Proceedings of the 1990 Winter Simulation Conference
Osman Balci, Randall P. Sadowski, Richard E. Nance (eds.)

SIMULATION AND ANIMATION WITH SIMNET II AND ISES

Hamdy A. Taha

Department of Industrial Engineering

R. B. Taylor

Department of Industrial Engineering

Nazar A. Younis

Department of Industrial Engineering

4207 Bell Engineering Center 118 Covell Hall 1983 East 24th St.
University of Arkansas Oregon State University Cleveland State University
Fayetteville, Arkansas 72701 Corvallis, Oregon 97331 Cleveland, Ohio 44115

ABSTRACT

SIMNET 1I is a network-based discrete simulation language
that utilizes only four nodes: a source, a queue, a facility, and an
auxiliary. Special routing of transactions among the four nodes is
affected by using seven types of branches and the so-called special
assignments. SIMNET II offers flexible computational
capabilities at a level equal to FORTRAN with access to all
internal simulation data and files. The computational and model-
ing power of the language eliminates the need for the use of
external FORTRAN or C inserts. The companion system ISES
combines input, no-programming animation, debugging, and ex-
ecution in a user-friendly interactive environment.

1. INTRODUCTION

SIMNET 11 is an enhanced version of the discrete simulation
language SIMNET [Taha, 1988]. The new version adds important
features that greatly enhance the modeling power of the language.
Additionally, all the syntax restrictions regarding the names of the
arithmetic variables, the structure of function arguments and ar-
rays-subscripts have been removed. The new enhancement
eliminates the need to use external FORTRAN or C subroutines
which are used to complement the modeling logic of other lan-
guages.

Some significant features of SIMNET Il include the following:

1. SIMNET II is totally portable among the mainframe, mini,
and micro computer versions.

2. SIMNET II uses four (suggestive) nodes only: a source, a
queue, a facility, and an auxiliary, which describe the main
operations of the queueing orientation of (most) discrete
simulation systems. All the remaining modeling functions,
which are accomplished in other languages through the use
of special blocks or nodes, are accounted for in SIMNET
II by using special assignments. This innovative design
approach allows these assignments to be used within the
context of IF-THEN-ENDIF and WHEN-DO-
ENDWHEN, which greatly enhances their modeling
power.

3. SIMNET Il is totally interactive both during debugging and
execution and for all versions on the mainframe, mini and
Mmicro computer.

4, SIMNET Il utilizes user-specified descriptive names for the
attributes and arithmetic variables, which increases the
readability of the model.

5. SIMNET II uses PROCs to model complex repetitive seg-
ments conveniently.

6. SIMNET 1II has a built-in experimental frame that allows
the user to make runs with different initial data in a single
simulation session.

7.SIMNET Il offers the unique feature of allowing the estima-
tion of the transient period through interactive graphics,
following which the user can delete the transient period
and then specify the subinterval or the replication method
as a basis for collecting global statistics, all without leaving
the interactive mode of execution.

99

8. The ISES animation system is a total environment that
includes the input, execution, animation, and output
phases of SIMNET II ISES creates animation models
without any programming effort on the part of the user.

The remainder of the paper is devoted to presenting the

highlights of SIMNET 1I and its companion environment ISES.

2. DESIGN APPROACH OF SIMNET 11

The design of SIMNET II is based on the observation that
discrete simulation deals primarily with queueing systems. Within
this framework, SIMNET II utilizes three suggestive nodes: a
source from which transactions arrive, a queue where transactions
may wait, and a facility where transactions are serviced. A fourth
node, called auxiliary, is added to enhance the modeling
capabilities of the language.

Nodes in SIMNET II are linked by different types of branches
that specify the path to be taken by each transaction. As transac-
tions traverse branches, they can execute special assignments that
control the flow of transactions anywhere in the network.
Equivalent modeling functions are achieved in other languages by
the use of special blocks or nodes. The use of special assignments
to replace the special blocks is conceptually superior because
these assignments are directly amenable for use within the condi-
tional IF-THEN-ENDIF statements, which greatly enhances their
modeling power. Another advantage of the use of the special
assignments is that the modeling capabilities can be extended
simply by adding new assignments, which will maintain the basic
four-node structure of the language unchanged.

