Proceedings of the 1990 Winter Simulation Conference
Osman Balci, Randall P. Sadowski, Richard E. Nance (eds.)

PROOF: THE GENERAL PURPOSE ANIMATOR

Nancy J. Earle
Daniel T. Brunner
James O. Henriksen

Wolverine Software Corporation
4115 Annandale Road
Annandale, Virginia 22003-2500, USA

ABSTRACT

Proof™, developed by Wolverine Software Corporation, is a
high quality, PC-based animation and presentation package. Proof
cuns on any standard 286 or better machine with a math coprocessor
and EGA or VGA graphics card. Because it is a post-processing
animator, Proof provides smooth motion and portability. An open
architecture makes Proof compatible with most popular simulation
packages.

1. INTRODUCTION

Animation is no longer an afterthought to simulation projects.
As competition for project funding becomes more intense,
presentation of results becomes more important. During all phases of
the project, animation is a critical tool in presenting simulation results
to management and clients.

Animation plays an important part in design as well as
presentation. It provides a common ground for communication
between the designers and the modeler. In the past, the design team
and the modelers have worked separately. This methodology has a
built-in pitfall in that as the design evolves, the animation must
change. Extensive animation changes used to require considerable
time. A design team usually cannot stop development while waiting
for animation updates.

With this in mind, Wolverine Software Corporation developed
an animation software package called Proof, which helps link design,
simulation and presentation. Proof has been designed as a high
quality animation and presentation package, with a focus on smooth
motion, portability, and ease of use.

2. OVERVIEW OF FEATURES

Proof is a PC-based product. The minimum hardware is a 286
machine with a math coprocessor and either an EGA or VGA
display. This common hardware allows Proof to be portable, which
is especially advantageous when projects are presented off-site.

Proof is a post-processing animation package. To run Proof,
two files must exist: the layout file and the trace file. This means
that the simulation model must produce a trace file which drives the
animation; therefore, the size of the simulation model is irrelevant.
The model can be run on a mainframe or workstation, and the
resulting trace file can be downloaded onto the PC. In animations
that run concurrently, the user is limited to the constraints of the
particular hardware type on which the simulation is running.

Post-processing has other benefits. First, animations can be
viewed at high speeds while maintaining smooth motion. An added
benefit is the ability to fast-forward to a particular simulated time.
This eliminates waiting for the system to “warm up.” Finally, post-
processing allows Proof to run in “demonstration mode.”
Professional-looking static slides can be created and interwoven with
animation segments and shown on the computer screen.

Proof has an open architecture. This, along with the post-
processor feature, makes Proof compatible with many popular
simulation software packages. Actually, simulation-specific software
is not necessarily needed to drive the animation. If the software used
has file I/O that is capable of producing an ASCII file, it can produce
a Proof trace file.

Proof has a CAD-like geometric data structure. Changing the
orientation or scale of an object, static or moving, will not affect the
quality of its appearance on screen.

Although it is not a full-featured CAD program, Proof has a
mouse driven, CAD-like drawing mode. Through a series of pull-
down menus, the layout and object definitions can be created using a
series of simple and complex primitives. The layout file can also be
created by reading existing CAD layouts into Proof. This CAD link
is achieved through Proof’s open architecture. )

Proof’s drawing mode has been developed to easily handle a
wide variety of systems. This means that diverse applications, such
as network communications and health care systems, can be handled
as easily as complex material handling systems. i i

Proof can generate sounds, adding a new dimension to
animation. Often, animations show many simultaneous events,
making it difficult to draw attention to a specific event. Sound can
signal machine downtimes, shift changes, or any event that the
modeler would like to monitor. This can be a beneficial addition to
model debugging, and an aid in system design and presentation.

3. PROOF FEATURES - A DETAILED LOOK
3.1 Hardware Requirements

The decision was made early to operate Proof 1.0 on IBM or
compatible PCs, primarily because of the large installed base of
color-capable systems.

MS-DOS was chosen because it behaves as a single-tasking
environment (even under some third-party multitasking software,
such as DESQview). This enables Proof to take total control of the
CPU. The result is an animation with smooth motion. Also, new
simulation packages, such as GPSS/H 386, have been developed that
take advantage of a 386- or 486-based machine’s faster 32-bit
architecture and large memory address space while still running
under MS-DOS. This means that the MS-DOS PC can handle large
simulation models. Using Proof, the user can do any simulation and
the animation on one machine.

