Proceedings of the 1990 Winter Simulation Conference
Osman Balci, Randall P. Sadowski, Richard E. Nance (eds.)

DESIGN AND ANALYSIS OF SIMULATION EXPERIMENTS
FOR MANUFACTURING APPLICATIONS

Averill M. Law

Simulation Modeling and Analysis Company
440 N. Alvernon Way, Suite 103
Tucson, Arizona 85711

ABSTRACT

One of the most important but often neglected aspects of a
simulation study is the proper statistical design and analysis of
simulation experiments. In this paper we give a state-of-the-art
and practical discussion of this subject in the context of
manufacturing systems. The presentation is based on the existing
simulation literature as well as our experiences in applying these
techniques in numerous manufacturing projects.

1. INTRODUCTION

In many simulation studies a great deal of time and money is
spent on model development and "programming,” but little effort
is made to design appropriate simulation runs or to analyze
correctly the resulting output data. Since random samples from
the input probability distributions (e.g., for machine operating or
repair times) "drive" a simulation model through time, basic
simulation output data (e.g., hourly throughputs in a factory) or an
estimated performance measure computed from then (e.g., average
hourly throughput from the entire run) are also random. Thus, a
simulation model only produces a statistical estimate of the (true)
performance measure, not the measure itself.

In order for a simulation estimate to be statistically precise
(have a small variance) and free of bias (have a mean equal to the
desired performance measure), the analyst must specify appropriate
choices for the following:

® Length of each simulation run.

® Number of independent simulation runs.
Initial conditions for each simulation run (e.g., all
machines idle and no parts present).

Length of the warmup period, if one is appropriate (see
Section 5).

Then the overall estimate of the performance measure is computed
from the output data beyond the warmup period in all runs.

We now describe more precisely the random nature of
simulation output. Let ¥;, Y,, ... be an output stochastic process
from a single simulation run. For example, Y; might be the
throughput (number of parts produced) in the ith hour for a
manufacturing system or the time in system (total cycle time) of
the ith part to be completed for such a system. The Y;’s are
random variables that will, in general, be neither independent nor
identically distributed. Thus, most of the formulas of classical
statistics that assume independence (see Section 1.1), do not
directly apply to the analysis of simulation output data.

Our goal in this paper is to discuss methods for statistical
analysis of simulation output data in the context of manufacturing
systems, and to present the material with a practical focus that
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should be accessible to a simulation practitioner with a basic
knowledge of probability and statistics. (See Law and Kelton
[1991] for a more comprehensive treatment of output analysis.)
After providing a review of statistics for independent data in
Section 1.1, we discuss in Sections 2 and 3 types of simulations
with regard to output analysis as well as measures of performance
or parameters for each type. Finally, Sections 4 through 6 show
how to get a point estimator and confidence interval for each type
of parameter. Because of space limitations, we will, however,
restrict our attention to only mean system performance.

1.1 Review of Statistics for Independent Data

We now provide a brief review of probability and statistics,
which will be useful for the remainder of this paper. Suppose that
X, X,, ..., X, are independent, identically distributed (IID) random
variables (observations) with mean u and variance ¢® and that our
primary objective is to estimate y; the estimation of ¢ is of
secondary interest. Then the sample mean

n

XX,
i=1

- (1)
X(n

is an unbiased point estimator of u.
variance

Similarly, the sample

n

XX
Sz(n)=§ i )

n-1

is an unbiased estimator of o

The difficulty with using X(n) as an estimator of u without any
additional information is that we have no way of assessing how
close X(n) is to u. Because X(n) is a random variable with
variance Var[X(n)] = ¢%/n, on one experiment X(n) may be close
to u while on another X(n) may differ from x by a large amount.
The usual way to assess the precision of X(n) as an estimator of p
is to construct a confidence interval for u. In particular, an
approximate 100(1 - a) percent (0 < a < 1) confidence interval
for u is given by

S%(n)
n

X(n) +1, (3)

-1,1-«f2

where f,,,., is the upper 1 - /2 critical point for the ¢
distribution with n - 1 degrees of freedom.

We will see in Sections 4 through 6 how the above results can
be indirectly applied to the analysis of simulation output data.

