence (Al) is basi-
cally the field of advanced programming techniques. While these
techniques were originally developed for modeling cognitive pro-
cesses or the behavior of cognitive beings, many of these tech-
niques are applicable to the more general simulation audience. This
paper presents five short essays by researchers is simulation, Al,
and a couple who have feet in both camps.

AI FOR SIMULATION IS MORE THAN
JUST A BAG OF TRICKS

DAVID P. MILLER

1. AITECHNIQUES HAVE THEIR PLACE

Simulation’s opinion of Al, like most people’s, ranges from
believing that Al can solve everything to believing that Al is just a
crock. In general though, certain practices of Al such as hierarchies
of abstraction, object oriented programming, and specialized pro-
gramming environments or shells have become pervasive through-
out simulation (though some might argue that those ideas originated
in simulation and have become pervasive throughout AI).

Though these techniques are pervasive, they are not univer-
sally adored. OOP usually runs slower than do traditional program-
ming techniques. Shells allow you to do the things they were de-
signed for very easily, but if you are trying to do something else,
there can be a huge learning curve to overcome. For people who
have had these problems, they have tried Al and found it wanting.
For those who have avoided those pitfalls there response to the Al
question is too often “Yes, we use Al techniques in our
simulations” (translation: we use KEE or C++ to write our simula-
tions) “for example, we use advanced inferencing techniques”
(translation: if statements) “and models of our domain.” (transla-
tion: numerical databases).

AT has many things to offer the creators of simulation. Some
of these things like data-dependencies, backward chaining, and ab-
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duction can be used to greatly simplify the creation of simulations.
However, they are not a universal panacea, and must be used to
sparingly to avoid a combinatorial black hole. Other techniques,
such as qualitative modeling should allow things to be simulated
that simply no one knew how simulate before. Behaviorally direct-
ed autonomous agent techniques is a new area of Al. However, it
holds great promise for simulation to allow the simulator to perform
an actual event simulation (where there are multiple independent
agents being modeled) rather than relying on a traditional statistical
or exhaustive model. Finally there exist Al technologies such as
Neural nets. Neural Nets offer the promise of greatly increased
computing and self tuning systems. However, in most current
implementations neural nets operate only in simulation, so to try
and get them to solve some of simulation's practical problems is al-
most certainly premature.

2. AI'PHILOSOPHY FOR SIMULATION

New techniques may be helpful, but the most important con-
tribution Al can make to simulation, is a philosophical one. Unlike
most of the rest of computer science, Al has largely abandoned the
idea of deterministic algorithms, in favor of heuristic techniques.
The problems that Al systems are usually designed to handle are ei-
ther to poorly understood to solve, or have known solutions that
take geologic time to run. The lesson of Al is that techniques that
handle eighty percent of the possible situations can work one-hun-
dred percent of the time; if the right part of the problem space is the
one always under consideration. The odd situations, which make
otherwise simple algorithms NP-complete, may never actually
occur. Or they occur so seldom that you can catch those situations,
and handle them specially.

Most of the problems that crop up in the world have cropped
up before, and they can usually be handled in a similar way. Case-
based and explanation-based reasoning techniques offer direction
on how to “solve”, in the Al sense, these problems.

In real life, optimality is often desirable, but seldom neces-
sary. Near optimal solutions are usually indistinguishable from the
real thing, and the speed of the answer usually more than makes up
for any increased inefficiency. Heuristic search techniques, qualita-
tive models, and approximation techniques can solve the “real”
problem much of the time.
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The real-world is a very complex place. Research in robotics
has shown that things seldom go as planned. Things seldom go ex-
actly as simulated either. It therefore seems wise for simulationists
to adopt a more Al-like philosophy. By lowering your standards of
prgcision, it may be possible to increase the accuracy of your simu-
lations. While the fidelity of each iteration might be slightly lower,
the increased number of situations that could be explored might
prove more valuable, in many situations.

