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ABSTRACT

This paper provides an overview of the UniFit II software
package, which is used to select simulation input probability
distributions. UniFit II is the successor to the original UniFit
software package, which has offered state-of-the-art support for
selection of distributions for nearly eight years. niFit II
provides more comprehensive and easier-to-use support for
simulationists. UniFit II allows a simulationist to determine
easily which of the standard probability distributions (e.g.,
exponential, gamma, normal, etc.) best represents a set of
observations. The package then helps a simulationist deter-
mine the quality of the correspondence between the selected
probability distribution and the observations. In most cases the
correspondence will be good enough for simulation purposes,
and UniFit I specifies how to generate values from the
selected distribution in any of the major simulation packages.
In the situation where the correspondence is not good, UniFit
reports how to generate values directly from the observed data.
UniFit II supports two different methods for choosing distribu-
tions when data are not available. The first method has been
commonly recommended for this no-data case and may be used
in almost any context. The second author developed the other
method specifically for specifying the distributions of operating
and repair time random variables needed for simulations of
manufacturing systems.

1. INTRODUCTION

In the fall of 1978 the authors began joint research on the
topic of fitting distributions to data as it related to simulation.
After four years of research and development, the UniFit
software for fitting distributions to observed data became
available for mainframe computers (in 1982). Further develop-
ment of the software resulted in the 1985 release of a version
for personal computers. The UniFit package was designed to
allow someone who was familiar with the process of fitting
distributions to data to do so quickly and in a more comprehen-
sive manner than was possible either with hand calculations or
through the use of general statistical software. It is being used
by simulationists, engineers, statisticians, and scientists in more
than 150 organizations in a number of countries.

The recently released UniFit II software package is the
result of a two year redesign process. One of the major goals
during the redesign was to make the comprehensive array of
tools available within the original UniFit package accessible and
indeed simple to use by simulationists who have little formal
training in the relevant statistical methods. The design of the
package reflects this goal in a number of ways, but perhaps the
most dramatic example of the redesign is the inclusion of

robability distribution ranking facilities within the package.
e have created a procedure for automatically evaluating and
ranking alternative probability distributions. During the twelve
years of developing and using software to fit distributions to
data for simulation studies, we have invented and evaluated a
number of heuristics for assessing the quality of a probability
distribution. The automatic ranking process uses heuristic
procedures that we have found to be the most effective for
choosing distributions. This ranking procedure is discussed in
more detail in Sections 2.3 and 2.4.
Another major goal was to make the software as “user-
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friendly” as possible. One problem with current software is the
variety of interfaces employed; some packages are menu-
based, others are not, and few menu-based packages operate
in exactly the same way. We recognized that because a
package like UniFit II may be used intensively by a simulation-
ist during the early stages of a long simulation study but then
infrequently until the next project commences, it is essential
that little time be spent learning to use the interface. We have
therefore used a straight forward menuing scheme which is as
easy to use with a mouse as without one, and have avoided the
common practice of requiring a user to employ special non-
obvious keystrokes when performing basic tasks. Context-
dependent on-line help is available in four categories to allow
the user to find quickly the help information relevant to the
task the simulationist is performing with UniFit II.

The third major goal for the redesign process was to
increase the support for tasks performed by simulationists in
selecting input distributions. The original version of UniFit was
designed to be the state-of-the-art tool for fitting distributions
to data. We have increased the applicability of UniFit by
including options which support selecting distributions when no
data are available. We have improved the usefulness of UniFit
for simulationists by providing options that specify the exact
usage of a probability distribution (e.g., the random value
generator to use and its parameters) in the major simulation
packages (languages or simulators).

2. SELECTING SIMULATION INPUT DISTRIBUTIONS

In this section we present an overview of the input
distribution selection process. We begin with an examination
of the need for proper input distribution selection. We then
discuss the objective of the process and a provide a philosophy
for selecting input distributions in the simulation context. 'ic
section concludes with an overview of the selection process,
including an example.