3. SIMNET Il NODES

Figure 1 depicts the symbolic representation of the SIMNET
11 four nodes. Each node includes a number of compartments that
house the information of the nodes. This information includes two
distinct types of data:
1. Those pertaining to the internal operation of the node, e.g.,
service time in a facility or maximum queue size.
2. Those related to the use of resources in the model and the
"select" routing of transactions among nodes.

Source Queue
Facility Auxiliary

Figure 1. SIMNET II Nodes

H.A. Taha, R.B. Taylor, and N.A. Younis

Each of these data elements is placed in one of several posi-
tional fields associated with the node statements. Specifically, a
node statement is given as follows:

node identifier; field 1, field 2,....,field m; * T:

The node identifier consists of a user-defined name followed
by *S, *Q, *F, or *A to indicate the type of the node as a source,
queue, facility, or auxiliary. Each of the fields is then used to
represent a specific data element of the node. The last field (*T)
is used to route the transaction to succeeding nodes. Figure 2 gives
the SIMNET II model for the multiple-server queueing model.
Transactions arrive from source ARIV every EX(5) minutes (ex-
ponential with mean S minutes). Arriving transactions may wait in
queue LINE if necessary. Service is performed in facility SRVR
where the service time is EX(4) minutes. After the service is
completed, the transaction is TERMinated. Termination occurs
by using the *T field of facility SRVR.

$BEGIN:

ARIV *S; EX(S)

LINE *Q:

SRVR *F;;EX(4);3;*TERM:
$END:

Figure 2. Single Server Model

We can illustrate the use of resources in SIMNET II by
embellishing the example in Figure 2. Suppose that the model
represents a manufacturing situation in which the item is inspected
prior to being processed in a milling machine. In this case, we
replace facility SRVR in Figure 2 with two tandem facilities named
INSPECT and PROCESS. It is assumed that both inspections and
processing are carried out by a single operator.

Figure 3 gives the new model. Facilities INSPECT and
PROCESS use the same resource OPR which is acquired at the
start of INSPECT and released after the completion of PROCESS
as shown in field 5 of both facilities. The code OPR(1,0,0,0) at
INSPECT indicates that one unit of resource OPR is acquired in
zero transit time with no units returned. At PROCESS, the code
OPR(0,0,1,0) signifies that the facility does not acquire OPR but
will release it back in zero transit time. In general, resources can
be defined to represent priority classes with and without preemp-

tion privileges.
$RESOURCES: OPR; (INSPECT, PROCESS):
$BEGIN
ARIV *S; EX(S):
LINE *Q:
INSPECT *F;; EX(5);/5/0PR(1,0,0,0):
PROCESS *F;; EX(2.5)y/5/0OPR(0,0,1,0);*TERM
$END:

Figure 3. Use of Resources

The use of the resource field in Figure 3 demonstrates how a
field of a facility is used to accomplish what is normally achieved
in other languages by using special blocks or nodes. In essence, a
node in SIMNET II is designed to be self contained in the sense
that each node’s statement includes all the information needed to
process a transaction through the node. Naturally, if certain data
are not needed in a node, we simply default its associated field.

4. SIMNET I1 BRANCHES

SIMNET II uses seven types of branches to link nodes:
1. always (A)
2. select (S)
3. conditional (C)
4. probabilistic (P)
5. dependent (D)
6. exclusive (E)
7. last choice (L)

100

Each type branch routes transactions among nodes in a
specific manner. For example, an A-branch will always link two
nodes together, whereas a P-branch will link nodes according to
preset probabilities. An L-branch is taken only when no other
branches from the node can be taken. SIMNET II allows any
number of branches (of any type) to emanate from the same node.

