Proceedings of the 1990 Winter Simulation Conference
Osman Balci, Randall P. Sadowski, Richard E. Nance (eds.)

A TUTORIAL INTRODUCTION TO OBJECT-ORIENTED SIMULATION AND Sim++™

Greg Lomow
Dirk Baezner

Jade Simulations International Corporation
Olympic Volunteer Centre, McMahon Stadium
Suite 80, 1833 Crowchild Trail, N.W.
Calgary, Alberta, Canada T2M 4S7

ABSTRACT

_ The key benefits of object-oriented programming, object-oriented
simulation, and object-oriented parallel simulation are presented.
This is followed by a tutorial introduction of Sim++, an object-
oriented parallel simulation language developed by Jade Simulations.

1. OBJECT-ORIENTED PROGRAMMING

Object-oriented programming is a design and programming
discipline that focuses on the objects that make up the system rather
than on the overall function of the system. While this is at odds with
traditional top-down design techniques, we will see that there are
excellent reasons for adopting this point of view.

An object is any distinguishable component of a system. An
object has a set of attributes that defines its state and a set of
operations for manipulating that state. For example, a lamp is an
object. It might have attributes that describe the size of its bulb and
whether or not it is on. It might have operations for switching the
lamp on and off, and for changing the bulb.

The objects of a system can be divided into groups where each
group shares related characteristics. Each group of objects is called
an object class. Each object is an instance of a particular object class.
All instances of the same object class share the same set of attributes
and operations.

Object-oriented programming provides a clear set of design
guidelines.

1) Identify the object classes that make up the system.

2) Define the interface (i.e., the attributes and operations)
provided by each class.

3) Implement the classes.

4) Write the program. It will create and manipulate the objects
according to the interface they provide.

Object-oriented programming promotes modular design because
each object class encapsulates a data structure and the operations that
manipulate that data structure.

Clearly defined interfaces clearly separate the services a class
provides from its implementation. This principle is called separation
of concerns and it has two advantages. First, the implementer can
choose any implementation for the class that is consistent with the
interface. Second, the user of the class is not affected by
modifications to the implementation. Both of these points simplify
maintenance.

Clearly defined interfaces also promote software reuse. They
allow developers to determine whether a class provides the necessary
services without having to inspect and verify all of the source code
associated with its implementation.

An important technique associated with object-oriented
programming is inheritance. Inheritance allows a new class to be
defined as an extension or refinement of an existing class. The new
class is said to be derived from an existing base class. The derived
class inherits all of the attributes and operations defined for the base
class. The derived class can add new attributes and operations as
well as restricting access to the attributes and operations it inherits
from its base class. Inheritance promotes modularity because it

149

allows designers to explicitly express the ways in which objects are
similar and the ways in which they are different.

Another important technique associated with object-oriented
programming is delayed binding. Delayed binding is a mechanism
that permits the decision about how an operation is to be performed
to be deferred from compile-time to run-time. In particular, it allows
a derived class to redefine operations provided by its base class and
have these redefined operations used everywhere the operation is
performed.

Inheritance and delayed binding promote software reuse by
allowing a user to take advantage of previously defined classes while
still providing mechanisms for tailoring these classes to specific
applications.

2. OBJECT-ORIENTED SIMULATION

Object-oriented simulation and object-oriented programming are
both based on the principle that the design of a system should be
based on the objects that make up the system. Three concepts
characterize the difference between object-oriented programming and
object-oriented simulation: entities, events, and simulation time.

In an object-oriented simulation some of the objects are active.
That is, they execute independently of, and concurrently with, other
active objects. These active objects are called entities. Entities are
used to model the physical processes in the system being simulated.

An event represents a change in the state of one of the objects in
the system being simulated. Entities schedule events for each other
to mark when these state changes are to occur. Events are used either
to synchronize the actions of two entities or to pass information from
one entity to another.

The actions of all entities and the scheduling of all events is tied
to a logical clock called simulation time. Simulation time is an
arbitrary, application-defined time scale that is independent of real
time. Each event is tied to the logical clock by means of a scheduled
event time. This event time corresponds to the actual time in the
physical system when the corresponding physical event would occur.

Constructing object-oriented simulations involves:

1) Identifying the physical processes that make up the system
being simulated.

2) Defining an entity class to model each type of physical
process.

3) Identifying all circumstances that can lead to changes in the
state of the system and characterizing these as events.

