Proceedings of the 1990 Winter Simulation Conference
Osman Balci, Randall P. Sadowski, Richard E. Nance (eds.)

INTRODUCTION TO PROCESS-ORIENTED SIMULATION AND CSIM

Herbert D. Schwetman

Microelectronics and Computer Technology Corporation
3500 West Balcones Center Drive
Austin, Texas 78759-6509

ABSTRACT

CSIM is a simulation package which lets C and C++ program-
mers write process-oriented simulation models. This tutorial begins
by presenting the basic concepts of the process-oriented paradigm.
It then proceeds to illustrate this simulation paradigm as implement-
ed in CSIM. Issues of the size and costs of simulation models written
using this paradigm are discussed. The tutorial closes with a number
of examples drawn from diverse application areas. These examples
illustrate the descriptive power of process-oriented simulation mod-
els.

1. PROCESS-ORIENTED SIMULATION

There are three different approaches to discrete event simula-
tion (Nance 1981): event-oriented simulation, activity-oriented sim-
ulation, and process-oriented simulation (Franta 1977) (Pritsker and
Pegden 1979). This tutorial will focus on one package, called CSIM,
which embodies the process-oriented approach.

In the process-oriented approach, the simulation programmer
composes a set of process descriptions. Each process description
serves as a model of one kind of active entity in the simulated sys-
tem. An active instance of a process description will be called a pro-
cess. In a simulation system, there is a process management facility
which allows processes to become active, to operate in the simulated
environment, and to eventually terminate. The process management
facility is capable of managing many active processes so that they
each appear to be active at the same time. This “pseudo parallelism”
for simultaneously active processes is a very important feature of
process-oriented simulation.

A real system is modeled, using the process-oriented approach,
as collection of processes, each competing for the resources of the
system. For example, in a factory, an item to be assembled could be
modeled by a process which arrives at the head of the assembly line
and then visits each of the stations on the line. At each station, the
process, mimicking the behavior of the item it models, waits in a line
of waiting items, seizes the station for a service interval, releases the
station and then travels to the next station in the assembly line. Some
items may have different travel patterns, based on attributes of the
item or on the outcomes of different steps in the assembly process,
such as the outcome of a test. When assembly of the item is complet-
ed, it “leaves” the system (see Figure 1).

In Figure 1, an item to be assembled arrives and travels to sta-
tion 0. After spending some time (the service interval for station 0)
there, it travels to station 1, where it stays for another service inter-
val. On leaving station 1, some of the items visit station 2 and then
leave, while the other items travel to station3 and leave. The choice
of station 2 or station 3 could be based on the outcome of a test at
station 1. In simulation models, it is common to model this choice as
a statistical choice, with some predefined percentage of the items
traveling to station 2 and the rest of the items traveling to Station 3.

154

(lem)———# Stution0
Station 1
Station 2 Station 3

v Y

Figure 1. Example of Assembly Line

Notice that this model is specified by the rate that items arrive for as-
sembly, by the times spent at each station and by the choice percent-
age.

In the preceding example, the processes of the model are the
items being assembled, and the resources are the various stations in
the assembly line. This approach to modeling, having processes
model the behavior of active entities and simulated facilities model
the resources of a system, has been shown to be a good approach to
creating simulation models. Many kinds of systems have been mod-
eled this way, systems such as computer systems, communications
systems, manufacturing systems, transportation systems and service
delivery systems.

When constructing a model such as the one in the example,
there is always a choice to be made regarding what the processes
represent and what the facilities represent. In the example, another
model of the same system could be constructed in which the stations
are represented by processes and the items are represented by tokens
which are passed around among the stations. In some cases this al-
ternative approach might be preferable (for example, when the mod-
el needs to focus on the processing being done at each station).