3. CONCLUSIONS

Al is both a set of programming techniques, and a state of
mind. Most of the transfer of Al to simulation has only been in the
form of programming techniques. This has been due to the transfer
being done almost exclusively by simulationists. It is much easier to
adopt another fields techniques than it is their philosophy.

One need to be selective in both the Al techniques used, and
how and when they are applied. One must avoid the Al wannabe
syndrome where you try and put every technique you know about
into your system. Likewise, one should not avoid all Al because
you talked to an AI researcher one time and he was a real flake.
Through the careful application of Al techniques, simulation can
improve its performance, fidelity, and scope of applicability. The
techniques currently used by simulationists have only scratched the
surface of what is possible.

However, simulationists will continue to have some difficul-
ty profitably applying Al techniques to their simulations unless they
also adopt a bit of Al philosophy. AI offers the possibility of more
than just allowing simulationists to do what they have been doing,
only better and faster. AI philosophy, combined with new
techniques offer simulationists the chance to tackle problems they
would not have considered addressing before.

EXPANDING THE BOUNDS OF SIMULATION

JEFF ROTHENBERG

In the context of Al, the term “simulation” must be freed
from its own tradition, where it often denotes a very limited form of
modeling. There is a strong tendency in simulation circles to view
simulation narrowly as a way of making predictions by running an
encoded behavioral model (“winding it up and letting it run”) to
answer “What-if?” questions. This can be thought of as the “toy
duck” view of simulation [Rothenberg, et al. 1989].

Since a great deal of effort is required to encode the
knowledge needed to build a simulation, one should attempt to
derive the maximum benefit from this knowledge. In particular, in
addition to “running” a simulation to answer “What-if?” questions,
one should be able to utilize the full range of inferencing,
reasoning, and search methods that are available in AI. These
methods should be able to explain why a given sequence of events
occurred and answer definitive questions such as “Can this event
ever happen?” or “Under what circumstances will this happen?”
and goal-directed questions such as “Which events might lead to
this event?”. This broad view of simulation is sometimes referred
to as Knowledge-Based Simulation.

The major impact of Al on simulation is (or should be) to
encourage simulation to make use of a wider range of modeling
techniques: the result will still be a phenomenological model, but
one that can take full advantage of additional techniques to answer
a wider range of questions that are of interest to its users. I refer to
this natural, long-overdue extension of simulation as going
“Beyond What-if?”.

Discrete-state simulation has derived great benefit from
many of the techniques developed in AL The object-oriented
paradigm, which first appeared in Simula [Dahl and Nygaard 1966],
owes its present state of refinement to Al language efforts like
Smalltalk [Goldberg and Kay 1976] and ROSS [McArthur, Klahr,
and Narain 1984]. The object-oriented approach has many
advantages, despite many shortcomings [Rothenberg 1986]. For

example, the appropriate use of inheritance hierarchies (or lattices)
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greatly simplifies the specification of a complex simulation,
producing highly comprehensible models {Klahr 1985]. Searching
and planning techniques developed in Al have made feasible
models that simulate the behavior of human decision makers in
environments involving “command and control”, while backward
chaining can help answer questions about how to achieve a given
result. Techniques for representing goals and beliefs have helped
build simulations that can explain the behavior of simulated entities.
Some of the current outstanding problems in discrete-state
simulation, such as the problem of representing and computing
continuous information like weather and terrain, may also yield to
Al solutions.

Analytic simulation has tended to look to mathematics
rather than Al for its methods, but here too Al offers some new
approaches. One example is recent work in sensitivity analysis (a
sorely neglected problem in simulation), where Al techniques are
used to represent and propagate sensitivity information through a
computation, so that it need not be recomputed for every function
call whenever some higher-level function is perturbed to probe its
sensitivity to changes in its parameters [Rothenberg, Shapiro, and
Hefley 1990]. Similarly, symbolic algebra programs developed by
Al such as REDUCE [Hearn 1985], may allow applying expert
algebraic manipulation to analytic functions within a simulation.