4) Determining when events occur and tieing them to simulation
time by means of their scheduled event time.

3. OBJECT-ORIENTED PARALLEL SIMULATION

An object-oriented parallel simulation is an object-oriented
simulation that can be executed in parallel on a multiprocessor.
Using multiprocessors allows greater processing and memory
resources to be applied to a given problem in a cost-effective manner.
These resources can be used to reduce execution time, allow more
objects to be simulated, and/or allow more detailed simulations to be
performed. Object-oriented simulations are naturally suited to
running on multiprocessors because entities represent logically



G. Lomow and D. Baezner

distinct threads of execution that can be executed on separate
Processors.

Developing object-oriented parallel simulations is facilitated by
three factors: determinism, scalability, and portability.

A program is deterministic if, given the same input, multiple runs
of the program produce identical results. A program is non-
deterministic if multiple runs of the same program do not necessarily
produce the same results even if they are started with the same input.
Almost all distributed parallel programs are non-deterministic. This
is because their execution is sensitive to differing processor clock
speeds and message latency.

Non-determinism introduced by the run-time system is intolerable
in simulations. To understand this, remember that the most difficult
phases of any simulation project is validating the model and verifying
that the simulation program correctly implements the model. These
phases often involve establishing confidence intervals and doing
other forms of statistical analysis on the output of the simulation.
Non-determinism complicates any statistical analysis by introducing
an external source of randomness that cannot be characterized and
quantified. This means that the run-time executive for a parallel
simulation language is responsible for guaranteeing determinism. To
complicate matters, determinism must be maintained no matter how
many processors are used to execute the simulation, no matter how
the entities are mapped to these processors, and no matter what the
architecture of the underlying hardware.

Another critical reason for guaranteeing determinism is that it
simplifies debugging and testing. When debugging a non-
deterministic distributed program it can be difficult to re-create an
error because separate runs can legitimately follow different paths of
execution. Determinism ensures that a program follows the same
path of execution each time it is run, allowing errors to be easily re-
created.

A program is transparently scalable if nothing in the program text
limits the number of processors that can be used to execute the
program. A program is transparently scalable if it can be executed
sequentially on a single processor or in parallel on any number of
processors without requiring modifications to the program text.
Examples of techniques that diminish scalability include:

1) Assumptions about the existence of a central event list.

2) Reliance on shared memory for communication among
entities.

3) Restrictions on how entities must be mapped to processors.

Strict object-oriented programming techniques can enhance the
extent to which a program is transparently scalable. These
techniques forbid objects from communicating using shared memory
or from directly accessing and modifying each other's attributes
except through well-defined interfaces. Events provide this interface
in object-oriented parallel simulation languages.

A program is portable if it can be moved among operating
systems and hardware platforms without requiring modifications to
the program text. The paradigm of entities communicating via events
is general enough that it can be mapped to a wide range of machine
architectures. Together, transparent scalability and portability permit
a parallel simulation to be developed on a workstation in a well
supported environment while ensuring that the simulation can be
moved, without modifications to the program text, to a
multiprocessor for production runs.

4. OBJECT-ORIENTED PARALLEL SIMULATION
USING Sim++

Sim++ is a C++ package of object types and routines specially
designed for writing object-oriented parallel simulations that execute
on multiprocessors. C++ is an object-oriented version of C. It is
rapidly replacing C as the language of choice for UNIX system
applications. o

Sim++ programs are deterministic, transparently scalable, and
portable across machine architectures and operating systems.

Furthermore, Sim++ provides features that support parallel
simulation:

1) Distributed, parallel input and output facilities. A major
bottleneck in the execution of parallel programs is I/O to and
from a multiprocessor. Sim++ provides facilities for parallel
1/O through multiple processors as long as such a mechanism
is supported by the underlying operating system and machine
architecture.

2) Built in user level and system level tracing.

3) Performance analysis tools. Achieving high performance
results requires tuning the performance of the simulation
program. Sim++ provides tools that estimate the amount of
speedup that can be obtained from a particular simulation
program. These can be used for evaluating different designs
in terms of bottlenecks, granularity, and balance.

4) Run-time mapping of entities to processors. Transparent
scalability is supported by allowing the mapping of entities to
processors to be specified at run-time in a configuration file.
This permits the number of processors used for executing a
simulation to be easily changed without requiring
modifications to the program text.