As transactions traverse a branch, they can execute two types
of assignments:

1. arithmetic
2. special

The first type is used to effect changes in the model’s variables.
The second type, on the other hand, performs the important
modeling function of controlling the flow of other transactions
anywhere in the network.

4.1 Arithmetic Assignment

In SIMNET II, user defined variables can be nonsubscripted
or in the form of single and double-subscripted arrays. The sub-
scripted arrays are dimensioned using the $DIMENSION state-
ment. The nonsubscripted variables, on the other hand, are simply
used directly in the assignments. The following example illustrates
the use of both variables:

$DIMENSION Sample(20),Table (10,2)

SUM =SUM + (Sample(J)-1)*Table(K,L)
The variables Sample and Table are subscripted whereas the
variables SUM, J, K, and L are nonsubscripted. The rules govern-

ing the construction of mathematical expressions are the same as
in FORTRAN.

SIMNET II also allows the use of the conditional statements
IF-THEN-ELSE-ENDIF and WHEN-DO-ENDWHEN. Addi-
tionally, loops can be implemented using FOR-NEXT constructs.
The following example illustrates the use of these statements.

IF,SUM =K, THEN,
FOR,I=1TO,N,DO,
WHEN,I=3,DO,
LOOP =CONTINUE,
ENDWHEN,
Sample(I) = Sample(I)**2,
NEXT,
ELSE,
SUM=SUM+1,
ENDIF

Notice that the assignment LOOP = CONTINUE is used to skip
to the end of the loop. A companion assignment LOOP = BREAK
can be used to cancel the remainder of the loop altogether.

4.2 Special Assignments

SII\;{NFET Il special assignments assume the simple form
where A represents the result of implementing an action B. These
assignments are designed to control the flow of transactions
anywhere in the network. Their modeling power is enhanced by
the fact that they can be implemented within the context of IF-
ENDIF, WHEN-ENDWHEN, and FOR-NEXT statements. As
an illustration, consider the following statement:

IF,COUNT(NN) = 100,THEN,SS = SUSPEND,ENDIF

Ihe statement deals with two nodes named NN and SS, where SS
1s a source node. The statement stipulates that if 100 transactions

have passed through node NN, then source SS must stop creations
instantly.

Simulation and Animation with SIMNET II and ISES

SIMNET II provides special assignments for the following

cases:

1. Source node control

2. Queue node control

3. File manipulations

4, Attributes control

S. Statistical variables collection

6. External files READ/WRITE capability

By using these special assignments, the modeler can control the
operation of any of the nodes during the simulation. File
manipulation assignments are particularly useful for rearranging,
deleting, and swapping transactions among queues and facilities.

4.3 Example of Special Assignments

The example in this section is designed to demonstrate the use
of SIMNET Special Assignments. Messages arrive every UN(7,8)
seconds for transmission over a single channel. It takes UN(6,8)
seconds to transmit a message. However, every UN(600,650)
seconds, the channel malfunctions and any ongoing transmission
must be started anew ahead of all waiting messages. It takes about
30 seconds to reset the channel.

Figure 4 summarizes the model which consists of two dis-
jointed segments representing the transmission channel and the
failure-repair cycle. When the channel fails, the transaction leav-

TF, A@=-1, THEN A2=0, N=N+1
1(OMSG=TRANS,
ELSE, COLLECT=SYSTIME, ENDIF

UNGT,8) Sw? UNC6,8)
: (]
aMsSG ot
ARIV
UNC600,650>
SW=(FF, COPY=),
) _HL 1(CHND), AR>=-1 -
W ICHND=REP, 1(CHNL)=REL
FAIL RESET

START

$PROJECT;Transmission Channel;8 June 90;Taha:

$DIMENSION;ENTITY(50);A(2):

$VARIABLES: SYS TIME;; TRANSIT(1):

PRCNT ABORTED;RUN.END;N/COUNT(CHNL)*100:

$SWITCHES: SW;;QMSG:

$BEGIN:
ARIV *S;UN(7,8);;1: !Messages arrive
QMSG *Q: !Wait in queue
*B;CHNL/1;SW=0N?: ISW controls QMSG
CHNL *F;;UN(6,8): Transmission
*B;TERM;;
IF,A(2) =-1,THEN, |Aborted transmission
A(2)=0, IReset A(2)
N=N+1, !Count aborted messages
1(QMSG) =TRANS, !Place at head of queue
ELSE,
COLLECT =SYS TIME, !Message completed
ENDIF%:
! Channel failure
START *Sy/S/LIM=1:
FAIL *A;UN(600,650): ITime to failure
*B;RESET;; IFailure occurs
SW=0OFF; !Block QMSG
COPY = 1(CHNL); ICOPY A(.) in CHNL
AQ2)=-1; 1Set A(2)=-1
1(CHNL) =REP; Replace A(.) in CHNL
1(CHNL) = RELY%: Release CHNL
RESET *A;30: !Resetting time
*B;FAIL;;SW = ON%: Unblock QMSG
$END:
$RUN-LENGTH =9000:
$STOP:

Figure 4. Transmission Channel Model

101

H.A. Taha, R.B. Taylor, and N.A. Younis

ing auxiliary FAIL immediately turns OFF switch SW to prevent
messages from leaving QMSG whose exit end is controlled by the
condition SW = ON? An ongoing message in facility CHNL is then
RELeased by executing the assignment 1(CHNL)=REL. How-
ever, in order for the model to recognize that an aborted message
leaving CHNL must be retransmitted, we must "tag" it before it is
released from CHNL. We achieve this result by resetting A(2) =-1
for any aborted message [otherwise A(2)=0]. The assignment
COPY = 1(CHNL) changes the attributes of the transaction leav-
ing FAIL to those of 1(CHNL). Next, we set A(2)=-1 and then
execute 1(CHNL) =REDP, in effect changing A(2) inside CHNL
to -1 while leaving A(1) unchanged. (If CHNL happens to be
empty, none of the special assignments will have any effect.)

Upon leaving CHNL, a transaction having A(2) =-1 is iden-
tified as an aborted message. Thus, the conditional branch from
CHNL executes the assignments A(2)=1,1(QMSG)=TRANS
which places the aborted message [with its A(2) reset to zero] back
at the head of QMSG. Following the repair of the CHNL (exit
from RESET), we execute SW = ON to move the transaction into
CHNL for retransmission.

5. DATA INITIALIZATION IN SIMNET II

An important feature of SIMNET IL is the ability to provide
run-specific data initialization for the model’s variables. This
means that a single simulation session may include several runs,
each with its own initial data. The following types of initialization
are available in SIMNET II.

1. Initial file (queues and facilities) entries
2. Discrete probability density functions

3. Table lookup functions

4. Array (subscripted) variables values

5. Non-subscripted variables values

6. Functions or mathematical expressions

The general format for these initial data is as follows:

$Data type: i-j/initial data

repeats

The code i-j defines the range of simulation runs for which the
simulation is applicable. This type of format provides greater
flexibility in initializing the variable of the model.

The example below shows the use of $DISCRETE-PDFS,
$TABLE-LOOKUPS, and $FUNCTIONS initial data within the
context of a general job-shop scheduling problem. This problem
normally represents a difficult situation. However, with the use of
data initialization, a general model can be developed for the
problem.

5.1 Job-shop Scheduling Model

Consider the situation where two types of jobs are processed
on three different machines. Each job has its particular route
among the three machines as summarized below. Itis assumed that
the ratio of the number of Type 1 to Type 2 jobis 2 to 3.

