Proceedings of the 1990 Winter Simulation Conference
Osman Balci, Randall P. Sadowski, Richard E. Nance (eds.)

MODSIM II - A MODULAR, OBJECT-ORIENTED
LANGUAGE

Ron Belanger

CACI Products Company
3344 N. Torrey Pines Ct.
La Jolla, California 92037

ABSTRACT

MODSIM @I is an object-oriented, general purpose
programming language which was designed to work with both
sequential and parallel processors.

It is a compiled language which is available for most systems
including mainframes, work-stations and PC's. A research version
has been developed for use on parallel processors.

The syntax and structure of MODSIM II is based on that of
Modula-2. It has additional constructs for object types and
simulation.

The built-in object-oriented constructs of MODSIM II include
single and multiple inheritance, dynamic binding of objects,
polymorphism, data abstraction and information hiding. These
capabilities are reinforced by the modular program development
environment.

MODSIM 1II supports automated separate compilation and
importation of code from modules and libraries. This makes it ideal
for large projects.

Its built-in interactive, dynamic graphics allow convenient
display and manipulation of menus, charts, graphs and animated
results. The graphics editor allows users to interactively design
their own input and control menus, icons and charts without

programming.
1. INTRODUCTION

MODSIM II was specifically designed to support large
programming projects. It is a compiled, modular, object-oriented
language with multiple inheritance. = To protect the user's
investment in applications, MODSIM can be moved to new
computer systems as they become available.

Its syntax is based on that of Modula-2. Programmers trained
in Pascal, Modula-2 or Ada learn the language with ease. This
saves training costs and time.

Modularity in MODSIM II improves reliability and code
reusability. Objects and routines performing related functions can
be grouped into modules. These can be put into libraries for reuse
by other programs.

The optional simulation constructs are based on CACI's widely
used SIMSCRIPT II.5 programming language.

The portability of MODSIM II derives from the fact that its
compiler emits “C” code which is compiled, in turn, by each
computer's “C” compiler.

Finally, the integrated dynamic graphics of MODSIM II
substantially reduces the time and effort needed to display results
with animation and presentation graphics. It only takes a few
statements to make dynamic icons, histograms, clocks and meters
appear and change as the simulation runs.

MODSIM II is a complete, general purpose programming
language which is ideal for large software engineering projects. Its
features reduce design and coding effort, and improve reliability.
The MODSIM II compiler, runtime and graphics libraries are all
written in MODSIM II.

2. OBJECTS

An object is essentially an encapsulation of data and code. The
data describes the object's current status. The code describes what
the object does.

As an example of an object in MODSIM II, consider things

that move around, such as trucks and airplanes. This is the type

definition of a moving object:

TYPE

MovingObj =

OBJECT
position : LocTyp:
course [0 .. 3591,
speed : INTEGER;
TELL METHOD GoTo (IN dest : LocTyp,

IN spd : INTEGER);

ASK METHOD Stop;

END OBJECT;

MovingObj is an object type. It has three data fields which
hold information about its location, course and speed.

In addition it has two methods. Methods are an object's
procedures or routines which define its behavior. GoTo makes the
object go to the specified destination from its current position.
stop is used to set the object's speed to zero. Note that the above
object type declaration simply describes the state and methods of
MovingObj and serves as an interface to the object. The actual code
for the methods is supplied separately in the object declaration
block. For example:

OBJECT MovingOb3j;
TELL METHOD GoTo (IN dest : LocTyp,
IN spd : INTEGER);

VAR
travelTime : REAL;

BEGIN
travelTime := ... { compute time }
course := ...{ some trig calculation }
speed := spd;

WAIT DURATION travelTime
{ simulation time elapses here)
END WAIT;
speed := 0;
position.x := dest.x;
position.y := dest.y;
END METHOD;
ASK METHOD Stop;
BEGIN
speed := 0;
END METHOD;
END OBJECT;

{ update }
{ position }

ask methods are instantaneous with respect to simulation time.
When an ask method is invoked, the caller pauses and control
passes to the invoked ask method. When the invoked method
completes, the caller resumes. ask methods behave like a
procedure call but have direct access to all fields and methods of
that object. No simulation time can pass in an sk methed.
_ TELL methods are asynchronous. When the TELL method is
invoked, it is simply scheduled for execution, and the caller
immediately continues execution without waiting for the TELL
method to start. Simulation time can elapse in a TELL method.