Sim++ also provides standard simulation libraries for random
number generation, data collection, and linked list manipulation.

5. Sim++ EVENT SETS

Every Sim++ entity has an event set into which events, scheduled
for that entity, are inserted. As an entity selects events for
processing, the events are removed from the event set. The process
by which events are selected is unique to Sim++ and requires that an
event set distinguish two kinds of events: future events and deferred
events. Future events are those events with an event time greater

than or equal to the current simulation time of the executing entity.
All events scheduled in a simulation are, initially, future events.
Deferred events are those events with an event time less than the
current simulation time of the executing entity. A future event
becomes deferred if it is left unprocessed in the event set and the
entity's simulation time advances beyond the event's scheduled event
time. An entity advances beyond the event time of a future event
either by advancing its simulation time explicitly, or by selecting
another future event with a later event time. Once an event has
become deferred, it remains in the event set as a deferred event until
selected by the entity.

Sim++ provides a concise set of simulation primitives with which
to manipulate an entity's event set. When an entity selects an event
using one of these primitives, it specifies a set of application-defined
conditions that the event must satisfy. The application-defined
conditions are specified using a value known as a predicate. An
event is selected if it satisfies the given predicate as well as any
additional constraints imposed by the primitive.

6. Sim++ TYPES AND SIMULATION PRIMITIVES

The following types and primitives are used in the example
presented in the following sections.

sim_entity_id

Associated with each entity in a simulation is an entity identifier
that uniquely identifies that entity. Entity identifiers are represented
by values of type sim_entity_id. When scheduling an event for an
entity, the scheduling entity must specify the entity identifier of the
entity for which the event is scheduled.” Similarly, when an entity
selects an event for processing, it can readily identify the entity that
scheduled the event.

150



A Tutorial Introduction to Object-Oriented Simulation and Sim++T™

sim_predicate

In Sim++, an entity is not permitted to directly access its event
set. Instead, it must call one of the available primitives and specify
an object known as a predicate which is used by Sim++ to test the
attributes of the events in the event set. If an event's attributes satisfy
the conditions of the predicate, the event is said to match the
predicate.

Sim++ provides a number of commonly-used predicates as pre-
defined predicate classes, as well as two predicate objects,
SIM_ANY and SIM_NONE, that match any and no event,
respectively.

sim_time

Values of type sim_time are represented by real numbers greater
than or equal to zero. Values of this type are used to represent
simulation time.

sim_clock

The primitive sim_clock returns a value of type sim_time that is
the calling entity's current simulation time.

sim_schedule

The primitive sim_schedule is used to add future events to an
entity's event set. An entity can schedule events for itself or for any
other entity that it can identify. The arguments to sim_schedule
include the entity identifier of the entity for which the event is
scheduled, a simulation time delay (the scheduled event time of an
event is the sum of the current simulation time and the delay), an
event type, and an event body and length. The body of an event may
contain any arbitrary data (e.g., a text string, a C++ object, or even
an array).

sim_hold

The primitive sim_hold is used to model a simulated delay that
can be interrupted by events. The arguments to sim_hold include a
simulation time delay that specifies the duration of the hold, a
predicate that specifies the application-defined conditions an event
must satisfy in order to interrupt the delay, and a reference to an
event structure in the calling entity's state in which Sim++ will return
the event, if any, that interrupted the simulated delay. sim_hold can
be interrupted by any future event that satisfies the given predicate
and whose event time is less than the end time of the simulated delay.
If interrupted, sim_hold returns the number of simulation time units
remaining of the original delay; otherwise, sim_hold returns 0.0
(i.e., the entire delay expired without interruption).

sim_wait

The primitive sim_wait is used to select a future event satisfying a
given predicate. The arguments to sim_wait include a predicate that
specifies the application-defined conditions an event must satisfy to
be selected from the calling entity's event set, and a reference to an
event structure in the calling entity's state in which Sim-++ will return
the selected event.

sim_select

The primitive sim_select is used to select a deferred event
satisfying a given predicate. The arguments to sim_select include a
predicate that specifies the application-defined conditions an event
must satisfy to be selected from the calling entity's event set, and a
reference to an event structure in the calling entity's state in which
Sim++ will return the selected event.

sim_waiting
The primitive sim_waiting is used to count deferred events

satisfying a given predicate. The argument to simTwaidng is a
predicate that specifies the application-defined conditions an event

151

must satisfy in order to be included in the event count returned by
sim_waiting.