Job Type Machine Route Processing Time
1 3-2-1 EX(1),GA(2,1),WE(2,1)
2 23 UN(1,2),NO(1,.1)

The model is shown in Figure 5 (see next page). The initial
data of the model gives the ratio of the two types of jobs by using
a $DISCRETE-PDFS initial data statement. The routes of the
jobs and their processing times are summarized by $TABLE-
LOOKUPS and $FUNCTIONS, respectively. Each set of initial
data elements is preceded by the range 1-1, indicating that these

102

data apply to run number 1. In general, any number of ranges, each
with a different set of data may be used in the model, thus allowing
the execution of multiple runs with different initial data in one
simulation session.

The model starts with the arrival of jobs from source JOBS
according to an EXponential interarrival time with mean 3 time
units. The machines in the jobshop are modeled as a PROC(1-3),
a SIMNET II facility that allows the modeling of repetitive seg-
ments conveniently. The PROC is entered through auxiliary DIS-
PATCH which selects the correct queue of the job depending on
its route as summarized in $TABLE-LOOKUPS. Initially, when
the job arrives from source JOBS, it will carry three attributes.
A(1) is the job type, A(2) is the sequence of the operation, and
A(3) is the machine number. These attributes are given the
descriptive names job#, oper#, and mach#. Within the PROC,
these attributes are modified properly to represent the next opera-
tion before being sent back to DISPATCH. The model in Figure
5 actually applies to jobshop with any number of machines, job
types, and routes. All we have to do is to change the initial data
accordingly. In fact, we can simulate several situations in one
session simply by changing the initial data.

6. ISES SIMULATION ENVIRONMENT

ISES is a SIMNET Il interactive environment that comprises
all the phases of a simulation study. Figure 5 summarizes the main
components of the ISES System, including

1. Input editor

2. SIMNET Il interpretation/execution program
3. Animation program

4. Output program

Interpretation
Execution
SIMNET I

ISES
Animation
Program

Input

|

Output

Figure 6. Organization of ISES

All four components can be reached at any time during the execu-
tion of a SIMNET II model. Thus, the input editor may be called
upon by ISES to initiate a new model. If during the interpretation
phase an error is discovered, ISES will automatically invoke the
editor, stopping the model at the location where the error is
detected. Following a successful interpretation of the model, ISES
will create the animated model directly from the interpreted file
without input from the user. During the animation, the user can
invoke the plot and histogram capabilities which can be run con-
currently with animation. The plot capability is particularly useful
for estimating the length of the transient period, following which
the warm up period is truncated and the steady state results can
be collected.

 Figure 7 shows how ISES accesses the input editor. By select-
ing the Error option under Edit, ISES will discover errors and
automatically place the cursor at the proper location for prompt
correction as illustrated in Figure 8. This process will be repeated,
one error at a time, until a successful interpretation is ac-
complished.

To set up the animation option for a successfully interpreted
model, the user will select the Node option under Edit as shown in

Simulation and Animation with SIMNET II and ISES

e PROC (1-3) -]
gz :
A(3)=TL(A(1).1) FFUN(A(1).A(2)) B HAD)
EX(3) A
4 N
A SYSTIME(A(1))
J0BS DISPATCH Qu() MACH() CHECK

$PROJECT;Job Shop;2/21/89;Taha:
$DIMENSION;ENTITY(80),A(4):

$attributes: job#,oper#,mach#:
$VARIABLES: SYS TIME(1-2);; TRANSIT(4):
$BEGIN:

JOBS *S;EX(3);;4: 1Jobs arrival
*B;DISPATCH;;job# = DI(1), Job number
oper# =1, !Operation 1
mach# =TL(A(1),1)%: 'Machine #
! START JOBSHOP
*PROC(1-3): 13 machines
DISPATCH *A;NIL;*Q(mach#): 1Goto Q(A(3))
Q) *Q: IWait in queue
MACHY() *F;;FFUN(job#,0oper#): IProcessing time
*B;CHECK;;oper# =oper# + 1; INext operation
mach# =TL(job#,0per#)%: !Next machine
CHECK *A;NIL:
*B; TERM/1;mach# =07?; !End of route?
/4/SYS TIME(job#)%: 1Compute SYS TIME
*B;DISPATCH/L: !Else, next machine
*ENDPROC:
! END JOBSHOP
$END:
$RUN-LENGTH =600:
! JOBTYPE
$DISCRETE-PDFS: 1-1/2/1,.4; 2,.6: 12 job types
! JOB ROUTES
$TABLE-LOOKUPS: 1-1/4/1,3; 2,3; 3,1; 4,0: 13-2-1-0
3/1,2;2,3,3,0: 12-3-0
! JOB TIMES
$FUNCTIONS: 1-1/EX(1),GA(2,1),WE(2,1.1),; Job 1
UN(1,2),NO(1,.1): Job2

