Proceedings of the 1990 Winter Simulation Conference
Osman Balci, Randall P. Sadowski, Richard E. Nance (eds.)

ARTIFICIAL INTELLIGENCE AND SIMULATION
(TUTORIAL)

Jeff Rothenberg

The RAND Corporation
1700 Main Street
Santa Monica, California 90406

ABSTRACT

The term “simulation” is often interpreted quite narrowly: as a
way of making predictions by running a behavioral model to answer
questions of the form “What-if...?”. The major impact of Artificial
Intelligence (AI) research on simulation is to encourage the use of
additional kinds of modeling based on inferencing, reasoning, search
methods, and representations that have been developed in Al. This
natural—though long overdue—extension of simulation can produce
behavioral models that answer questions Beyond “What-if...?” . The
result is sometimes referred to as “Knowledge-Based Simulation”.
This tutorial presents some of the major concepts of Artificial Intel-
ligence and illustrates their applicability to simulation using exam-
ples drawn from recent Knowledge-Based Simulation research. It
focuses on the present state-of-the-art, current problems and limita-
tions, and future directions and possibilities.

1. A BRIEF OVERVIEW OF AI

Artificial Intelligence (AI) has defined many of the frontiers of
computer science since the 1950s [Klahr and Waterman 1986]. It is
a vast, loosely defined area encompassing various aspects of pattern
recognition and image processing, natural language and speech pro-
cessing, robotics, symbolic computation, automated reasoning,
expert systems, neural nets, and a host of other disciplines.

Throughout its history, Al has been concerned with problems
whose solution seemed impossible using conventional computer sci-
ence. This attempt to make computers intelligent has two distinct
motivations, referred to here as modeling and engineering. The mod-
eling approach seeks to model the way humans (or other intelligent
beings) perform tasks that require intelligence: It attempts to identify
problems that require intelligence and to elucidate the mechanisms
we employ in our own solutions of those problems. The engineering
approach, in contrast, is concerned with producing systems that solve
useful problems, regardless of whether those problems require intel-
ligence or their solutions involve mechanisms parallel to our own. In
practice these two approaches are often merged or even confused; but
the distinction is useful for understanding the different emphasis of
different Al efforts and the various roles of Al in modeling (and mod-
eling in AI).

The modeling approach to Al has a psychological or philosoph-
ical premise: can we use computers to build models of how we
believe intelligence works? That is, given a conceptual theory of
intelligence, can we embody that theory in a computer model? Com-
puter models ideally make such theories concrete, allowing them to
be tested, validated, and refined much more effectively than if they
remained purely conceptual. The modeling approach to Al therefore
views the implementation of computerized models as a primary tech-
nique for advancing our understanding of intelligence. In addition,
the implemented models often suggest novel mechanisms that may in
turn become part of new conceptual theories. For example, it is this
kind of “metaphor feedback” that has led to the popular conception
of the brain as a computer. Insights gained from AI models (both
from their failures and their successes) have contributed to revisions
of theories in areas ranging from linguistics to cognitive psychology.

The engineering approach to Al has a different premise: comput-
ers are not organisms, so why not use them to their own best advan-
tage to try to solve useful problems, without worrying about whether
they are solving them the way we would? This focuses on solving
interesting and useful problems rather than on defining or under-

22

standing intelligence. In practice, this approach works symbiot-
ically with the modeling approach,; if a model fails to work, engineer-
ing may suggest a solution. While such solutions are often ad hoc,
they may nevertheless reveal fundamental flaws or alternative possi-
bilities in the conceptual theory that produced the model, thereby
suggesting revisions to the theory. Whenever the engineering
approach succeeds in solving a problem (or even approaches suc-
cess), its results tend to be appropriated by conventional computer
science or engineering, so that Al often receives no credit for the
eventual solution. This leads to the common misconception that Al
never solves any problem; however, a more constructive interpreta-
tion is that this represents successful technology transfer.

The lack of distinction between these two different motivations
often leads to confusion about how Al research should be evaluated
and judged. Ideally, research stemming from a modeling motivation
should be judged according to the insight it produces into how natural
intelligence works; mechanisms designed for such Al programs
should be evaluated with respect to how closely they parallel and illu-
minate their corresponding biological mechanisms. The behavior of
such programs should be judged according to how well they mimic
the behavior of humans (or other intelligent entities), rather than how
well they solve particular problems. In contrast, research stemming
from an engineering motivation should be judged solely according to
its problem-solving performance; mechanisms designed for these Al
programs should be evaluated according to standard software engi-
neering principles.