2. TRANSIENT AND STEADY-STATE BEHAVIOR OF A
STOCHASTIC PROCESS
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Consider the output stochastic process Y,, ¥;, ... . Let Fi(y|D)
= P(Y, < y|I) fori = 1, 2, ..., where y is a real number and /
represents the initial conditions used to start the simulation at time
0. [The conditional probability P(¥;, < y|I) is the probability that
the event {¥, < y} occurs given the initial conditions I.] For a
manufacturing system, I might specify the number of jobs present,
and whether each machine is busy or idle, at time 0. We call
F(y|I) the transient distribution of the output process at (discrete)
time i for initial conditions 1. Note that F,(y|]) will, in general, be
different for each value of i and each set of initial conditions 1.
The density functions for the transient distributions corresponding
to the random variables Y, , ¥, , Y,, and Y, are shown in Figure
1 for a particular set of ipiﬁai conditions 7 and increasing time
indices iy, i, i;, and i, where it is assumed that these random
variables have density functions. A density specifies how the
corresponding random variable can vary from one replication to
another.

Observation & + |

“steady state” begins
Transient densities

L]

v=EY)

Not necessarily a

E(Y) normal density

Figure 1. Transient and Steady-State Density Functions
for a Particular Stochastic Process Y;,
Y,, ... and Initial Conditions I

For fixed y and I, the probabilities F,(y| 1), F,(y|I), ... are just
a sequence of numbers. If F(y|I) -» F(y) as i » oo for all y and
for any initial conditions I, then F(y) is called the steady-state
distribution of the output process Y;, Y, ... . Strictly speaking,
the steady-state distribution F(y) is only obtained in the limit as i
- o, In practice, however, there will often be a finite time
index, say, k + 1, such that the distributions from this point on
will be approximately the same as each other; "steady state" is
figuratively said to start at time kK + 1 as shown in Figure 1. Note
that steady state does not mean that the random variables Y,,,,
Y.,z ... will all take on the same value in a particular simulation
run; rather, it means that they will all have approximately the same
distribution. Furthermore, these random variables will not be
independent, but will approximately constitute a covariance-
stationary stochastic process (see Law and Kelton [1991, p. 280]).
Note that the steady-state distribution F(y) does not depend on the
initial conditions I, however, the rate of convergence of the
transient distributions F(y|I) to F(y) does.

3. TYPES OF SIMULATIONS WITH REGARD TO
OUTPUT ANALYSIS

The options available in designing and analyzing simulation
experiments depend on the type of simulation at hand, as depicted
in Figure 2.  Simulations may be either terminating or
nonterminating, depending on whether there is an obvious way for
determining run length. Furthermore, measures of performance or
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parameters for nonterminating simulations may be of several types,
as shown in the figure. These concepts are defined more precisely
below.

Figure 2. Types of Simulations with Regard to Output
Analysis

A terminating simulation is one for which there is a "natural”
event E which specifies the length of each run (replication). Since
different runs use independent random numbers and the same
initialization rule, this implies that comparable random variables
from the different runs are IID (see Section 4). The event E often
occurs at a time point beyond which no useful information is
obtained or at a time point when the system is "cleaned out.” It
is specified before any runs are made and the time of occurrence
of E for a particular run may be a random variable.

Example 1. An aerospace manufacturer receives a contract to
produce 100 airplanes, which must be delivered within
eighteen months. The company would like to simulate various
manufacturing configurations to see which one can meet the
delivery deadline at least cost. In this case E = {100
airplanes have been completed}.

Example 2. Consider a manufacturing system for food
products. A production schedule is issued, the system
produces product for 13 days, and then the system is
completely cleaned out on the fourteenth day. Then a new
production schedule is issued and the 2-week cycle is
repeated, etc. In this case E = {thirteen days of production
have been completed}.

Example 3. Consider a manufacturing company which
operates 16 hours a day (2 shifts) with work-in-process
carrying over from one day to the next. Would this qualify as
a terminating simulation with E = {16 hours of simulated
time have elapsed}? No, since this manufacturing operation
is essentially a continuous process, with the ending conditions
for one day being the initial conditions for the next day.

A nonterminating simulation is one for which there is no
natural event E to specify the length of a run. A measure of
performance for such a simulation is said to be a steady-state
parameter if it is a characteristic of the steady-state distribution of
some output stochastic process Y;, Y,, ... . In Figure 1, if the
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random variable ¥ has the steady-state distribution, then we might
be interested in estimating the steady-state mean v = E(Y).