The purpose of constructing and executing such a simulation
model is to gain insight into the dynamic properties of the modeled
system. Estimates of the average time required to assemble an item
(called system response time) and the rate at which items are assem-
bled (called the system throughput rate) are examples of dynamic
properties which are of interest to the management of the factory. In
addition, information about the average number of waiting items at
each station can help locate production bottlenecks. A major goal of
developing a simulation model is to allow complex systems to be
“tried out” before they are actually constructed. This allows subop-
timal configurations of stations to be cast aside, so that the best pos-
sible configuration will the one that is constructed. In addition, such
amodel can be used to try out new schedules, to estimate system re-
sponse to different arrival rates, and to experiment with alternative

H.D. Schwetman

travel paths. Models of existing systems can be used to help find ar-
rangements which deliver better system performance.

2. CSIM

CSIM is a simulation package which allows programmers to
write C (Kernighan and Ritchie 1978) and/or C++ (Stroustrup 1986)
programs which are process-oriented simulation models. CSIM was
developed at MCC, starting in 1984, and has been used at MCC to
construct simulation models of computer systems, database ma-
chines, communications protocols, and system components
(Boughter, et.al, 1987). In addition, CSIM has been distributed to a
number of MCC shareholder companies and also to other institu-
tions and companies which have requested a copy. Currently, about
63 different organizations have received one or more copies of some
version of CSIM.

A CSIM model is a program (assume it is written in the C pro-
gramming language) in which some of its internal procedures can
become CSIM processes. These processes operate just like the pro-
cesses described in the preceding section. CSIM processes operate
in a pseudo-parallel fashion; they can use facilities, wait for messag-
es to arrive in a mailbox, wait for events to happen, as well as send
messages to mailboxes and cause events to happen. In addition, ex-
ecuting a hold() statement causes simulated time to pass.

The result is a C program which produces a report on the differ-
ent aspects of the behavior of this model. This C program is com-
piled by the C compiler and linked with the CSIM library, to acquire
all of the functionality of the CSIM package. Because it is compiled,
a CSIM program tends to execute very efficiently. Because it is a C
program, a CSIM program has access to all of the tools and features
available to any C program executing on the host system.

To illustrate this approach, a CSIM program which implements
the model shown in Figure 1 is given in Figure 2.

The example in Figure 2 may require further explanation. The
stations of the assembly line are represented by an indexed array of
FACILITY’S. The TABLE, resp_tm, is used to collect system re-
sponse time statistics. The procedure named “sim” is the first proce-
dure of the model to be executed. In CSIM, a process is a C
procedure which executes a create () statement. This create () state-
ment is what causes the facility management system to create a new
process (using the procedure as the process description) and to acti-
vate that process as soon as it can. The create () statement also re-
turns control to the calling process (except in the case of the sim()
process).

In the example, the sim() process initializes the array of stations
and the table and then generates 100 arrivals of the “item” process
(in the for loop). There is a random interval of simulated time be-
tween each arrival of item () (caused by the hold () statement). As
each “item” arrives, it executes a create() statement which creates a
new instance of the process item and returns control to sim. Sim ex-
ecutes the next hold() statement, at which point the new copy of item
can begin execution. “Item” saves its arrival time, and then “uses”
station O for a constant interval of time (3.0 time units) and station 1
for 2.5 time units. The use() statement checks the status of the sta-
tion; if it is “busy” (already in use), the process is put in a queue of
waiting processes; if the station is “free” (not in use), the process oc-
cupies the station and “holds™ for the specified interval of time.
Whenever a process finishes using a station, the next process in the
queue is activated.

After the second use() statement, the process draws a random
number (uniformly distributed between 0.0 and 1.0. Approximately
half of these drawn numbers will be less than 0.5, so station 2 will
be visited; the other drawn numbers will be greater than 0.5 and sta-
tion 3 will be visited. As the process finishes, it “records” the process

155

/* CSIM model of assembly line */
#include “csim.h”

FACILITY station[4];

TABLE resp_tm:;

sim()
{
inti;

create(“sim”);
facility_set(station, “station”, 4);
resp_tm = table(“response time”);
for(i = 0; i < 100; i++) {

item();

}ho]d(expntl(10.0));
walit(event_list_empty);
report(;

}

item()

{
TIME t;

create(“item”);
t = clock;
use(station[0], 3.0);
use(station[1}, 2.5);
if(prob() < 0.5)
use(station[2], 4.0);
else
use(station[3], 4.5);
record(clock - t, resp_tm);

Figure 2. CSIM Example

response time (time of arrival to time of departure) in the table.
When a process “exits”, it is automatically terminated.