The relationship between Al and simulation is bilateral: Al
has produced many systems that use models as sources of internal
expertise. One of the earliest examples of this was Gelernter's
Geometry Machine [Gelernter 1959], which embedded a model of a
geometry student's diagram (itself a model), and used a virtual
“diagram computer” to test hypotheses against this internal
diagram. This has become a classic Al paradigm that expresses Al's
recognition of the importance of models to intelligent agents: in
seeking to model such agents, Al is naturally driven to model their
use of models! In the case of the Geometry Machine, whose stated
motivation was to solve problems generally considered to require
intelligence, the engineering approach converged with the modeling
approach in choosing a solution based on a model of how we
ourselves solve geometry problems: being inveterate modelers, we
use a model (i.e., a diagram).

Another classic example of an embedded model in an Al
system is SOPHIE [Brown, Burton, and DeKleer 1982], which
taught electronic circuit diagnosis by means of an interactive
dialogue (in English). In order to allow students to ask hypothetical
questions such as “What would happen if I measured the voltage
across points A and B?”, SOPHIE used a simulator of the electronic
circuit being diagnosed. This simulator was treated as a source of
expertise about electronic circuits. The AI program that conducted
the dialogue with the student did not encode answers to all possible
questions the user might ask; instead, it answered those questions
by consulting its internal model, i.e., running its embedded
simulation.

There is considerable evidence that in order to exhibit more
than superficial intelligence, Al systems must make use of “deep
structures”, or models of reality like those described above. Simple
action- response rules can produce programs that perform
impressively up to a point, but beyond that point there is no
escaping the need to give programs real “understanding” of the
world, at least within their domains. There are many possible
approaches to providing such understanding, but they all essentially
involve giving a program a model of its world that it can use to
answer a wide range of unanticipated questions about that world.

WHAT SIMULATIONISTS NEED TO KNOW
ABOUT THEIR PROBLEMS

DAVID W. FRANKE

While many Al techniques or technologies have
established communities concerned with research into and
extension of their respective techniques, it should be noted that the
original motivation for each of these techniques has been the
solution of specific problems. For example, production systems are
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used to solve problems (e.g. diagnosis) in domains for which there
is no concise theory of the domain. Work in qualitative physics was
originally motivated by the desire to reason about physical objects
and real world phenomena exhibited by mechanical systems or
physical processes (such as boiling liquids or kidney function).

This perspective of “What problem is being addressed?” can
also be applied to the body of simulation techniques. It is claimed
that this is the appropriate perspective when evaluating particular
simulation techniques, whether they be Al techniques applied to
simulation, or simulation techniques used in Al problem solving.
Some of the ultimate goals of model specification and construction
and subsequent simulation of these models in AI and other
disciplines are:

» Construction of models of existing systems or hypothetical
systems
Derivation of dynamic descriptions from a static (structure and
behavior specification of primitives) description of a system
or mechanism. This has also been called behavior generation
and functional evaluation (e.g. digital circuit simulation).
Analysis of the dynamic description
° Performance evaluation (temporal properties)
° Properties of distributed systems (deadlock, fairness, ...)
Evaluating theories about the real system/mechanism being
modeled. Theory evaluation or validation is used in diagnosis,
monitoring, and design applications.
Prediction of system/mechanism behavior
Explanation of system/mechanism behavior
and/orteleological terms
One can consider the goals described above in the contexts
of the problem solving tasks of system design, system diagnosis,
and system monitoring. In each task domain, a scenario of model
development from initial, general qualitative models through mixed
qualitative/ quantitative models to detailed, specific quantitative
models can be applied. This scenario reflects a top-down
refinement approach to problem solving, but can also incorporate a
bottom-up approach via mixed qualitative/quantitative models. (It
should not be inferred that every quantitative model is more specific
or finer-grain than a qualitative model, but merely that across the
full spectrum of models, qualitative models tend toward
generalization, while quantitative models tend toward
specialization.) While the obvious application of Al techniques is
in 1) the simulation of qualitative and mixed qualitative/
quantitative models and 2) interpretation of the simulation results
(design, diagnosis, explanation, or monitoring), another current
research thread in the model-based reasoning community is the
development and refinement of the models themselves. Techniques
which assist the modeler interpret dynamic behaviors (simulation
results) and take appropriate actions, particularly to modify or
refine the model, should be applicable to the entire spectrum of
models and simulation techniques, from qualitative to quantitative.