Example 4. Consider a company which is going to build a
new manufacturing system and would like to determine the
long-run (steady-state) mean hourly throughput of their system
after it has been running long enough for the workers to know
their jobs and for mechanical difficulties to have been worked
out. Assume that:

(a) The system will operate 16 hours a day for 5 days a week.

(b) There is negligible loss of production at the end of one
shift or at the beginning of the next shift.

(c) There are no breaks (e.g., lunch) which shut down
production at specified times each day.

Let N, be the number of parts manufactured in the ith hour.
If the stochastic process N;, N,, ... has a steady-state
distribution with corresponding random variable N, then we
are interested in estimating the mean v = E(N).

Consider an output process Y;, Y,, ... for a nonterminating
simulation which does not have a steady-state distribution.
Suppose that we divide the time axis into equal-sized, contiguous
time intervals called cycles. (For example, in a manufacturing
system a cycle might be an 8-hour shift.) Let ¥ be a random
variable defined on the ith cycle, and assume that ¥,%, Y,5, ... are
comparable. Suppose that the process Y,€, Y,°, ... has a steady-
state distribution F€ and that ¥° ~ F. Then a measure of
performance is said to be a steady-state cycle parameter if it is a
characteristic of ¥© such as the mean v¢ = E(Y). Thus, a steady-
state cycle parameter is just a steady-state parameter of the
appropriate cycle process Y€, I,€, ... .

Example 5. Suppose for the manufacturing system in
Example 4 that there is a half-hour lunch break at the
beginning of the fifth hour in each 8-hour shift. Then the
process of hourly throughputs Ny, N,, ... has no steady-state
distribution. Let N be the average hourly throughput in the
ith 8-hour shift (cycle). Then we might be interested in
estimating the steady-state expected average hourly throughput
over a cycle, v¢ = E(N°), which is a steady-state cycle
parameter.

For a nonterminating simulation, suppose that the stochastic
process Y;, Y, ... does not have a steady-state distribution, and
that there is no appropriate cycle definition such that the
corresponding process Y;, Y,5, ... has a steady-state distribution.
This can occur, for example, if the input parameters for the model
continue to change over time. In these cases, however, there will
typically be a fixed amount of data describing how these
parameters change over time. This provides, in effect, a
terminating event E for the simulation and, thus, the analysis
techniques for terminating simulations in Section 4 are appropriate.
This is why we don’t treat this situation as a separate case later in
this paper. Measures of performance or parameters for such
simulations usually change over time and are included in the
category "Other parameters” in Figure 2.

Example 6. Consider a manufacturing system for
microcomputers consisting of an assembly line and a test area.
There is a 3-month build schedule available from marketing
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that describes the types and numbers of computers it is desired
to produce each week. The schedule changes from week to
week because of changing sales and the introduction of new
computers. In this case, weekly or monthly throughputs do
not have steady-state distributions. We therefore perform a
terminating simulation of length 3 months and estimate the
actual mean throughput for each week.

STATISTICAL ANALYSIS FOR TERMINATING
SIMULATIONS

Suppose we make n independent replications of a terminating
simulation, where each replication is terminated by the event E and
each replication is begun with the "same" initial conditions (see
Law and Kelton [1991, pp. 543-544]). The independence of
replications is accomplished by using different random numbers for
each replication. Let X, be a random variable defined on the jth
replication for j = 1, 2, ..., m; it is assumed that the X’s are
comparable random variables for different replications. Then the
X;’s are IID random variables. For Example 1, X; might be the
time to produce 100 airplanes on the jth replication. In the case
of Example 2, X, might be the number of cases of food products
produced in a cycle on the jth replication.

Suppose that we would like to obtain a point estimate and
confidence interval for the mean p = E(X), where X is a random
variable defined on a replication as described above. Make n
independent replications of the simulation and let X, X;, ..., X, be
the resulting IID random variables. Then by substituting the X;’s
into (1) and (3) we get that X(n) is an unbiased estimator for pu,
and an approximate 100(1 - ) percent confidence interval for u is
given by

S*m)

X(n) +1,
n

-1,1-af2

where the sample variance $%(n) is given by Eq. (2). If we
increase the number of replications from n to 4n, the half-length
of the confidence interval (i.e., the quantity that is added to and
subtracted from X(n) to get the confidence-interval endpoints) will
decrease by a factor of approximately 2.