All graphics software is numerically intensive. This is why
Proof requires a math coprocessor, a separate chip that must be
installed in an 80286- or 80386-based PC running Proof. Potential
buyers of high-end PCs should note that the 80486 chip has its math
coprocessing capabilities built-in.

The graphics hardware of the PC suits the needs of Proof.
There were a few choices, the most obvious being EGA, VGA, or
both. Proof supports both at a resolution of 640 x 350.

In Proof, one pixel needs four bits (16 colors at once), and four
times 640 times 350 (the screen dimensions, in pixels) is 896,000
bits, or 112K bytes. Given the 256K of video memory found on
nearly all EGA cards, Proof can double buffer — that is, improve the
appearance of the animation by keeping two copies of the screen in
video memory: displaying one while updating the other. Double
buffering remains a very important quality.

We considered adding the VGA-standard 640 x 480 mode to
Proof’s VGA support, but a standard VGA card has only 256K of
memory. At 640 by 480 by 16 colors, one screenful of information
takes up over 150K, making double buffering impossible.

Recently, we have been evaluating “extended VGA” cards,
which offer 512K of video memory (usually as an option). We are
considering supporting one or more manufacturers’ 512K VGA
cards at resolutions up to 800 by 600 pixels of resolution. Also, we
are carefully studying the rapidly developing 8514/A, TIGA, and
“Super VGA” display options, all of which offer resolution at or
allbgvef ;024fby 768. However, these will not be available in Release

.0 of Proof.

106



N.J. Earle, D.T. Brunner, and J.O. Henriksen

3.2 Post-) ocessing

Post prc essing means that the simulation runs first, then the
information 1 ‘ovided by the results drives the animation. Some
animation pack 1ges run concurrently. What are the characteristics of
each type?

Concurrent animation has one major benefit. It is possible
with most concurrently running simulation/animation software to
make certain limited types of changes to the system and watch the
impact. However, many types of changes (such as scheduling
changes) are difficult or impossible to animate without advance work
by the modeler.

Concurrent animation has one major pitfall. It is completely
dependent on the execution of the simulation model. This can be
very tedious when the software is under consistent use, especially if
the underlying simulation software is not particularly fast at
executing.

We have sumrnarized the difference between Proof and
concurrent packages in Table 1 below:

Table 1.
Existing
Concurrent
Animators Proof
Ability to change the simulation Fair Limited
and immediately see results
Simulation performance Variable Excellent
(execution speed)
Animation performance (speed, Poor Excellent
smooth motion)
Ability to “fast forward” and Limited Good
“rewind” the animation
Ability to run models and animations None Excellent

on separate computers

Post-processing adds to the portability of Proof. The user need
only take the Proof software on site, and the target machine need not
be equipped to handle the simulation software.

Finally, the post-processing approach permits the
implementation of a demonstration mode. In this mode, the analyst
can create complete “bullet-proof” yet interactive presentations that
can be viewed by others. The “viewer” could be anyone with or
without any simulation experience.

3.3 Demonstration Mode

Proof has a fully equipped demonstration mode. This provides
the ability to create slides made up of words, objects, or even frozen
and dynamic views of the animation. These slides can be linked
together to produce a polished presentation. Eliminated are the
awkward transitions from overhead transparencies to computer
screen within a presentation. The user can choose to show only
areas of interest within the animation, and thus draw the viewer’s
attention to particular aspects of the simulation.

3.4 Open Architecture

Some animation software is integrated into a simulation language
or package. In order to use the animation, the user must go through
the process of building a simulation model using the integrated tool.
Others are post-processing, but the specifications of the trace file are
not available to the user. )

Proof has an open architecture; therefore, it can be used in a
wide variety of contexts. The most dramatic impact of Proof’s open
architecture will initially be the quick adoption of Proof as the
animation engine of choice for people using simulation software
other than Wolverine Software’s own GPSS/H.

107

It is also possible to build graphical depictions of systems that
have not been simulated, or to build a new simulation/animation
package around the Proof graphics engine. Proof can also be used
by non-engineers as presentation software, even competing with
established PC software packages. These capabilities open some
wide doors for Proof and its users.

The architecture of Proof consists of a very simple, record-
oriented animation language with English-like commands. A typical
animation has a layout file and an animation trace file. The trace file
is used for recording the time-dependent information that controls the
animation activity. The layout file is used to hold static geometry
information and initialization commands. Both files are populated
with printable ASCII characters that form commands and data for the
animation engine. Most of the commands can be used in either file.