Unfortunately, since these two motivations tend to be combined
and confused, Al programs are often evaluated and judged by which-
ever criterion provides a more generous answer. Poor problem-solv-
ing performance is often excused on the basis that a program provides
interesting modeling insights, whereas ad hoc models are often
excused in the interests of performance. Some Al programs simulta-
neously attempt to justify their poor performance on the basis of their
modeling while justifying their ad hoc models on the basis of their
performance. On the other hand, many Al programs have produced
interesting modeling insights, many have achieved excellent prob-
lem-solving performance, and some have even combined the two.

Al has made many contributions to computer science and soft-
ware engineering. Often the problems that Al attacks are also
attacked from other quarters of computer science, and it is not always
easy to assign credit for the solutions that eventually emerge. Al has
had at least some part in producing—or is currently attempting to
produce—a number of advances that have direct bearing on simula-
tion and modeling. These include the object-oriented programming
paradigm, demons, dynamic planning, goal-directed heuristic search,
spreading-activation search, taxonomic inference (as implemented
by class/subclass, or “IS-A”, inheritance hierarchies), forward and
backward chaining, qualitative reasoning, truth maintenance, proof
procedures for formal logic, simulated annealing, neural nets, and the
representation of spatial and temporal phenomena, uncertainty,
plans, goals, beliefs, and so-called “deep structures”. The following
sections outline some of the most important areas of overlapping
research and cross-fertilization between Al and simulation.

2. AI AND SIMULATION

In any discussion of Al and simulation, the term “simulation”
must be freed from the confines of its own tradition, where it often
denotes a very limited form of modeling. There is a strong tendency
in simulation circles to view simulation narrowly as a way of making



J. Rothenberg

predictions by running an encoded behavioral model (“winding it up
and letting it run”) to answer “What-if?” questions. This has been
called the “toy duck” view of simulation [Rothenberg, et al. 1989).

Having gone to all the trouble of encoding the knowledge needed
to build a simulation, one should attempt to derive the maximum ben-
efit from this knowledge. In addition to “running” a simulation to
answer “What-if?” questions, one should be able to utilize the full
range of inferencing, reasoning, and search methods that are avail-
able in Al to explain why a given sequence of events occurred and
answer definitive questions such as “Can this event ever happen?”
and goal-directed questions such as “Which events might lead to this
event?” This broad view of simulation is referred to as Knowledge-
Based Simulation. The major impact of Al on simulation should be
to encourage the use of a wider range of modeling techniques: the
result will still be a phenomenological model, but one that can take
full advantage of additional techniques to answer a wider range of
questions that are of interest to its users. This natural, overdue exten-
sion of simulation can be thought of as going “Beyond What-if?”".

Discrete-state simulation has derived great benefit from many of
the techniques developed in AL The object-oriented paradigm,
which first appeared in Simula [Dahl and Nygaard 1966], owes its
present state of refinement to Al language efforts like Smalltalk
[Goldberg and Kay 1976] and ROSS [McArthur, Klahr, and Narain
1984]. The object-oriented approach has many advantages, despite
its shortcomings [Rothenberg 1986]. For example, the appropriate
use of inheritance hierarchies (or lattices) greatly simplifies the spec-
ification of a complex simulation, producing highly comprehensible
models [Klahr 1985]. Searching and planning techniques developed
in AT have made feasible models that simulate the behavior of human
decision makers in environments involving “command and control”,
while backward chaining can help answer questions about how to
achieve a given result. Techniques for representing goals and beliefs
have helped build simulations that can explain the behavior of simu-
lated entities. Some of the current outstanding problems in discrete-
state simulation, such as the problem of representing and computing
continuous information like weather and terrain, may also yield to Al
solutions.

Analytic simulation has tended to look to mathematics rather
than Al for its methods, but here too Al offers some new approaches.
One example is recent work at The RAND Corporation in sensitivity
analysis (a sorely neglected problem in simulation), where Al tech-
niques are used to represent and propagate sensitivity information
through a computation, so that it need not be recomputed for every
function call whenever some higher-level function is perturbed to
probe its sensitivity to changes in its parameters. Similarly, symbolic
algebra programs developed by Al, such as REDUCE [Hearn 1985],
may allow applying expert algebraic manipulation to analytic func-
tions within a simulation.