2.1 The Need For Proper Input Distribution Selection

When performing a simulation study, the sources of
randomness for the system under consideration must be repre-
sented properly. (A source of randomness in the real-world
system 1s typically called a random variable.) In many manufac-
turing systems, for example, correctly modeling machine
operating times and repair times is critical to obtaining
meaningful simulation results.

In order to demonstrate the dramatic effect that the choice
of input distribution may have on the performance of a
simulated system, we performed a small experiment involving
a simple system. The system of interest was the single-server
queueing system, where interarrival times were exponentially
distributed. The experiment had five cases corresponding to
the choice of the service-time distribution. Five distributions
(exponential, gamma, Weibull, lognormal, and normal) were fit
to a set of observed service times. We then made 10! replica-
tions of the system for each choice of service-time distribution,
where each replication was run until the 1000th delay in queue
was observed. The results of the experiment are summarized
in Table 1. Each value in the table is the average of the
measure of performance over the 100 replications for the
appropriate distribution.
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Table 1. Empirical Results From 100 Replications
For Each Distribution

Average Average Percentage
o Delay Number of Delays

Distribution In Queue In Queue | At Least 20
exponential 6.71 6.78 6.4%
gamma 4.54 4.60 1.9%
Weibull 4.36 4.41 1.3%
lognormal 7.19 7.30 7.8%
normal 6.04 6.13 4.5%

After a thorough analysis of the service-time data using
UniFit II, which included distributions not shown in Table 1, we
concluded that the Weibull distribution provided the best
representation of the data, and the results produced by this
distribution will be used as reference points in the discussion
which follows. (An overview of this analysis is presented in
Section 2.4.) The values for the average delay in queue for
different service-time distributions highlight the impact of the
choice of distribution on simulation results. In particular, note
that the normal distribution, which has often been used as an
input probability distribution due to its familiarity, leads in this
case to an average delay value that differs‘lzy almost 39 percent
from that produced by the reference Weibull distribution.
What is more surprising is that the result produced by the
lognormal distribution (which can have a shape very similar to
that of the Weibull) differs from the reference by 65 percent.
Similar results occur with respect to the average number in
queue measure of system performance. We would expect that
differences in simulation results should be the greatest when we
consider the likelihood of extreme values occurring, because the
service-time distributions considered in Table 1 differ most in
their “tails.” This expectation is borne out by the output
measure reporting the percentage of delays that are at least 20.
Here the result produced by the normal distribution differs
from that of the reference Weibull by 246 percent. An even
more striking discrepancy from the reference of 500 percent
occurs with the result produced by the lognormal distribution.

In many simulation studies little attention has been paid to
the process of selecting input distributions. Some simulationists
have used distributions such as the normal to represent sources
of randomness in their simulations simply because they were
most familiar with the normal. It should be evident from the
example that such a practice calls into question the validity of
the overall simulation results and, thus, any conclusions based
upon those results.

2.2 The Desired Outcome of the Input Distribution Selection
Process

In the simulation context the desired outcome of the input
distribution selection process is the choice of a mechanism for
generating random values from a probability distribution. (In
the simulation literature such mechanisms are known as
random variate generators.) Most simulation packages offer two
different types of random value generators which differ in their
overall approach to modeling a particular random variable. An
empirical function generator generates values on the basis of a
parameter list containing example values and their associated
probabilities. This type of generator is given its name because
of the common practice of using the sorted observations as the
example values and values computed from the empirical
(sample) distribution function as the set of associated probabili-
ties. Generators of the second type produce random values
from a specific standard probability distribution. These
generators require specification of the parameter values
corresponding to the specific probability distribution (e.g., the
mean of the exponential). Most simulation packages include an
empirical function generator as well as a number of generators
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for standard probability distributions.

The simulationist must select an appropriate generator to
represent a real-world source of randomness in a simulation
model and then must specify the list of parameters required by
the random value generator. We believe that a generator for
a standard probability distribution should be selected whenever
possible, for practical as well as more theoretical reasons. (The
second author is participating in a panel discussion at this
conference that addresses different approaches for specifying
input probability distributions. His position paper, included
elsewhere in these proceedings, discusses the reasons for our
preference.)