Here are a few examples of the easy-to-use commands:

Drawing Commands Animation Commands
LINE SET...COLOR...
ARC MOVE
POLYGON PLACE..ON..AT..
DEFINE OBJECT CREATE
DEFINE PATH TIME

DESTROY

Normally, the commands will be used repeatedly to comprise the
animation trace file. This process will usually be automated. For
simulation, this means that the model will write commands such as
SET COLOR into the file. For non-simulation applications such as
presentation graphics, the process can be similarly automated.

3.5 Graphics Data Structure

There were two choices for the graphics data structure: pixel-
based or vector-based. A CAD-like, vector-based structure is used in
Proof, since this allows the user to rotate an object, pan, and zoom in
or out without losing the integrity of the object. In contrast, zooming
in with a pixel-based system makes the object’s edges appear jagged.

The power of a CAD-like data structure provides benefits in two
areas. The first is the versatility of the available drawing tools. The
second is the flexibility with which the display can be manipulated.
Proof’s CAD-like architecture allows total control of the viewing
environment. This is unprecedented among PC simulation
animators. The geometric data structure allows complete panning,
zooming, rotating, and changes of viewpoint.

Panning allows the user to use the display screen as a “window”
to a much larger “canvas” of animation activity. The size of the
animation layout is virtually unlimited because of the Proof
coordinate system.

Zooming allows the user to view the running animation with a
microscope or a “macroscope.” The viewer can either shrink the
layout down so that it is all visible on one screen, or enlarge the
images until main memory for storing ready-made video bitmaps
becomes scarce. (This is usually quite a large zoom factor.)

Rotating pivots the viewing point about an axis. The axis is
always located at the current screen center.

Changes of viewpoint — “isometric” vs. “orthogonal” viewing
mode — allow the viewer to shift the vantage point from directly
over the layout so that it becomes above and off to one corner. This
is done without perspective, and only in two dimensions, but still
adds depth to the viewing process. Many layouts give a convincing
illusion of more than two dimensions in this mode.

Complementing the graphics data structure is a CAD-like
drawing mode for creating the layout file. Although Proof is
primarily two dimensional, it does support the concept of layers.
Initial versions of Proof support two layers: the layout/background
layer and the object layer. Objects can move freely over the layout
and background without disrupting it on the screen. Additional
layers will probably not be available during animation runs until
better graphics hardware becomes available, although more layers
might be added to the graphics database before that time. (Layers, in
a CAD database, allow for selective display and editing of different
subsystems while in draw mode.) Using a series of menus and a
mouse, the static layout, dynamic objects, and paths can be created.



Proof: The General Purpose Animator

Proof is the first animation package that enables a two-way CAD
interface via the DXF file format. This separate utility makes it
possible to read in an existing DXF file to create the background
portion of the Proof layout file. This saves time in completing the
animation. Then, if changes are made in the animation layout, the
utility can produce an updated DXF file (comprised only of the
subset of CAD primitives available in Proof). The project design
team can now rely on the simulation and animation as a timely and
dependable design check. If changes are needed, they can first be
tested with the simulation. Once a final design is achieved, the
updated animation will produce the final layout in a file that can then
be read into nearly any PC CAD system.

3.6 Animation Primitives

Any animation software needs basic commands or features that
permit dynamically changing an object’s shape, color, or location.
We refer to these features in Proof as “animation primitives.”

There are two types of primitives: simple and complex. Simple
primitives are flexible and low-level. They allow Proof to present
moving images of just about anything. Complex or higher level
primitives allow Proof to animate certain sophisticated events with
surprising ease.

Animation primitives are closely interrelated with the graphics
data structure of Proof. The most important concepts are the Object
Class and the Object.

An Object Class is a geometric description of some type of
object, such as an Automated Guided Vehicle (AGV) in a material
handling animation. An automobile traffic model might have five
different Object Classes: Cars, Trucks, Buses, Campers, and
Motorcycles.

An Object is a subset of an Object Class. Expanding on the
traffic model mentioned above, one could have northbound and
southbound cars; cars making continuous turning movements; red,
green, or beige cars; large cars and small cars. Each of these cars is
an Object, based on the single geometric description of a car. There
can be an arbitrary number of “Car” Objects in the system at once,
but there need be only one “Car” Object Class.