A TELL method starts execution under control of the built-in

118

R. Belanger

simulation timing routine.

The data fields of an object instance are visible to all other
parts of a program and may be “read” using an AsSk statement.
Howfcver an object's fields may be changed only by the object
itself.

To use an object, we create an instance of that object type and
send it messages using ASK or TELL when we want it to do
something.

VAR

boat : MovingObj;
BEGIN

NEW (boat) ;

{ create an instance of a 'boat' object }
{ send a message }
TELL boat TO GoTo(aDock, 15);
{ "go to position 'aDock’ at speed 15" }
StartSimulation;
OUTPUT ("Final location is: ",
ASK boat position.x, " ",
ASK boat position.y):;

boat is a specific instance of the Movingobj type. MODSIM
II uses dynamic memory allocation for objects. Thus while the
object reference variable boat is declared in the var block, memory
for the object is not allocated until a NEW statement is executed.
DISPOSE (boat) releases memory during execution.

When the boat object gets the GoTo message, it does the
following:

Computes travel time from its present position to destination
Computes and stores the course

Stores the speed in its speed field

Waits for the elapsed simulation time it will take to travel to
the new destination

. Sets its new position in its position field

e o o o

At the end of the short simulation, when the boat reaches the
new location, the output statement asks the boat for its current
location and prints it.

3. INFORMATION HIDING

As we've seen, the fields of an object can be changed only by
the object itself. This is one level of information hiding. However
it is still normally possible for any program code to “read” the value
of an object's fields using an ask statement. We can achieve a
higher level of information hiding by declaring some of the fields to
be private. Private fields cannot be seen except by the object itself.
For example we can add a new field to the MovingObj type
definition and declare it to be private :

TYPE

MovingObj =

OBJECT
position : LocTyp;
course [0 .. 359];
speed : INTEGER;
TELL METHOD GoTo (IN dest : LocTyp,

IN spd : INTEGER);
ASK METHOD Stop;
PRIVATE
timeStartedmove : REAL;
END OBJECT;

timeStartedmove could used to calculate how far MovingObj
had travelled if it were interrupted before arriving at the destination.
No one outside of the Movingobj needs to know its value. It is
declared as a PRIVATE field to prevent access to it.

Methods can be PRIVATE, too. Methods which are private can
be invoked only by other methods of the object.

4. INHERITANCE

MODSIM 1II supports inheritance. With inheritance, new
object types can be defined in terms of existing object definitions.
While most languages only allow inheritance from one existing
object type, MODSIM II supports multiple inheritance.

Here is a vehicleobj type definition created from a
MovingOb3j:

VehicleObj = OBJECT (MovingOb3j)

payload : REAL;
TELL METHOD Load(IN amount : REAL);
TELL METHOD Unload(IN amount : REAL);

END OBJECT;

Vehicleobj inherits all of the fields and methods of a
MovingObj. In addition it adds a payload field and methods for
loading and unloading the vehicle.

4.1 Overriding Methods

If an inherited method is no longer appropriate for the newly
defined object, it can be overridden and replaced by a new one of
the same name. The old method can be invoked by the replacement
method as part of its behavior if desired.

We will define a new flying object type derived from the
vehicle object type. Its GoTo method needs to be more elaborate, so
we override the old one and provide a replacement:

TYPE
FlyingObj =
OBJECT (VehicleObj)
altitude : INTEGER;
OVERRIDE
TELL METHOD GoTo (IN dest : LocTyp,
IN spd : INTEGER);
END OBJECT;

We have also added a new field, altitude, and will provide
the replacement GoTo method in the object declaration block. All
other aspects of Flyingobj will remain the same as VehicleObj.