2.3 A Philosophy to Guide The Input Distribution Selection
Process

In some disciplines analysts have used UniFit to meet the
objective of determining whether a specified distribution (e.g.,
normal) is the frue underlying distribution for their observed
data. However, it is not clear that this is the correct objective
for simulation applications, since none of the standard distribu-
tions is probably exactly correct for most simulation input
random variables. Instead, we feel that an appropriate goal is
to find a standard probability distribution that provides a
representation that can be assessed as being good enough for
the purposes of the simulation study.

e recommend a two-phase approach for choosing a
probability distribution that is “representative” of a simulation
input random variable. In the selection phase the alternative
probability distributions available within UniFit II are “fit” to
the observed data and then compared in order to determine
which one best represents the observed data. UniFit I
Frovides many graphical and tabular options for comparing
itted distributions to the observed data. A simulationist may
use any or all of these comparisons to select one of the
distributions as being the most representative, or may elect to
have UniFit II make the selection with a ranking methodology.
The automatic ranking methodology utilizes the results of
comparisons based upon goodness-of-fit test statistics as well as
the results of comparisons based upon metrics computed from
graphical procedures. We incorporated into the ranking
methodology those comparisons that we have found to be most
effective in discriminating between distributions during the past
twelve years.

In the confirnation phase the probability distribution
identified in the selection phase is evaluated using formal

oodness-of-fit tests and graphical comparisons to determine if
1t represents the observed data well enough to be used in a
simulation model. In our experience goodness-of-fit tests do
not necessarily provide by themselves a definitive assessment of
the quality of fit of a distribution to be used for simulation.
We prefer to use such tests as an indication of the amount of
further evidence required in order to confirm the quality of a
probability distribution: better representations as indicated by
formal goodness-of-fit tests require less confirming visual
evidence from comparison plots. Plots employed in the
confirmation phase are demonstrated in the example found in
the next section.

2.4 An Example of the Process of Selecting Input Distribu-
tions

In many situations it is possible to collect a sample from
the system random variable of interest. We shall first consider
this case and later discuss the situation where data are unavail-
able. The following discussion is based upon the process we
recommend a simulationist follow when using the UniFit II
software and will be illustrated with example output from the
package. We shall use the service-time data referenced in the
example of Section 2.1 as our set of observations.

Immediately after using an option in the UniFit II package
to read observations recorded in a data file, the sample
summary shown as Figure 1 is displayed. The sample has two
hundred observations, ranging from .05395 to 2.13060, and a
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mean of .88837.

Summary of Sample: WSC Service-Time Data

Sample Characteristic Value

Observation Type Real Valued

Number of Observations 200

Minimum Observation .05395
Maximum Observation 2.13060
Mean .88837
Median .84913
Variance .20963
Coefficient of Variation .51539
Coefficient of Skewness .50552
Coefficient of Kurtosis 2.57707

Figure 1. Sample Summary of Example Data

In addition to a set of observations, the simulationist should
have a basic understanding of the random variable that
produced the sample. The most important single piece of
information is the range of the possible values of the random
variable, for it identifies the class of candidate probability
distributions. Most data sets collected for simulation purposes
will be strictly non-negative, that is, the values must be greater
than zero. This is true, for example, for operating times, repair
times, and service times. The example data are service times
and are therefore strictly non-negative.

We began the selection phase by choosing an option that
requested UniFit II to estimate all of the parameters for the
seven distributions appropriate for non-negative data sets. An
eighth probability distribution, the normal, was also fit to the
data using a separate option.

Once the distributions were selected and parameters
estimated, the ranking methodology described in the previous
section was invoked. The top two probability distributions
found automatically by UniFit II were the Weibull and the
gamma, in that order. After seeing the summary ranking, the
default option provided by UniFit II is to reorder the fitted
distributions to reflect their rankings; this option was selected.
(All probability distributions are given numbers that serve as
abbreviations for their complete names.)