7. TUTORIAL EXAMPLE:
A TRANSPORTATION SYSTEM

The rest of this paper presents a tutorial intended to give the
reader a brief overview of Sim++. A simple transportation system
simulation is used to introduce the basic simulation concepts and
facilities provided by Sim++.

Consider a transportation system linking two cities situated on
opposite sides of a river. A vital part of this transportation system is
a ferry system in which a single ferry travels between terminals
located on opposite sides of the river. Vehicles travel from a city to
the ferry terminal located on their side of the river where they wait for
the ferry to transport them to the terminal on the opposite shore.
Once across, the vehicles travel from the ferry terminal to the city on
that side of the river. This structure is illustrated in Figure 1.

For this example, the cities and the ferry system are modelled as
entities and the vehicles as events passed among these entities.
Alternatively, the vehicles could be modelled as entities as well, but
this approach has not been been adopted here.

7.1 Deriving New Entities

Sim++ provides a special class of C++ object called sim_entity
which serves as the base class from which new entity types are
derived. For each type of active component in a simulation, the user
derives an extension of class sim_entity. The ferry example requires
two such entity class declarations. In the examples that follow,
an ellipse (i.e., ...) is used, ungrammatically, to indicate that C++
code has been omitted for brevity. The symbol // is used in C++ to
denote the beginning of a comment that continues until the end of the
current line.

class city : public sim_entity {
public:
void body(); // main body of class city

’

class ferry : public sim_entity {
public:
void body(); // main body of class ferry

’

In the example shown above, class city and class ferry are both
derived as extensions of class sim_entity. Each entity class
declaration must include a function declaration for its main body.

The main body for a class derived from class sim_entity serves to
define the actions of that type of active component. When an entity
executes, its actions are defined by its main body. Skeletons of these
actions for city and ferry are shown below.

void city::body()
{ ... //inidalization
while (sim_clock() < Duration) {
... // schedule an event for the ferry
... // hold for inter-arrival time
... // receive unloaded vehicles

... // final actions

void ferry::body()
{ ... //initialization
while (sim_clock() < Duration) {
... // load vehicles waiting for transport
... // hold for crossing time
... // unload vehicles

... // final actions



G. Lomow and D. Baezner

West Shore

City W

Ferry System

East Shore

City E

Terminal

Figure 1. A Transportation System

In the code fragments shown above, the initialization of the two
entity types might involve, for example, the initialization of data
structures or variables required by each entity, as well as the
exchange of events between the cities and the ferry in order to
synchronize these entities at the beginning of the simulation.
Similarly, the final actions of each entity might again involve the
exchange of events to collect and summarize statistics.

7.2 Class City

The entity class declaration for class city is shown below.

class city : public sim_entity (
sim_time Duration;
sim_entity_id Ferry;
sim_normal_obj Driving;
sim_negexp_obj Next_vehicle;
sim_time Delay;
sim_event Ev;
int Count;

public:
void body();

’

In addition to the declaration of the main body for class city, this
entity class declaration includes several member variables which
constitute the state of this entity.

« sim_time Duration - length of the simulation.

- sim_entity_id Ferry - identifier of the entity modelling the ferry
system.

« sim_normal_obj Driving - a random number object used to
generate the times necessary to drive from the city to the ferry.

« sim_negexp_obj Next_vehicle - a random number object used
to generate the intervals between successive vehicles leaving
this city for the ferry.

« sim_time Delay - time remaining until the next car leaves this
city for the ferry.

« sim_event Ev - used to hold events representing cars arriving
from the ferry.

« int Count - maintains the number of cars that have arrived at
this city from the ferry.

152

The main body for class city is shown next.

void city::body()
{ ...//initialization
while (sim_clock() < Duration) {
// hold until time to generate next car
Delay = sim_hold(
Next_vehicle.sample(), SIM_ANY, Ev);
while (Delay > 0.0) (
// count vehicles arriving with ferry
Count = Count + 1;
// hold until ime to generate next car
Delay = sim_hold(Delay, SIM_ANY, Ev);

)
// schedule arrival of vehicle at ferry
sim_schedule(Ferry, Driving.sample());

... // final actions

The outermost while loop ensures that the city continues to
execute as long as its simulation time is less than the duration of the
simulation.