$STOP:

Figure 5. Jobshop Scheduling Model

Figure 9. A generic display of all the model’s nodes at the top of
the screen will then be produced as Figure 10 shows. The user can
then position these nodes where desired on the screen as
demonstrated in Figure 11. Figure 12 shows the final network
positioned in the middle of the screen. All this work is done simply
by clicking the mouse at the appropriate locations. ISES will
automatically link the nodes using the data from the interpreted
file of SIMNET IL

A plot of the model’s variables can be secured concurrently
during animation as shown in Figure 13. At the point where it
appears that steady state has been reached, the user can set the
transient option which will truncate the transient period and start
collecting the steady state data. ISES also provides an on-line
histogramming capability as shown in Figure 14.

103

Once the animation screen is set up, the user can run the
model. During execution, each node will carry a number showing
the flow of transactions in the network. One of the important
execution options is the ability to plot selected statistical variables
of the model concurrently with the animation as shown in Figure
13. By observing these plots, the user can then estimate the length
of the transient period. At that point, the execution can be inter-
rupted and a command issued to delete the transient period and
start collecting the steady state results.

It must be stated that the user can interrupt the animation
process at any time and simply invoke the execution capabilities
of SIMNETII. The process can alternate between SIMNET II and
ISES as desired.

H.A. Taha, R.B. Taylor, and N.A. Younis

2

3

9

5

g q

8 n‘t&n asses vinen:

10 BB, LINEAL 40130898 TIME/S/3/12;STDCLINEY/#/0/4;
ié soms srﬁnﬁ INEY/+/2/18:

11 SHGpLENcTHzase:

Figure 10. Generic Display of Nodes
Figure 7. Selection of Error Option

L/. 4/1 3.5YS TINE/S/3/12;STD(LINE)/%/€/4;
TINEY/+/72/18;

s
z480:

AW DODIN N LW

b e

s T del stwnt no H
Unknomlmgzgflu :: unexpected label: SI»I%NSION

9" Error detected about: SDNENSION; ENTITY(5®),A(1):

Figure 8. Correction of an Error

Figure 11. Positioning the Nodes on the Screen

Dove. .. :
No Errors

g

Figure 9. Setting Up the Animation Option Figure 12. Network on Screen

104

Simulation and Animation with SIMNET II and ISES

Figure 13. Plot of Variables

Figure 14. On-line Histogramming

7. CONCLUSION

This paper has presented an outline of the SIMNET II simula-
tion language. The four/node structure of the language makes it
particularly easy to use. The use of the special assignments
together with the conditional and loop constructs give SIMNET 11
a superior modeling capability.

The ISES simulation system puts SIMNET Il in a user-friend-
ly environment for editing, executing, and animating simulating
models. The fact that ISES generates the animation model without
any special programming effort on the part of the user is an
important feature of the system.

REFERENCES

Taha, H.A. (1988), Simulation Modeling and SIMNET, Prentice-
Hall, Englewood Cliffs, NJ.

Taha, H.A. (1990), Simulation Modeling with SIMNET II, SimTec
(1990), Fayetteville, Arkansas.

Taylor, R. B.(1990), "An Integrated Visualization Environment
For SIMNET II,” Ph.D. Dissertation, Department of In-
dustrial Engineering, University of Arkansas, Fayetteville,
Arkansas.

105