The first process (sim) “waits” for all of the “items” to finish. It
then prints a report and exits. When sim() exits, execution of the
model has completed. The output from a run of this example appears
in Appendix A.

CSIM has a structure called a mailbox; processes can receive
messages from a mailbox and send messages to a mailbox. Mailbox-
es are used in the program shown in Figure 3 to help construct an-
other model of the system shown in Figure 1. This second model
implements the alternative approach mentioned in Section 1, in
which the stations are represented by processes.

In this alternative approach, each station is modeled by a pro-
cess and the items to be assembled are modeled by “messages” sent
from one station process to another. Each different station “receives”
items in its own mailbox, “holds” for the correct service interval and
then sends a message (the item) to the next station based on which
station is processing the item. If response times are needed, this ex-
ample would have to be modified, so that the arrival time for each
item is part of the item message.

3. USING CSIM

As can be seen in the previous section, CSIM is used by writing
a C program and including calls to the procedures and functions in
the CSIM library or invoking the CSIM macros. A great effort has
been made toward simplifying the writing of CSIM programs. For

Introduction to Process-Oriented Simulation and CSIM

/* alternative CSIM model of assembly line */
#include “csim.h”

MBOX station_mb|4];

float serv_tm[4] = {3.0, 2.5, 4.0, 4.5};

sim()
{
inti;

create(“sim™);
for(l = 0; 1 < 4; 1++) {

station_mbl[i] = mailbox(“station”);

station(i);

}
for(l = 0; 1 < 100; i++) {

send (station[0], 0);

hold(expntl(1.0));

}
wait(event_list_empty);
report();

}

station(i)
int i;
{

int x;

create(“station”);
while(1) {
receive(station_mbli], &x);
hold(serv_tm([i]);
ifli == 1) {
if (prob(<0.5)
send(station_mbl2], 2);
else
send(station_mb[3], 3;
}
ifll == 0)
send(station_mbl[1], 1);

Figure 3. Alternative CSIM Model

example, all variables “local” to each process are automatically
maintained by the process management facility. The variable “t” in
the item process in the program in Figure 2 is an example of such a
local variable. Each instance of item must have its own version of
“t”. As another example, statistics on the use of each facility in a
model are automatically collected; these statistics are summarized to
the standard output file when the report() statement is executed.

CSIM programs are efficient in their use of memory. All struc-
tures required to support the processes, the facilities, etc. are dynam-
ically allocated. This means that “small models” use small amounts
of memory, while “large models” can be executed without modify-
ing the CSIM library. (Of course, the amount of memory available
on the host system limits the size of any program executing on that
system.)

Finally, CSIM programs make efficient use of computing time.
Most of the interval queue-handling algorithms have been optimized
in order to execute models with many active processes efficiently.
There is some overhead associated with the process management fa-
cility, but, in most cases, this is held to acceptable levels.

156

As stated previously, CSIM has been used to model many kinds
of real systems. Some additional examples, showing CSIM model-
ing different kinds of systems appear in (Schwetman 1986) and
(Schwetman 1988). A CSIM Reference Manual is available as an
MCC Technical Report (Schwetman 1990).

4. C++/CSIM

C++ (Stroustrup 1986) is an object-oriented programming lan-
guage which is based on C. A major feature of C++ is capability for
programmers to define classes. A class consists of data structure and
methods (procedures and functions) which operate on these data
structures. An instance of a class called an object. One class can in-
herit another class. Thus, one class (the base class) can be used to
construct another class (the derived class). These and other features
make C++ a good language for writing many kinds of programs, in-
cluding simulation programs.