OBJECT FlyingObj;
TELL METHOD GoTo (IN dest: LocTyp,
IN spd: INTEGER);
VAR
departTime,
{ time spent in departure maneuvers }
approachTime : REAL;
{ time spent in arrival maneuvers }
BEGIN
. { compute departTime }
WAIT DURATION departTime
END WAIT;
{ invoke the old GoTo method }
INHERITED GoTo (airport, 350);
{ compute approachTime }
WAIT DURATION approachTime
END WAIT;
END METHOD;
END OBJECT;

The ovERRIDE indicates that the existing GoTo method will be
replaced by a different one for the new Flyingobj object type. In
this case the user “recycled” the existing vehicleobj GoTo method
by invoking it from the new one.

5. POLYMORPHISM

Note that we now have three different object types which have
a method called GoTo. The moving object type and vehicle object
type share the same original method, but the flying object type has
elaborated its Goro method to fit its particular behavior. We can
now TELL any of these objects to execute its GoTo method and it

119

MODSIM II — A Modular, Object-Oriented Language

will execute behavior appropriate to the particular object type. Asa
user we don't need to know or care that some of the object types
have supplied different or elaborated versions of the GoTo method.
This important and versatile object-oriented capability is known as
polymorphism — multiple behaviors invoked with the same
method name.

6. MODULAR DEVELOPMENT

Putting all program code into a single module is feasible but
not good practice. In big models it leads to unwieldy programs
which are difficult to maintain.

MODSIM 1I programs usually consist of a main module and
any number of supporting library modules. Each of these modules
can be separately compiled to ease the task of development and
maintenance.

Each library module typically contains declarations for a set of
related procedures and objects and the executable code which
constitutes the procedures and methods.

A library module actually consists of two modules, each of
which is stored in its own file and is compiled separately. One is
the definition module and the other is the implementation module.

The definition module is the interface between a library and the
rest of the program. If something is defined in this module, the rest
of the program can have access to it. There is no executable code
in a definition module. Things which can be defined include object,
record, array and enumerated types as well as procedures, variables
and constants.

The implementation module contains the actual code which
implements all procedures and methods of the library. It may also
include local declarations which are needed solely within that
library module.

The important point is that the definition module contains the
external interface of a library. All objects, procedures, variables
etc. mentioned in the definition module are available for import by
other modules. The implementation module contains all of the
code, but is not visible to other modules. This is another aspect of
MODSIM IT's data hiding and encapsulation capability.

Since any module can be separately compiled, maintenance is
both simplified and accelerated. As an example, we can put our
moving object into a library consisting of a definition module and
an implementation module and a main module which uses the

library.

DEFINITION MODULE MoveLib;

TYPE

MovingObj =

OBJECT
position : LocTyp;
course o .. 35);
speed : INTEGER;
TELL METHOD GoTo (IN dest : LocTyp,

IN spd : INTEGER);

ASK METHOD Stop;
END OBJECT { MovingObj };
END MODULE { Movelib }.

IMPLEMENTATION MODULE MoveLib;
OBJECT MovingObj;
TELL METHOD GoTo (IN dest: LocTyp,
IN spd: INTEGER);
VAR
travelTime : REAL;
BEGIN
travelTime := ... { compute time)
course := ...{ some trig calculation }
speed := spd;
WAIT DURATION travelTime
{ simulation time elapses here)

END WAIT;

speed := 0;

position.x := dest.x; { update}
position.y := dest.y; { position }

END METHOD { GoTo };

ASK METHOD Stop;
BEGIN
speed := 0;
END METHOD { Stop };
END OBJECT { MovingObj };
END MODULE { Movelib }.

To use the MovingObj in the MAIN MODULE, it is only necessary
t0 IMPORT it.