The relationship between Al and simulation is bilateral: Al has
produced many systems that use models as sources of internal exper-
tise. One of the earliest examples of this was Gelemter’s Geometry
Machine [Gelernter 1959], which embedded a model of a geometry
student’s diagram (itself a model), and used a virtual *“diagram com-
puter” to test hypotheses against this internal diagram. This has
become a classic Al paradigm that expresses AI’s recognition of the
importance of models to intelligent agents: in seeking to model such
agents, Al is naturally driven to model their use of models! In the
case of the Geometry Machine, whose stated motivation was to solve
problems generally considered to require intelligence, the engineer-
ing approach converged with the modeling approach in choosing a
solution based on a model of how we ourselves solve geometry prob-
lems: being inveterate modelers, we use a model (i.e., a diagram).

Another classic example of an embedded model in an Al system
is SOPHIE [Brown, Burton, and DeKleer 1982], which taught elec-
tronic circuit diagnosis by means of an interactive dialog (in English).
In order to allow students to ask hypothetical questions such as
“What would happen if I measured the voltage across points A and
B?”, SOPHIE used a simulator of the electronic circuit being diag-
nosed. This simulator was treated as a source of expertise about elec-
tronic circuits. The Al program that conducted the dialog with the
student did not encode answers to all possible questions the user
might ask; instead, it answered those questions by consulting its
internal model, i.e., running its embedded simulation.

There is considerable evidence that in order to exhibit more than
superficial intelligence, Al systems must make use of “deep struc-

23

tures”, or models of reality like those described above. Simple rule-
based systems can perform impressively up to a point, but beyond
that point systems must be given real ‘“understanding” of the world,
at least within their domains. Such understanding essentially
requires that a system have a model of its world that it can use to
answer a wide range of unanticipated questions about that world.

3. KNOWLEDGE-BASED SIMULATION AT RAND

This section elaborates some of the areas discussed above, draw-
ing on recent work in Knowledge-Based Simulation at The RAND
Corporation. This work is representative of current research efforts
that are attempting to blend AI and simulation.

Artificial intelligence and simulation have been major areas of
research at RAND for many years [Klahr and Waterman 1986]. The
work of Newell, Shaw and Simon at RAND in the 1950s [Newell,
Shaw, and Simon 1957] was one of AI's earliest successes and
defined many continuing focal points for Al research. More recently
RAND?’s research in expert systems produced the languages RITA
[Anderson and Gillogly 1976; Anderson, et al. 1977] and ROSIE
[Sowizral and Kipps 1985; Kipps, Florman, and Sowizral 1987] as
well as several expert system applications, including LDS [Water-
man and Peterson 1981], TATR [Callero, Waterman, and Kipps
1984] and SAL [Paul, Waterman, and Peterson 1986]. Similarly,
RAND?’s long history of simulation research produced the Simscript
language [Kiviat, Villanueva, and Markowitz 1968] and both theoret-
ical and experimental results in game theory and monte carlo simula-
tion. RAND began applying Al to simulation in the late 1970s and
early 1980s. The development of the object-oriented ROSS simula-
tion language demonstrated the potential benefit of Al for simulation
technology. The Knowledge-Based Simulation effort continued this
tradition. The following describes this work as a way of highlighting
some of the overlap (and potential overlap) between Al and simula-
tion.

The goal of RAND’s Knowledge-Based Simulation effort is to
make simulations both more powerful and more comprehensible by
(1) allowing modelers to build, validate, evolve and maintain more
powerful and realistic simulations that model a wider range of rele-
vant phenomena, and (2) allowing users to interact with these simu-
lations in ways that provide deeper understanding of the phenomena
being modeled. Making simulations more powerful requires extend-
ing the kinds of modeling they can perform and the kinds of questions
they can answer (as discussed above). Making simulations more
comprehensible requires developing techniques for intelligent explo-
ration and explanation, which requires allowing users to modify both
the model and the course of events in a simulation, and making the
simulation explain its behavior in useful ways.

This research has involved a number of distinct tasks, the first of
which is reasoning about simulation behavior. This ultimately
includes being able to ask goal-directed questions, questions about
whether or how an initial state can produce a desired result, questions
about the possible values of variables, questions about the interac-
tions of objects, questions about the goals of objects, and questions
about why an objects perform actions. The inability of current dis-
crete-state simulations to answer such questions is the result of limi-
tations in their representational and inferential capabilities stemming
from the fact that knowledge is represented implicitly in procedural
code and is therefore not amenable to inference. Support for reason-
ing requires representing the behavior of objects in ways that allow
the use of automated reasoning techniques (like forward and back-
ward chaining) and integrating these with other forms of inference,
such as those based on the use of object taxonomies.