in  causal

A Case For Qualitative Simulation:

Abstraction: In human problem solving, abstraction is an
important  technique for managing complexity. One
characterization of human expertise is the ability to make the most
appropriate abstraction in a particular domain, domain situation,
and problem solving situation. Qualitative representations of
system/mechanism primitive behaviors, constraints, state and
behavior are one dimension in which abstraction applies (as
opposed to eliminating specific components from a
system/mechanism and the associated variables from the state).
This abstraction dimension is in fact very useful, as demonstrated in
human reasoning and programs that reason from such qualitative
representations. For example, digital circuit simulation abstracts
the actual voltages that exist in the circuit to logic values 0, 1, and
X.

Completeness:  In deriving behavior via simulation,
qualitative simulation (e.g. QSIM) is complete in that all possible
behaviors are represented in the envisionment (assuming that
generation of such an envisionment is tractable). For numerical
simulation approaches, the same claim cannot be made. It should
be understood that qualitative distinctions of behaviors are
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dependent upon the specification of the system/mechanism (e.g.
introducing a landmark into a variable's quantity space can result in
qualitatively distinct behaviors not observed before the landmark
was added).  This, however, is the price of abstraction.

Operating with Incomplete Knowledge of the Domain: The
qualitative model specification and simulation techniques
developed in the Al qualitative reasoning community have
emphasized the ability to proceed in the face of incomplete
knowledge (theory or model) of the system/mechanism and any
initial conditions. This is exhibited not only in qualitative variable
and state values, but also in the expression of primitive behaviors
use in system/mechanism description. For example, QSIM provides
monotonic increasing (M+) and decreasing (M-) constraints, and
Qualitative Process Theory expresses influences between variables.
The ability to develop a model and simulate it in the presence of
incomplete knowledge is important in that some initial information
can be collected and subsequently used in problem solving and
model refinement.

If one considers qualitative and numerical models and
simulation techniques as points or areas on an abstraction spectrum,
the problem of developing, validating, and maintaining theories
about the domains of interest (either for humans or for autonomous
agents) can be viewed as building and validating a theory at some
point on the spectrum, and then possibly modifying the theory in
the direction most appropriate for the task at hand (i.e. more or less
abstract). For a design activity, the modification must necessarily
go to a very fine level of detail so that the associated mechanism
can be constructed. A diagnosis or explanation capability however,
may not require such a fine grain description. In fact, for
explanation or prediction purposes, a more abstract description is
often appropriate (e.g. cyclic, or remains with limits).. Issues in
model construction and selection are an active area of research in
the qualitative modeling and model-based reasoning communities.
The integration of quantitative and qualitative information is also
being investigated.

One of the central issues in Al has been knowledge
representation. Issues of expressive power, tractability and
completeness of inference procedures, and conceptual integrity with
respect to the problem domain have guided research in
representation. The problem domain governs ontological issues for
the objects examined in the problem solving process (e.g.
components of a mechanism, observations such as medical data,
physical processes) as well as objects/concepts of the problem
solving process itself (e.g. design goals, explanations). These
representation issues (domain objects, problem solving process
concepts) plus the goals of the problem solving technique provide
an understanding of the current Al approaches to and uses of
simulation (e.g. qualitative simulation). Particular choices are
sometimes motivated by models of human problem solving, not
with the goal of accurately modeling human problem solving
activity, but with the goal of giving programs better problem
solving capabilities.