We began the confirmation phase by performing several
goodness-of-fit tests with the Weibull distribution. The results
of the tests, which are not shown here, indicated that the
Weibull distribution was a good representation for the random
variable. Following the recommended procedure for choosing

an input probability distribution outlined in Section 2.3, only
minimal additional confirming evidence concerning the quality
of the correspondence between the Weibull distribution and the
sample was required before accepting the distribution.

We first chose to perform a frequency comparison because
it provides a very easy way to get a visual impression of how
well a probability distribution represents a sample. In a
frequency comparison a subrange of the possible values is
divided up into equal-width intervals and the proportion
observed in the sample and that expected from the I?robab}]]ty
distribution are plotted for comparison. UniFit II provides
default values wherever choices may be made, such as for the
specification of intervals. We displayed the frequency compari-
son with the default intervals and then modified them slightly
to obtain the comparison shown in Figure 2. (Please note that
for clarity of reproduction, the multiple-color plots produced by
UniFit II have been printed in black and white only.) In a
frequency comparison like that shown in Figure 2 the outside
(hollow) bars represent the observed frequencies (proportions)
and the inside (full) bars represent the frequencies expected
from the distribution being evaluated. This plot indicated that
there was general close agreement between the sample and
fitted Weibull distribution frequencies.

Another way to assess the quality of the representation is
to compare the density function of a probability distribution
and the sample density (this is just a rescaling of the sample
histogram and thus has the same shape). We created such a
comparison using the Weibull and exponential distributions
which is shown in Figure 3. (The curve for the exponential
density is the one with a large value at an x-value of zero). It
should be noted that the extponential was rated by the ranking
methodology as the worst of the candidate probability distribu-
tions and was chosen for this plot to show how easily bad
probability distributions can be ascertained using UniFit II
plots. This plot provided clear evidence of the bad representa-
tion offered by the exponential distribution. The close match
between the sample density and that of the Weibull distribution
offered more evidence to its being a good choice to represent
the sample.

There are a number of additional plots available in
UniFit II for assessing the quality of fit provided by distribu-
tions. We chose to create one more plot called the distribution
function difference plot, which is shown in Figure 4. In this
type of plot the differences between the empirical distribution
function (based upon the sample) and a specified probability
distribution function are graphed. A good fit is indicated by
small differences being detected across the range of data
values. The &){]ot provided another demonstration of the quality
of it of the Weibull distribution and the lack of quality of fit by
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Figure 4. Example Distribution Function Difference Plot

the exponential.

All of the evidence suggested that the Weibull distribution
provided an excellent representation for the service-time
random variable. The last required step in the input distribu-
tion selection process was the slgecificatlon of a corresponding
random value generator for the simulation. An option in
UniFit II can perform this step for the major simulation
packages. The representations of the Weibull distribution for
the SIMAN, SIMSCRIPT IL5, and SLAM languages were
requested individually, and are shown together in Figure 5.

The example demonstrates the process of selecting a
simulation input distribution when data are available, but
simulationists must often specify input distributions without
data. Data may be unavailable because the system does not
exist or because there is not time for data collection and
analysis. In these cases, knowledge possessed by people most
familiar with the system under consideration or similar systems
must be used in place of a data sample. UniFit II supports two
approaches to this problem. The first approach is well known
and involves specification of minimum, maximum, and most
likely values, which are then used in the triangular distribution.
The other approach was developed by the second author and
is appropriate in the context of simulation of manufacturing
systems. The method is used to specify the distributions of
operating and repair time random variables.
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SIMAN Representation:

Parameter Value(s) 1.00701, 2.04472
Model Usage WE(IP, IS)

where IP is the parameter set

and IS is the stream

SIMSCRIPT II.5 Representation:

WEIBULL.F(2.04472, 1.00342,
where IS is the stream

1s)

SLAM Representation:

WEIBL(1.00701, 2.04472,
where IS is the stream

IS)

Figure 5. Simulation Language Representations