The CSIM library has recently been extended so that it can be
used with C++ programs (Schwetman 1990). This means that C++
programmers now have access to the simulation facilities provided
by CSIM. One benefit of using C++/CSIM is that the C++ compiler
enforces rigid type checking (most C compilers do not do this).
Thus, many common programming errors (such as “holding” for an
integer time interval) can be detected by the C++ compiler. A benefit
to CSIM programmers comes from the inheritance mechanisms in
C++. A C++/CSIM class, such as a facility, a mailbox or an event,
can be inherited by a programmer-defined class and given new prop-
erties. A trivial example would be to define a new kind of facility
which would gather additional usage statistics every time it was
“used”.

C++/CSIM has been used at MCC to develop a few simulation
models. The experience, so far, has been positive. The enhanced
type checking alone has caught many errors and, consequently, has
reduced the time required to implement and debug the simulation
models.

5. SUMMARY

CSIM is a library of procedures, functions and macros which
give C (and C++) programmers a powerful tool for developing pro-
cess-oriented simulation models. Since CSIM models are, in reality,
C programs, there are almost no limits as to the size and complexity
of these models. The model implementer can write (or import) any
algorithms which may be needed to develop an accurate model.

This tutorial has introduced CSIM to the reader. There are many
features and facilities which have been omitted, in order to simplify

this introduction. All of these are described in the Reference Manu-
al.

H.D. Schwetman

APPENDIX
Tue Jul 17 10:14:26 1990 CSIM Simulation Report Version 141
Model: CSIM
Time: 964.207
Interval: 964.207
CPU Time: 0.417 (seconds)
Facility Usage Statictics
+ + mean + counts————+
facility srv disp serv_tm util tput glen resp cmp pre
station([0] 3.000 0.311 0.1 0.369 3.557 100 0
station([1] 2.500 0.259 0.1 0.259 2.500 100 0
station[2] 4.000 0.216 0.1 0.226 4.192 52 0
station(3] 4.500 0.224 0.0 0.248 4.990 48 0
Table 1
Table Name: response ti
mean 10.632 min 9.500
variance 2.461 max 17.863
Number of entries 100
REFERENCES

Boughter, E., W. Alexander, and T. Keller (1987), “A Tool for Per-
formance Driven Design of Parallel Systems,” Technical Re-
port ACA-ST-312-87, Microelectronics and Computer Tech-
nology Corporation, Austin, TX.

Franta, W.R. (1977), The Process View of Simulation, North-
Holland, Amsterdam.

Kernighan, B.W. and D.M. Ritchie (1978), The C Programming
Language, Prentice-Hall, Englewood Cliffs, NJ.

Nance, R.E. (1981), “The Time and State Relationships in Simula-
tion Modeling,” Communications of the ACM 24, 173-179.
Pritsker, A.A.B. and C.D. Pegden (1979), Introduction to Simula-

tion and SLAM, Halstead Press, New York.

Schwetman, H.D. (1986), “CSIM: A C-Based Process-Oriented
Simulation Language,” In Proceedings of the 1986 Winter Sim-
ulation Conference, J.R. Wilson, J.O. Henriksen, and S.D.
Roberts, Eds. IEEE, Piscataway, NJ, 387-396.

Schwetman, H.D. (1988), “Using CSIM to Model Complex Sys-
tems,” In Proceedings of the 1988 Winter Simulation Confer-
ence, M.A. Abrams, P.L. Haigh, and J.C. Comfort, Eds. IEEE,
Piscataway, NJ, 246-253.

Schwetman, H.D. (1990), “CSIM Reference Manual (Revision
14),” Technical Report ACA-ST-257-87, Microelectronics and
Computer Technology Corporation, Austin, TX.]

Stroustrup, B. (1986), The C++ Programming Language, Addison-
Wesley, Reading, MA.

157