The goal of (AI's) qualitative modeling research has been
much discussed, ranging from the desire to faithfully model human
cognition to the ability to build and utilize precise, accurate models
of the real world. To repeat an earlier message, I believe that the
appropriate context is the pragmatic one, in which the particular
simulation or modeling approach can best be judged by 1) its ability
to solve a particular problem and 2) the ability for humans or other
programs (autonomous agents) to evaluate and utilize the results of
the modeling. Unfortunately many claims of the form “Yes, we use
Al techniques” are made for systems and products. One must be
careful in evaluating such claims, and examine the problem solving
capabilities as well as any implementation approaches.
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Al & SIMULATION: SOME LESSONS LEARNED#}

PAUL A. FISHWICK

1. OVERVIEW

The fields of Artificial Intelligence and Simulation are fairly
large in terms of literature and interdisciplinary tendencies.
Discussing, therefore, how the two relate to one another is a
formidable task; however, we have learned many key points or
“lessons” especially during the AI and Simulation workshops,
conferences and panel sessions over the past several years. In this
panelist position paper, I will discuss some things that I have
learned during my time studying the benefits of Al and Simulation
to each other.

2. CODE ALL THE KNOWLEDGE

Perhaps the chief contribution of Al to all fields, including
Simulation, is the realization that knowledge that is non-equational
or quantitative in nature can still be used for useful problem
solving. The primary example of this type of Al research is found
within “expert systems.” We should point out that expert systems,
from a problem solving viewpoint, are not unique because they
represent expert knowledge per se. After all, continuous models for
aircraft flight or discrete event models for assembly lines are also
reservoirs of knowledge --- specifically, “expert knowledge” about
the principles of flight and the operation of assembly lines. What,
then, makes an expert system unique? Expert systems have been
built in those areas where models have been either very weak or
non-existent such as in medical diagnosis; we do not have a simple
set of equations that accept symptoms as inputs and produce a
correct diagnosis as an output. Mycin [Buchanan and Shortliffe
1984] provides an excellent example of a program that contains the
deepest knowledge available in the domain for which Mycin was
coded: the selection of antimicrobial drugs given specific symptoms
of bacterial infection. Because we do not have such equations for
the automatic calculation of drugs given medical symptoms, Al
technology has suggested to us that models based on predicate
calculus (of which expert system knowledge is a special case) are
indeed useful if we can feed in inputs and obtain reasonable
outputs. The AI approach suggests that we code all the knowledge
that is available to us for our simulation models, and not only that
knowledge which yields to numerical analysis. The high level
knowledge that is coded within expert systems is usually of a “deci-
sion-making” or diagnostic type. How does this effect the field of
computer simulation? It suggests that we code decision-making and
planning components within our simulations.

3. SYSTEMS MODELING

One of the problems in the area of Al and Simulation is that
many researchers have thought of expert systems (and other Al
models) as being completely different than models that exist in
simulation. In addition, the concept of simulation as being
inherently numerical has been forced onto the simulation
community by some Al researchers. For example, in Forbus' survey
of qualitative physics [Forbus 1988}, he briefly mentions the
“alternative route of numerical simulation.” The assumption is that
simulation is intrinsically numerical; however, we disagree with
this assessment. The initial proof for this statement can be found in
the works of systems theorists such as Zadeh and Padulo/Arbib in
the late sixties and early seventies --- a unified theory of systems
includes discrete as well as continuous models. Simulation models
that use finite state automata or Markov models also provide nice
vehicles for expressing qualitative system knowledge -- states can
have lexical interpretations. It is true that expert systems technology
is new to Simulation because simulationists have not generally been

+ This research is made possible in part by a grant from the
National Science Foundation IRI-8909152.
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concerned with simulating human minds or decision-making as the
end product, but rather expert knowledge of physical processes in
the many abstraction levels available for those processes. Where no
models exist for physical processes, we should look toward human
minds (“experts”) for models.