Each time through this loop, the city generates one new vehicle.
It does this in three steps: 1) it generates the delay until the next
vehicle will leave the city and waits for this amount of time to elapse;
2) if this interval is interrupted (i.e., Delay > 0.0), then the city
records the fact that a vehicle has arrived at this city after being
unloaded from the ferry and holds for whatever time is remaining
until the next vehicle is to be generated; and 3) eventually the hold
will complete without being interrupted and the city will schedule an
event for the ferry that represents the arrival of a vehicle at the ferry.

_The main body for city makes use of two random distribution
objects. The first is Driving which is used to generate the amount of
time required to drive from the city to the ferry. The second is
Next_vehicle which is used to generate the interarmval delay between
successive vehicles.

The calls to sim_hold use a special, pre-defined predicate value
called SIM_ANY. This predicate will match any event against which
it is compared (i.e., the hold may be interrupted by any future event
with an event time less than the end of the simulated delay).



A Tutorial Introduction to Object-Oriented Simulation and Sim-++T™

7.3 Class Ferry

The entity class declaration for class ferry is shown below.

class ferry : public sim_entity {

sim_time Duration;

int On_board;

sim_event Ev;

sim_entity_id East, West, Side;

sim_normal_obj Loading, Crossing,

Unloading, Driving;

public:

void body();

B

In addition to the declaration of the main body for class ferry, this
entity class declaraton includes several member variables which
constitute the state of this entity.

* sim_time Duration - length of simulation

« sim_entity_id East, West - identifiers of the entities modelling
the cities on the east and west shores of the river, respectively.

« sim_entity_id Side - identifier of the city on the side of the river
on which the ferry is currently waiting; initially the ferry is on
the east side of the river.

« int On_board - a count of the number of vehicles currently on
the ferry; initially the ferry is empty and On-board is 0.

» sim_normal_obj Loading, Crossing, Unloading, Driving -
random distribution objects for generating independent streams
of random numbers.

« sim_event Ev - used to hold events returned by Sim++.

The main body for class ferry is shown below.

ferry::body() ]

{ ... //initialization
On_board =0;
Side = East;

while (sim_clock() < Duration) {
// 1oad up to 4 vehicles o )
while (On_board < 4 && sim_waiting(sim_from_p(Side)))

sim_hold(Loading.sample(), SIM_NONE, Ev);
On_board = On_board + 1;
sim_select(sim_from_p(Side), Ev);

// cross to opposite shore
sim_hold(Crossing.sample(), SIM_NONE, Ev);
if (Side == East) // switch sides

Side = West;
else

Side = East;

// unload vehicles

while (On_board > 0) {
On_board = On_board - 1;
sim_hold(Unloading.sample(), SIM_NONE, Ev);
sim_schedule(Side, Driving.sample());

}

}
... // final actions

}

The outermost while loop ensures that the ferry continues to
operate as long as its simulation time is less than the duration of the
simulation. Inside of this loop the ferry engages in three distinct sets

of actions.

First, the ferry loads vehicles as long as it is not full and there are
vehicles waiting on this side of the river. Loading a vehicle involves
waiting for a random amount of time to elapse, incrementing the
count of vehicles on board the ferry, and removing the event
representing that vehicle from the event set.

Second, the ferry crosses the river. This involves waiting for a
random amount of time to elapse and then updating the value of
Side. The ferry uses Side to indicate which shore it is on. Side
alternates between the values of East and West, two entity identifier
variables that uniquely identify the two city entities.

Third, the ferry unloads each vehicle it has on board. This
involves decrementing the number of vehicles on the ferry, holding
for a random amount of time to elapse, and then scheduling an event
for the city on this side of the river announcing the arrival of this new
vehicle.

All calls to sim_hold in the ferry use a special, pre-defined
predicate value called SIM_NONE. This predicate will never match
any event against which it is compared (i.e., the hold cannot be
interrupted by any events). Therefore, all events scheduled for the
ferry by either city always become deferred before being selected. In
calls to sim_waiting and sim_select, the ferry uses a special type of
predicate called sim_from_p, passing it an entity identifier as its only
parameter. Predicates of this type will only match deferred events that
were scheduled by the entity identified in the parameter. This means
that if the ferry has reached the eastern shore, for example, it will
only load vehicles waiting on that shore; events scheduled by the city
of the opposite shore remain deferred.

153