All of the motion and color changing primitives in Proof operate
on Objects. Note that we have not discussed background drawing
(e.g. plant floor layout). Most layouts will be drawn directly on the
screen and their components cannot move or change color.
However, if movement or color change is desired, then the
components can be made into Objects.

3.7 Making Things Happen

The simple things the user can do with an Object include:
CREATE or DESTROY, PLACE (making it visible), SET COLOR
and SET VELOCITY, and MOVE (causing the Object to move
smoothly from points A to B.) Object movement can also be
achieved via a Path.

The more complicated things one can do with an Object involve
Paths. Actually, using Paths is very simple, because Proof does all
the work. That is why we refer to Paths as a higher level primitive.
'[Il;hethr]nost commonly used Path command is PLACE [object] ON

ath].

A Path is a data structure composed of an arbitrary number of
line and/or arc segments. Once an Object is placed on a Path, it will
follow the Path until it comes to rest at the end. Paths provide
outstanding power in response to a single command.

A variant is the Accumulating Path, which offers even more
power. On an Accumulating Path, Proof reflects physical reality by
allowing objects to queue if there is a blockage. This often makes a
simulation model of the system much simpler to construct. A
surprising number of systems behave in this manner, from certain
types of conveyors to supermarket checkout lanes.

Paths play an especially important part in transportation and
material handling animations. In an AGV system, for instance, the
AGY travels from control point to control point. On the simulation
side, routing and distance data are needed in the model. A design
change, such as adding another control point between two existing
points, usually requires an updated version of each matrix. Without
Proof, these matrices can be very time consuming to create and edit.

Proof has made life simpler by automatically maintaining
distance information for each Path and by allowing the person
creating the animation to specify routings over multiple Paths. This
enables Proof to write travel sequences and the distances between
consecutive points to data files that can be read by the simulation
software when the model executes. Now, when a change is made on
the Paths in the layout, the means are provided for automatically
updating the simulation model. This feature, still under
development, may not be available in Proof 1.0.

3.8 Smooth Motion

Smooth motion was a primary design goal for Proof, and it has
been achieved with stunning success. In most media, it is necessary
to create and recreate static images rapidly in order to create the
illusion of motion. This is, of course, the principle behind motion
pictures and television as well as cartoon animation.

In the case of a computer and raster-based CRT screen, or the
equivalent raster-based video game, the image is created as a set of
discrete pixels represented in video memory. For these applications,
the pixel representation must be either recreated continuously at
different locations, or saved and “blitted” to different locations on the
screen. This process must be repeated many times per second, or the
motion will appear jerky. )

How fast is fast enough? Motion pictures run at something like
20 frames per second, and standard television at about 30 frames.
Simulation animation software available in the 1980s was plagued by
slow frame rates. Due to the discreteness of the pixels, computer
displays of artificially created objects can require even higher frame
rates than television, or the motion will appear to buzz or jerk. The
frame rates on much of the available software have been on the order
of 10 frames per second or less, while Proof has starting rates of 60
to 70 frames per second

What happens when Proof cannot keep up? With other
animation software, the apparent speed of objects moving across the
screen generally diminishes in such circumstances. With Proof, a
constant (though user-adjustable) ratio of animated time to “wall
clock” time is always maintained, even when the model cycles
between being congested and not-so-busy. This ratio is maintained
by reducing the frame rate and increasing the increment by which
each object travels. Proof performs this adjustment continuously.
With Proof’s high starting frame rates, the effect of reducing the
frame rate remains visually acceptable.

3.9 Reasonable Cost

Wolverine Software Corporation is committed to driving the
performance of PC animation software up while driving the price
down. That is why Proof is more affordable than other existing
products.

4. SUMMARY

Animation is a powerful addition to any simulation effort.. An
animation benefits the modeler in verification, validation, and
presentation of results (especially to an audience not familiar with
simulation).

Simulation and animation technology is improving. Wolverine
Software Corporation is contributing to this improvement by
providing an innovative animation package called Proof. This
general purpose animator boasts many important features. Among
these features are portability, smooth motion, an open architecture, a
CAD-like structure and drawing mode, the ability to create
presentations, and affordability.

REFERENCES

Brunner, D. (1990), Alpha Proof Documentation, Wolverine
Software Corporation, Annandale, Virginia.

Brunner, D. and J.O. Henriksen, “A General Purpose Animator,” In
Proceedings of the 1989 Winter Simulation Conference, E.A.
MacNair, K.J. Musselman, and P. Heidelberger, Eds. IEEE,
Piscataway, NJ, 249-253.

108