MAIN MODULE SampleProgram;
FROM MoveLib IMPORT MovingObj;

VAR
Car : MovingObj;
dest : LocTyp’
BEGIN
NEW (Car) ;

{ create an instance of Car object }
{ send a message }

TELL Car TO GoTo(dest, 40.0);
{ send a message }

StartSimulation;
OUTPUT ("Final location is: ",
ASK Car x, " ", ASK Car y):

END MODULE { SampleProgram }.

7. DISCRETE EVENT SIMULATION & PROCESSES

Simulation is supported directly, as in SIMSCRIPT ILS, by
built-in language constructs. The warT statement is used to make
simulated time pass. Here is an example using the Load method of
VehicleObj.

TELL METHOD Load (IN amount : REAL);
CONST

rate = 0.25; { seconds per passenger }
VAR

loadingTime: REAL;
BEGIN

loadingTime := amount / rate;

WAIT DURATION loadingTime
OUTPUT ("Loading completed");
ON INTERRUPT
OUTPUT ("Loading NOT completed");
END WAIT;
END METHOD { Load };

The WAIT DURATION statement causes the method to suspend
execution for the indicated amount of simulation time. Once the
wait is started, control returns to the scheduler which then starts
execution of the next most imminent process.

When the warr is complete, control returns to this method at
the statement after the waAIT.

Any of the methods of an object which are waiting for
completion can be interrupted. If the method receives an interrupt
command, it executes the part of the waIT statement after oN
INTERRUPT,

Two. other forms of the warT statement let methods
synchronize themselves.

WAIT FOR Flight217 TO Load(324.0);
END WAIT;

This statement schedules the Load method of F1ight217 but
does not allow the invoking code to proceed with execution until
the Load method has completed. Note that this is different from a
normal TELL invocation which proceeds without waiting.

. The other form of the waIT statement uses the built-in trigger
object to synchronize methods.

WAIT FOR ControlTowerLight TO Fire;

120

R. Belanger

END WAIT;

This statement makes Flight217 wait for a signal from the
ControlTowerLight before it moves. ControlrowerLight is a
trigger object which has a TELL method called Trigger.

TELL ControlTowerLight TO Trigger;

The Trigger method releases all waiting methods when it is
executed.

8. THE DEVELOPMENT ENVIRONMENT

Transporting programs from one computer system to another
has often been a problem. Frequently programs have to be
extensively rewritten to eliminate machine dependencies.
MODSIM 1I avoids this problem. It was designed for portability.

MODSIM II compiles its source code to C. The MODSIM II
compilation manager then compiles and links the C code to a
standalone executable.

MODSIM II's compilation manager was designed to facilitate
project management of large computer programs consisting of
many separate modules and libraries. It manages separate
compilation of MODSIM II programs consisting of multiple
modules by determining which modules have been edited since the
last compilation and then recompiling only those edited modules
and any modules which depend on them. This process is
accomplished automatically without need for “make” or project
files to describe the process.

The compilation manager also automatically handles the
integration of modules written directly in C into MODSIM I
programs. This permits direct interface to the large base of existing
software libraries.

9. DYNAMIC GRAPHICS

Graphically displaying results has typically been a tedious
programming task. To make matters worse, programs which take
advantage of graphics are usually not portable. MODSIM 1I solves
both problems. The programming task is made simpler through
MODSIM's interface to the SIMGRAPHICS II graphics editor and
environment. Since SIMGRAPHICS 1I is supported in a variety of

environments, the MODSIM II programs which use
SIMGRAPHICS 11 are portable.
SIMGRAPHICS II has three major capabilities:
. Animated graphics tied to objects in a program
. Dynamic or static graphs tied to variables and statistics in a
program '
. Interactive input menus in a contemporary windowed style

Animated icons, graphs and input menus are all interactively
edited using the SIMGRAPHICS 1I editor. These are then tied to
existing objects and variables in the user's program. This greatly
simplifies the task of creating a graphical user interface. The
amount of coding for graphics is drastically reduced. .

Figure 1 shows some of the types of presentation graphics
which can be created in the editor and tied to variables and
structures in a MODSIM 1I program. The graphs can be updated
dynamically as the value of variables in the program change or they
can be displayed statically under programmer control.