The point I wish to make is that expert systems represent
simulation models (founded on the predicate calculus formalism) at
an early evolutionary stage of development. Expert system models
of dynamic concepts are precursors to more intensely mathematical
models reflecting greater degrees of validity between model and
process. Therefore, let us not view expert system models in a
completely different light. Instead, let us recognize that the systems
problem solving process is highly iterative; we start with simple
models and progress to complex models. Also, we are concerned
with designing simulation models that incorporate multiple
interacting levels of abstraction [Fishwick 1989a). Expert rules are
knowledge and numerical equations are also knowledge; let's not
delegate the two to different categories.

4. CONFLICTING TERMINOLOGY

I have attended several panels on the general subject of Al and
Simulation where it is generally acknowledged that we should not
be overly concerned about which concept belongs to which
discipline (Al or Simulation). The claim “this is purely a territorial
issue” often surfaces during discussion. The problems of conflicting
terminology, though, are important and these must be carefully
addressed [Fishwick 1989b]. One might claim that discussing how
“landmarks” (in qualitative reasoning [Kuipers 1986]) and “discrete
events” (in simulation) are related is a pointless enterprise. I would
strongly disagree with this conclusion -- the issue of terminology is
not one of pure territoriality. Instead, it is one that lies at the very
foundation of how we structure a discipline and formulate theories.
If the terminology is different then we should discuss the “hows”
and “whys.”

5. CHOOSING THE RIGHT MODEL AND LEVEL

Simulation theory and science offers many models for
different purposes, and we must not lose sight of the fact that
models are chosen to yield specific types or levels of answers. If a
simulationist is not using an expert system to model a physical
process (such as one in mechanics) then it is most likely because an
expert system would not be able to answer the kinds of questions
that the simulationist seeks (i.e. “at what time does the flywheel
reach its maximum speed?”). There is no “magic” to an expert
system — it yields answers built upon purely inferential knowledge.
Ask yourself “What problem (precisely) am I solving” and “What
type of answer do I want?” Don't choose a model based on
inferential reasoning if you want precision, and don't choose an
equational model if you are modeling a decision making process.
Choose the right modeling language at the right level of abstraction.

Recently, within Al, several researchers have pointed to two
classes of knowledge: shallow versus deep knowledge. Shallow
knowledge is of the inferential kind whereas deep knowledge
reflects the use of model based reasoning. One kind of knowledge is
not more important than the other; shallow reasoning is useful for
decision and control knowledge whereas deep knowledge is for
representing more mechanistic knowledge. In the simulation field,
we do model based reasoning as well in the sense of formulating
predictions, and so it is important that the Simulation and Al fields
form a common ground for further discussions of “deep
knowledge.”

6. TESTS OF VALIDITY FOR Al MODELS

In Simulation, tests for verification and validity are known to
be an important part of the field. Is this also true in Artificial
Intelligence? For many Al researchers, validity is extremely
important. Consider an expert system whose rule base grows
incrementally to yield results that are more valid than the last time it
was tested. Expert systems researchers are very concerned with
validity. If the expert system does not solve the problem better than
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conventional methods (if they exist) then it is a poor expert system.
If a computer chess program always loses, then its expert heuristics
(no matter how entailed) are flawed. Using various measures, such
as ratings for chess programs, we can validate Al systems. Now,
what about those models that are supposed to be models of human
thought — how can these be validated? This kind of validation is
common in the psychological literature; however, within Al it is not
as common. [s it reasonable to create a model without the slightest
concern for validation? If it is not, then we should be extremely
wary of theories or models that claim to represent human reasoning.
Note, for instance, that Hayes [Hayes 1985] develops an elaborate
theory for commonsense reasoning about physical systems and then
omits any validation of his theory. It is pointless to formalize
system models that have little hope of being validated or
invalidated; one must eventually compare one's process theory
against 1) physical theory, or 2) psychological protocol.