In addition to the explicit use of reasoning, it is important to
allow implicit reasoning based on multiple relations. Complex sim-
ulations require the ability to represent multi-dimensional relation-
ships among objects, such as “A is a-kind-of B”, “A is a-part-of B”,
“A is in-control-of B”, “A is in-communication-with B”, or “A is
near B”. It is vital for the simulation user to be able to define rela-
tions freely, examine the state of the simulation in terms of these rela-
tions, and modify them dynamically. Most object-oriented systems
support only minor variations of the “class-subclass” (also called
“IS-A” or “taxonomy”’) relation along with a corresponding “inherit-
ance” mechanism to maintain taxonomic relationships (i.e., special-
ized inferential support for the class/subclass relation). It is impor-
tant to provide a true multiple relation environment in which different



Artificial Intelligence and Simulation (Tutorial)

relations are supported by appropriate specialized inference mecha-
nisms.

In order to be comprehensible to users, simulations must provide
intelligent exploration and explanation. This should include graphic
querying of the simulation state, being able to roll the simulation
back to a previous state, change a parameter, and rerun the simula-
tion, saving multiple simulation states for later analysis and compar-
ison, being able to build or modify simulation scenarios graphically,
and being able to build or modify simulation objects graphically (e.g.,
defining and exercising new behaviors graphically).

As mentioned above, sensitivity analysis is one of the great
abandoned areas of simulation. Yet without it there is no guarantee
that the results of a simulation might not be drastically different if
some small change were made to some initial parameter. Sensitivity
analysis is also important for indicating which parameter values are
the most important to verify for a simulation to be valid and believ-
able. The straightforward approach to sensitivity analysis requires
running a simulation many times, perturbing individual parameters to
see how the results differ. This is prohibitively expensive in most
cases, as a consequence of which it is rarely done. Current RAND
research seeks to provide a means of computationally feasible sensi-
tivity analysis in a simulation environment, utilizing a new approach
that propagates and combines the sensitivities of composite functions
through a computation. This approach computes a representation of
the sensitivity of each called function the first time it is executed, and
propagates this sensitivity information rather than recomputing it
each time it is needed.

Another major shortcoming of current simulation models is their
inability to vary the level at which they are aggregated (also referred
to as their “resolution”). It is generally necessary to choose a desired
level of aggregation in advance and design a simulation around that
level. Changing this level typically requires considerable reprogram-
ming of the simulation; changing it under user control or dynamically
is generally unthinkable. The fact that the level of aggregation of a
model gets frozen in early in its design is a major impediment to the
reusability of models and the utility of simulation in general. Users
should be able to vary the level of aggregation of a simulation and to
indicate which aspects of the model are of particular interest, running
those aspects of the simulation disaggregated while running periph-
eral aspects at higher levels of aggregation. Users should also be able
to run highly aggregated simulations to identify interesting cases and
then examine those cases in more detail by rerunning them disaggre-
gated. The goal is to develop a methodology for building simulations
whose level of aggregation can be varied either statically or dynami-
cally. This requires mechanisms for representing vertical slices of
objects in an aggregation hierarchy and allowing interactions
between objects at different levels of aggregation. Itis also necessary
to address problems of inconsistency that can arise between different
levels: that is, running a simulation at an aggregated level should
produce results that are consistent with the results of running the
same simulation at a disaggregated level.

Modeling real-world environments that include human decision
makers requires building simulations that embed models of intelli-
gent agents possessing varying degrees of awareness, authority, ini-
tiative, intelligence, etc. This also requires hierarchical planning so
that at each level, plans will be translated into objectives for agents at
the next lower level.

Finally, there are a number of pseudo-objects or phenomena that
are not modeled well by current object-oriented simulations. For
example, terrain, roads, rivers, and weather defy easy representation
by conventional object-oriented means. These pseudo-objects seem
to require representations and manipulations that are different from
those used for more compact objects, either because they traverse or
interpenetrate other objects (without actually being part of them), or
because they are best described by continuous models (such as partial
differential equations). A number of AI techniques are being
explored to represent such pseudo-objects and their interactions.