Trace Plot

Clock

X-axis

. 2-D Plot @
%

Dial

o 50 1
X-nxis
S DpowSen
10
Pie Chart 8
6
4
2
B Slice 1 33%) Level Meter
Slice 2 (33%)
M Slice 3 (33%)

Figure 1. Presentation Graphics

The trace plot will show the value of a variable over time as
simulation time elapses in a model. It will either rescale to show all
information since program startup or keep a sliding window
featuring only recent information. The 2-D plot is particularly
useful in displaying histograms which are collected by MODSIM
IT's automated statistics gathering facilities.

Usually these graphs are used in a layout which features a
background with icons moving to present objects in the model. The
graphs present updated information about some aspect of the
model's behavior.

Figure 2 shows a screen from a communications satellite
model. The satellites are icons which move around the earth. The
line between two satellites indicates that a message is being passed.
At the top left is a trace plot of message rate versus time. At top
right is a level meter showing the current mean message rate.
Finally, the clock at the bottom shows that we are 31 seconds into
the simulation.

PlatformModel

Nean nessage rate

Figure 2. Satellite Communication Simulation

An important side benefit of the editor is that the appearance of
these objects can be edited without recompiling or changing
program code. This facilitates both design and subsequent
maintenance as well.

121

MODSIM II — A Modular, Object-Oriented Language

10. PARALLEL PROCESSING

Parallel computers are now available. They promise
substantial improvements in speed, especially for asynchronous
programs, such as many discrete process simulations.

The object-oriented design of MODSIM II inherently works
with these parallel processors. Because each object is self-
contained, the operating system can assign it to any available
processor. It will then execute independently of other objects.

The difficulty in exploiting these machines has been that
objects executing on different processors must sometimes
synchronize their activities. This is a problem when each has its
own simulation clock running on its own schedule. The operating
system, JPL's Time Warp in MODSIM II's case, has the task of
synchronizing the execution of objects on different processors.

Preliminary results are encouraging. With appropriate
programming techniques, it appears that the speed up can approach
1/2 the number of processors. That is, using 20 processors can lead
to a reduction of execution time in the vicinity of 8 or 9 times.

Although initial results have been encouraging, the parallel
version of MODSIM is still a research project. Considerable work
stll needs to be done before it can join the production version of
MODSIM II in the commercial market.

11. BENEFITS OF MODSIM I

Any high order language is designed to reduce the effort
needed to program a set of problems.

The object-oriented and modular features of MODSIM II
substantially reduce the time and effort needed to write programs.

. Objects improve reliability because they encapsulate data
fields and provide a disciplined interface to these fields.

. Development time is reduced because code can be put in
libraries and reused.

. Modules permit step-wise development, particularly by
separating the definition module from the implementation
module.

. Inheritance allows programmers to build on top or previous

effort instead of starting from scratch each time. It is no
longer necessary to take it “as is” or leave it in the software
library. The programmer can take it then modify it to better
suit the problem.

The integrated dynamic graphics substantially reduce the time
and effort needed to build menus and display results. The graphics
are portable.

The investment in programming
MODSIM II runs on most computer types.

12. CONCLUSIONS

is preserved because

MODSIM 1II is a robust, general purpose programming
language with built-in graphics.

Its features substantially reduce the time and effort required to
write and validate computer programs.

ACKNOWLEDGEMENTS

Our special thanks to Mr. Harry Jones of the U.S. Army Model
Improvement Management Office for his support.

REFERENCES

Belanger, R., B. Donovan, K. Morse and D. Rockower (1990),
MODSIM II Reference Manual - Revision 6, CACI Products
Company, La Jolla, CA.

Belanger, R., and A. Mullamey (1990), MODSIM II Tutorial -
Revision 8, CACI Products Company, La Jolla, CA.

Russell, E. C. (1983), Building Simulation Models with SIMSCRIPT
11.5, CACI Products Company, Los Angeles, CA.

122