7. TOWARD AUTOMATED SYSTEMS PROBLEM
SOLVING

Many researchers in both Al and Simulation are after the
same goal: the automation of the systems problem solving process.
In a recent paper with Bernard Zeigler [Fishwick and Zeigler 1990],
we discuss this objective as a common goal of both disciplines. The
efforts that include using expert systems knowledge, heuristic
knowledge, and qualitative knowledge in Simulation are all based,
effectively, on the underwritten theme of systems problem solving
automation. With this theme in mind, we need to carefully analyze
what is being said in each field. It is not fruitful for both Al and
Simulation to ignore one another, even though this has been
suggested from time to time. There needs to be more researching
the basic issues that arise when Al researchers and Simulation
researchers talk about the same topic using different languages. We
are all after the same goal of automation. Achieving that goal will
require cooperation, and cooperation will require critical analysis of
each others' results.

AI CONTRIBUTIONS TO SIMULATION
R. JAMES FIRBY

1. INTRODUCTION

It would seem that before we can evaluate the contributions
Al can, and should, make to Simulation, we must try and define the
two fields. I generally balk at discussions that begin with “Al is ...”
because Al, like Simulation, is primarily computer science. The
only real differences are the particular problem aspects being
emphasized and the resulting specialization of the problem solving
techniques being employed. Object oriented programming is no
more an Al technique than it is a Simulation technique; it is a
computer programming technique which offers advantages in any
field. Debate about whether object oriented programing, or LISP, or
expert system shells belong to AT or Simulation is superficial and
misses the real contributions each field can make toward solving
problems.

For the purposes of this panel, it is probably most useful to
distinguish between the problems that Al and Simulation
researchers work on so that we can exchange ideas in a meaningful
way. [ think that there is only one major characteristic that
separates problems in the two fields and it is the reason that
different solution techniques are employed. Simulation
concentrates primarily on predicting a system's behavior when its
fine structure is well understood, whereas Al concentrates on
predicting behavior when a system's course structure is most
important.

Consider any given simulation problem domain. In general,
the problem will consist of a large number of simple interacting
processes, such as airplanes landing, fluids moving, mixing and
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boiling, or photons scattering. The classic Simulation problem is to
figure out the way the system as a whole will behave by modeling
all of the simple interactions individually (or in small groups if
enough mathematics is known). However, in many situations the
individual processes making up a system are not well understood
and the system’s behavior cannot be predicted by simulating basic
components. Al researchers typically focus on the problem of
predicting the way a system will behave given only a course
understanding of its structure. Instead of detailed knowledge about
the physics of a system, a course structure problem solver must rely
on information like: what did this system do last time, is this system
similar to a system I already know, and what do systems with this
sort of structure usually do.

This is obviously an over-simplification but, within the areas
where Al and Simulation problems overlap, I think it is a fair
characterization of the difference in emphasis between the two
fields.

2. SIMULATION AND FINE STRUCTURE

Simulation researchers are concerned with trying to accurately
predict the behavior of a system given a detailed understanding of
its fine structure. The advantages of predicting a system’s behavior
using simulation of its fine structure are rigor and precision;
analytical science is grounded in the idea that a system can be
understood completely by understanding its simplest parts.
Simulation researchers need this rigor and precision because they
are primarily interested in using simulation during the system
design process.

3. AI AND COURSE STRUCTURE

Al researchers have typically been concerned with trying to
understand a system's behavior at a coarse structure level. Either
the fine structure of the system is unknown, or the goal is to
automatically derive the coarse structure. In the former situation
there is no way to simulate the system's individual components and
hence there is no way to systematically predict its overall behavior.
In the latter case, the problem requires rigorous simulation but Al
researchers generally assume that the simulator is given and
concentrate on developing techniques for deriving the coarse
behavior.