5. STATISTICAL ANALYSIS FOR STEADY-STATE
PARAMETERS

Let Y;, ¥,, ... be an output stochastic process from a single
run of a nonterminating simulation. Suppose that P(Y, < y) =
F() —» F(y) = P(Y < y) asi —> o, where Y is the steady-state
random variable of interest with distribution function F. (We have
suppressed the dependence of F, on the initial conditions 1.)
Suppose that we want to estimate the steady-state mean v = E(Y).
One difficulty in estimating v is that the distribution function of ¥,
(for i = 1, 2, ...) is different from F, since it will generally not
be possible to choose I to be representative of "steady-state
behavior." In particular, this causes the sample mean ¥(m) of the
observations Y, Y, ..., ¥, to be a biased estimator of v for all
finite values of m, that is, E[¥(m)] # v. The problem we have
just described is called the problem of the initial transient in the
simulation literature.

The technique most often suggested for dealing with this
problem is called warming up the model or initial-data deletion.
The idea is to delete some number of observations from the
beginning of a run and to use only the remaining observations to
estimate v. For example, given the observations 1}, Y, ..., ¥, it
is often suggested to use
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Ym,l) = A1
m-1

(1 =1 < m - 1) rather than ¥(m) as an estimator of v. In
general, one would expect ¥(m,]) to be less biased than ¥(m), since
the observations near the "beginning” of the simulation are not
very representative of steady-state behavior due to the choice of
initial conditions.

The question naturally arises as to how to choose the warmup
period (or deletion amount) . We would like to pick / (and m)
such that E{¥(m,l)] = v. (The symbol "= " means approximately
equal.) If / and m are chosen too small, then E[¥(m,))] may be
significantly different from v. On the other hand, if / is chosen
larger than necessary, then ¥(m,l) will probably have an
unnecessarily large variance. The simplest and most general
technique for determining / is a graphical procedure due to Welch
[1983]. Its specific goal is to determine a time index / such that
E(Y) = vfori > I, where ] is the warmup period.

Welch’s procedure is based on making n independent
replications of the simulation and employing the following four
steps (see Law and Kelton [1991, pp. 545-550] for details):

1. Make n replications of the simulation (n = 5) each of length
m (m large). Let Y, be the ith observation from the jth
replication (j = 1,2, ...,n; i = 1,2, ..., m).

2. Let ¥, =%} ., Y/nfori =1,2, .. m The averaged
process ¥,, ¥,, ... has means E(¥) = E(Y) and variances
Var(¥) = Var(¥)/n. Thus, the averaged process has the same
transient means as the original process, but its plot is only
(1/n)th as variable.

3. To smooth out the high frequency oscillations in ¥;, ¥,, ...
(but leave the low frequency oscillations or long-run trend of
interest), we further define the moving average ¥(w) (where
w is the window and is a positive integer) as the simple
average of the 2w + 1 observations ¥,,, ..., ¥, ..., ¥, for

w+ 1, ...,m-w. (Fori=1,..,w, see Law and

Kelton [1991, p. 546] for the appropriate formula.)

i= =

4. Plot f(w) fori =1, 2, ..., m - w and choose [ to be that
value of i beyond which ¥,(w), ¥,(w), ... appears to have
converged.

Example 7. A small factory consists of a machining center
and inspection station in series, as shown in Figure 3.
Unfinished parts arrive to the factory with exponential
interarrival times having a mean of 1 minute. Processing
times at the machine are uniform on the interval [0.65, 0.70]
minute and subsequent inspection times at the inspection
station are uniform on the interval [0.75, 0.80] minute.
Ninety percent of inspected parts are "good" and are sent to
shipping; ten percent of the parts are "bad" and are sent back
to the machine for rework. (Both queues are assumed to have
infinite capacity.) The machining center is subject to
randomly occurring breakdowns. In particular, a new (or
freshly repaired) machine will break down after an exponential
amount of calendar time with a mean of 6 hours. Repair
times are uniform on the interval [8, 12] minutes. Assume
that the factory is initially empty and idle.