4. CONCLUSIONS

Alis avast field that represents the leading edge of computer sci-
ence research along many fronts. It can best be understood in terms
of its two distinct motivations: the modeling motivation, which seeks
to model the cognitive processes of intelligence and the engineering
motivation, which simply attempts to solve useful problems that can-

not be solved by conventional means. AI has made many contribu-
tions to computer science and software engineering and has both pro-
duced and made use of many modeling concepts. The wedding of Al
and simulation is still in progress; its consummation promises to be
of great value to both fields of endeavor.

ACKNOWLEDGMENT

The research described above at The RAND Corporation was
supported by Defense Advanced Research Projects Agency Contract
MDA903-85-C00030. Views and conclusions contained in this sec-
tion are those of the author and should not be interpreted as represent-
ing the official opinion or policy of The RAND Corporation,
DARPA, the U.S. government, or any other person or agency con-
nected with them.

REFERENCES

Anderson, R.H. and J.J. Gillogly (1976), RAND Intelligent Terminal
Agent (RITA): Design Philosophy, The RAND Corporation,
R-1809-ARPA.

Anderson, R.H., Gallegos, M., Gillogly, J.J., Greenberg, R.B., and
Villanueva, R.V. (1977), RITA Reference Manual, The RAND
Corporation, R-1808-ARPA.

Brown, J.S., R.R. Burton, and J. DeKleer (1982), “Pedagogical, Nat-
ural Language and Knowledge Engineering Techniques in
SOPHIE L]I, and IIL,” In Intelligent Tutoring Systems (D. Slee-
man, J.S.Brown,eds.). Academic Press, New York, 227-282.

Callero, M., D.A. Waterman, and J.R. Kipps (1984), TATR: A Pro-
totype Expert System for Tactical Air Targeting, The RAND
Corporation, R-3096-ARPA.

Dahl, O-J. and K. Nygaard (1966), “Simula—An Algol-Based Sim-
ulation Language,” ACM Communications, 9, 671-678.

Gelernter, H. (1959), “Realization of a geometry theorem-proving
machine,” In Proceedings of an International Conference on
Information Processing, Paris: UNESCO House, 273-282.

Goldberg, A. and A. Kay (1976), Smalltalk-72 Instruction Manual.
Report SSL 76-6, Xerox PARC, Palo Alto, California.

Hearn, A.C. (1985), REDUCE User’s Manual, Version 3.2, The
RAND Corporation, CP78.

Kipps, J.R., B.A. Florman, and H.A. Sowizral (1987), The New
ROSIE Reference Manual and User’ s Guide, The RAND Corpo-
ration, R-3448-DARPA/RC.

Kiviat, P, R. Villanueva, and H. Markowitz (1968), The SIMSCRIPT
{\IUProgramming Language, Prentice-Hall, Englewood Cliffs,

Klahr, P. (1985), “Expressibility in ROSS: An Object-oriented Sim-
ulation System,” In Al APPLIED TO SIMULATION: Proceed-
zlrggg_ % 9the European Conference at the University of Ghent,

Klahr, P. and D.A. Waterman (1986), “Artificial Intelligence: A
Rand Perspective,” In Expert Systems Techniques, Tools and
Applications, Addison-Wesley, 3-23.

McArthur, D., P. Klahr, and S. Narain (1984), ROSS: An Object-Ori-
ented Language for Constructing Simulations, The RAND Cor-
poration, R-3160-AF.

Newell, A., J.C. Shaw, and H. Simon (1957), “Empirical Explora-
tions with the Logic Theory Machine,” In Proceedings of the
Western Joint Computer Conference, Institute of Radio Engi-
neers, New York.

Paul, J., D.A. Waterman, and M.A. Peterson (1986), “SAL: An
Expert System for Evaluating Asbestos Claims,” In Proceedings
of the First Australian Artificial Intelligence Congress, Comput-
erworld, Ltd., Melbourne.

Rothenberg, J. (1986), “Object-oriented Simulation: Where Do We
Go from Here?” In Proceedings of the 1986 Winter Simulation

R [hCotr;ferenJce,SWashington, DC, 464—469.

othenberg, J., S. Narain, R. Steeb, C. Hefley, and N.Z. Shapird
(1989), Knowledge-Based Simulation: Anylnterim Report, PI’he

I Corporation, N-2897-DARPA.
Sowgral., H.A. ar}d JER. ijgs (1985), ROSIE: A Programming
nvironment for Expert Systems, The RAND Corporati -
3246 ARPA. T "poration, R

Waterman, D.A. and M.A. Peterson (1981), Models of Legal Deci-
sionmaking, The RAND Corporation, R-2717-ICJ.