I will claim that the primary reason Al researchers are more
interested in the coarse structure of a system is because Al is
interested in prediction for the purpose of taking action rather than
for the purpose of design. An abstract characterization of a system's
behavior (i.e. an understanding of its coarse structure) usually
points toward an appropriate response to that behavior much more
clearly than a very rigorous understanding of the system's details.
As a result, for AI problems, precision is often less important than
abstraction.

Furthermore, in many situations of interest to Al researchers,
the fine structure of the problem domain cannot be used anyway.
Consider the problems of reasoning about a system when:

* Information about the system is very uncertain or simply
unknown. For example, suppose an Al system is trying to
decide what will happen if a slug is put into a Coke machine.
The internal workings of the machine will almost certainly be
unknown and simulation of their behavior will be impossible.
However, it should still be possible to reason that the
machine might not deliver a Coke.

* Information about the system is extremely complex. Suppose
an Al system is trying to fix a computer network that has
become too slow. It is certainly possible to simulate traffic
over the network to suggest reasons for the problem but such
a simulation is likely to be too complex and time consuming
to be worth the trouble. However, the Al system should still
be able to consider unplugging one or more nodes from the
network as a possible fix.

The basic_ techniques that Al researchers use to address these

problems is to characterize the coarse structure of the system and
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predict its behavior in an approximate way based on that
abstraction.

4. WHAT ARE THE CONTRIBUTIONS?

In general, Al and Simulation researchers are working on
different aspects of the same problem: how to predict the behavior
of a system for design (Simulation) and response (AI). Simulation
researchers demand rigorous answers based on a detailed
understanding of the system's fine structure. Al researchers, on the
other hand, are more interested in classifying modes of behavior
and can often do that with an understanding of only coarse system
structure. Al solution techniques are usually only approximate but
they can be used even when a detailed understanding of a system is
unavailable.

Given this view of Simulation and Al, the main contribution
that Al can make to Simulation is a collection of techniques to
predict the behavior of systems when:

* Rigorous simulations get so complex that it makes sense to
trade some accuracy for speed. Appropriate techniques
include qualitative reasoning, approximate reasoning, expert
systems, and planning.

» Rigorous simulations are impossible do to a lack of detailed
knowledge. Appropriate techniques include probabilistic
temporal reasoning, case-based reasoning, and reasoning
about explanations and similarity.

The latter problem will arise more often as simulation moves out of

engineering design and into fuzzier areas like military war gaming.

5. SIMULATING MULTIPLE AUTONOMOUS AGENTS

An intriguing example of using Al and Simulation
techniques together arises when simulating multiple, complex,
context dependent agents such as units on a battlefield. One would
like to be able to study the progress of a battle or campaign by
simulating each of the basic units to get as much realism as
possible. However, the behavior of a given unit is very difficult to
model rigorously because it depends on a host of local details and
the ability of the unit to sense and analyze those details.

My specific interest within the field of Al is that of controlling
autonomous agents. In trying to control an autonomous agent
almost all reasoning must be done based on the coarse structure of
the domain at hand. The agent will lack considerable knowledge
about the workings of machines and other agents; noisy sensor data
coupled with lack of knowledge makes prediction of the future
extremely uncertain; and any fine detail that is known about the
world introduces far too much complexity into the reasoning
process to be useful for anything except very focussed control
problems. However, it is still possible to generate appropriate
actions in a given situation using abstraction and prepackaged
context sensitive rules.

I think it is possible to combine the course structure Al
reasoning used to control agents with fine structure simulation of
environmental factors to produce a hybrid simulation of a
battlefield. Each unit on the field would acquire information about
the world, analyze it, and generate actions using Al techniques
while rigorous Simulation techniques would link the units together
and model unit-independent effects like weather and terrain. The
Al supplies a realistic mechanism for modeling the decision making
within each basic unit and the Simulation then treats each unit as a
building block connected by the physics of the battlefield.
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