Consider the stochastic process N, N,, ..., where N; is the
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number of parts produced in the ith hour. Suppose that we
want to determine the warmup period ! so that we can
eventually estimate the steady-state mean hourly throughput
v = E(N) (see Example 8). We made n = 10 independent
replications of the simulation each of length m = 160 hours
(or 20 days). In Figure 4 we plot the moving average Nw)
with a window of w = 30, from which we chose a warmup
period of I = 24 hours.

Queuve Queue 0.9 good
Inspection

Machining
oo o[*Z} o o[ ey
0.1 bad

Figure 3. Small Factory Consisting of a Machining Center
and an Inspection Station

N,(30)
701

1=24

50

Figure 4. Moving Average for Hourly Throughputs

5.1 Replication/Deletion Approach for Confidence-Interval
Construction

We now present the replication/deletion approach for
obtaining a point estimate and confidence interval for the steady-
state mean v E(Y). The analysis is similar to that for
terminating simulations except that now only those observations
beyond the warmup period ! in each replication are used to form
the estimates. Specifically, suppose that we make n’' new
replications (production runs) of the simulation each of length m'
observations, where m' is much larger than the warmup period I
determined by Welch’s graphical method (see above). Let Y, be
as defined before and let X, be given by

ml

Y.
T om-l

for j=1,2,..,n

(Note that X; uses only those observations from the jth replication
wqespondi_ng to "steady state.” Then the X;’s are IID random
va::lables with E(X)) = v, X(n') is an approximately unbiased point
estimator for v, and an approximate 100(1 - «) percent confidence
interval for v is given by

S%(n’y

X(n’) + tn’-l,l-c/z 7
n

(4)
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where X(n’) and $*(n') are computed from Egs. (1) and (2),
respectively.

In some situations, it should be possible to use the initial n
pilot runs of length m observations to both determine / and to
construct a confidence interval. In particular if m is significantly.
larger than the selected value of the warmup period /, then it is
probably safe to use the "initial" runs for both purposes. Since
Welch’s graphical method is only approximate, a "small” number
of observations beyond the warmup period ! might contain
significant bias relative to v. However, if m is much larger than
1, these biased observations will have little effect on the overall
q_ua.lity (i.e., lack of bias) of X, (based on m - I observations) or
X(n). Strictly speaking, however, it is more statistically correct to
base the replication/deletion approach on two independent sets of
replications.

Example 8. For the manufacturing system of Example 7,
suppose that we would like to obtain a point estimate and 90
percent confidence interval for the steady-state mean hourly
throughput v = E(N). From the n = 10 replications of length

= 160 hours used there, we specified a warmup period of
1 = 24 hours. Since m = 160 is much larger than / = 24, we
will use these same replications to construct a confidence

interval. Let
160
X == for j=1,2,..,
7136 ]

Then a point estimate and 90 percent confidence interval for
v are given by

b = X(10) = 59.97
and

062 _ 59974046
10

X(10) + 15095
Thus, in the long run we would expect the small factory to
produce an average of about 60 parts per hour.

The half-length of the replication/deletion confidence interval
given by (4) depends on the variance of X, Var(X)), which will be
unknown when the first n replications are made. Therefore, if we
make a fixed number of replications of the simulation, the
resulting confidence-interval half-length may or may not be small
enough for a particular purpose. We know, however, that the
half-length can be decreased by a factor of approximately 2 by
making four times as many replications.

6. STATISTICAL ANALYSIS FOR STEADY-STATE
CYCLE PARAMETERS

Suppose that the output process ¥;, Y;, ... does not have a
steady-state distribution. Assume, on the other hand, that there is
an appropriate cycle definition so that the process ¥, 1S, ... has
a steady-state distribution F€, where Y€ is the random variable
defined on the ith cycle (see Section 3). If ¥° ~ FF, then suppose
we are interested in estimating the mean v° = E(¥°). Clearly,
estimating a steady-state cycle parameter is just a special case of
estimating a steady-state parameter, so the techniques of Section
5 apply, except to the cycle random variables Y,° rather than to the
original ¥’s. Thus, we can use Welch’s method to get a warmup
period and then apply the replication/deletion approach to obtain
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a point estimate and confidence interval for v°. See Law and
Kelton [1991, pp. 565-568] for an example.
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