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ABSTRACT

A brief perspective on GPSS (General Purpose Simulation
System) is presented. The approach taken in GPSS to modeling a
one-line, one-server system is discussed, implementation details are
provided, and results are displayed and commented upon.
References are provided.

1. GPSS IN BRIEF

GPSS (General Purpose Simulation System) is a simulation
modeling language whose use greatly eases the task of building com-
puter models for certain types of discrete-event simulations. (A dis-
crete-event simulation is one in which the state of the system being
simulated changes at only a discrete, but possibly random, set of time
points, called event times.) GPSS lends itself especially well to
modeling systems in which discrete units of traffic compete for
scarce resources (e.g., queuing systems), and is useful in determin-
ing how well such systems will respond to the demands placed on
them. GPSS has been applied, for example, to the modeling of
manufacturing systems, communication systems, computing sys-
tems, transportation systems, inventory systems, and health-care
systems, and has been used in chemical engineering, mining engi-
neering, and cancer research.

2. THE SEMANTICS AND SYNTAX OF GPSS

GPSS offers a rich set of semantics, and yet is sparse in its
syntax. For example, only seven statements (plus several run-
control statements) are required to model a one-line, one-server
queuing system in GPSS. These statements take such simple forms
as "GENERATE 18,6" and "QUEUE LINE". No read, write,
format, or test statements appear in the model. And yet, when a
simulation is performed with the model, fixed-form, fixed-content
output is produced, providing statistics for the server (e.g., number
of times captured; average holding time per capture; fraction of time
in use) and the waiting line (e.g., average content; maximum
content; average time in line), etc. This limited example is roughly
suggestive of the character of GPSS. A GPSS model for the one-
line, one-server system is given here in an appendix. )

The sparse syntax of GPSS, coupled with its block-d}agram
orientation, makes it possible for the beginner to leamn quickly a
usable subset of the language. Because GPSS is rich and versatile,
however, considerable study is required to master the language.

The GPSS world view (stylized way of looking at a problem)
involves visualizing units of traffic (“transactions”) which move
along paths in 2 model as a simulation proceeds. This world view is
so natural to the modeling of queuing systems that many other simu-
lation languages have adopted it.

3. VARIOUS GPSS IMPLEMENTATIONS

GPSS is a multi-vendor language. (This is in contrast with
such languages as SIMAN, SIMULA, SLAM, and SIMSCRIPT.)
Brief comments are provided here on several GPSS vendors and
their GPSS implementations.

Wolverine Software Corporation (4115 Annandale Road,
Annandale VA 22003-2500, phone 800-456-5671 or 703-750-3910)
vends GPSS/H, Release 2, which runs on a wide range of hardware
platforms from DOS machines through engineering workstations to
mainframes. In addition to the vendor's GPSS/H reference manual
[Henriksen and Crain 1989], two textbooks desgrxbc this
implementation [Banks, Carson and Sy 1989, and Schriber 1990]

and come with Student DOS GPSS/H included. The vendor
sponsors 5-day courses for GPSS/H and 2-day courses on Proof,
the vendor's presentation and animation software.

MINUTEMAN Software (P.O. Box 171, Stow MA 01775-
0171, phone 800-223-1430 or 508-897-5662) vends a series of
GPSS/PC implementations. GPSS/PC provides built-in graphic and
animation features and in some versions interfaces with AUTOCAD.
The vendor supplies a reference manual [Cox 1988] and a series of
tutorials [Cummings 1988]. A GPSS/PC textbook with Student
GPSS/PC included is scheduled for publication in 1991. The vendor
maintains information about courses that train participants in the use
of GPSS/PC. Contact the vendor for current information about
courses, books, and reference materials.

Simulation Software Ltd. (760 Headley Drive, London
Ontario Canada N6H 3V8, phone 519-657-8229) vends a series of
GPSS implementations. Contact the vendor for more specific details
and for documentation and course information.

International Business Machines (IBM) leases GPSS V,
its early 1970s implementation of GPSS that still sees some use.
Contact your local IBM representative for details.

The foregoing list of vendors, although perhaps not compre-
hensive, is thought to include the principal GPSS vendors in North
America. Please report omissions to Thomas J. Schriber.

4. THE GPSS TUTORIAL

In the GPSS tutorial at the 1990 Winter Simulation Conference,
the fundamentals of queuing system logic and the modeling elements.
offered by GPSS to implement this logic will be introduced and illus-
trated. A GPSS model for a one-line, one-server queuing system is
provided and discussed here in Appendix A for study on the part of
interested persons unable to attend the tutorial.

APPENDIX A: A GPSS MODEL FOR A ONE-LINE,
ONE-SERVER QUEUING SYSTEM

This appendix presents a GPSS model for a one-line, one-
server queuing system. Although the model is largely generic to
GPSS, its implementation is shown in GPSS/H. Animation of the
model is not discussed, but would be straightforward in
MINUTEMAN Software's GPSS/PC or by using Wolverine
Software's presentation and animation product, Proof. Contact the
vendors for details.

The appendix consists of these sections:

A.1 Statement of the Problem

A.2 The Approach Taken in Building the Model
A.3 The GPSS Block Diagram for the Model
A.4 The GPSS Model File

A.5 Discussion of Selected Simulation Output
A.6 Suggestions for Further Study

A.1 Statement of the Problem

In a manufacturing system, castings are sent to a drilling ma-
chine, where each casting is to have a hole drilled in it. The interar-
rival time of castings at the machine is uniformly distributed over the
interval 15.0 + 4.5 minutes. The time required to drill a hole in a
casting is 13.5 + 3.0 minutes, uniformly distributed. Castings are
processed in first-come, first-served order. Model this system in
GPSS, making provision to collect queuing statistics for castings
waiting their tum to be drilled. When the simulation starts, no cast-
ings are to be waiting to use the drill, and the drill is to be idle.
Perform a single simulation with the model, simulating until holes
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have been drilled in 100 castings. Discuss the output produced at the
end of the simulation.

A.2 The Approach Taken in Building the Model

Consider the time-ordered series of events associated with a
casting as it moves through the one-line, one-server system:

1. The casting arrives at the system.

2.  The casting requests the machine.

3.  The casting waits, if necessary, to capture the machine. (If the
machine is idle when the casting arrives, waiting time will be
Z€er10.)

4. When its turn comes, the casting captures the machine.

5. The casting holds the machine in a state of capture while the
machine drills a hole in the casting.

6.  The casting gives up control of the machine.

7.  The casting leaves the system.

Castings can be thought of as units of traffic that move through
the castings-and-machine system. The units of traffic in this system
are conveniently simulated in GPSS by language elements known as
"transactions". Transactions are units of traffic which are created and
introduced into a model from time to time, move along a path in the
model as the simulation proceeds, and then eventually are destroyed
(leave the model). The experiences of transactions as they go
through their life cycle in the castings-and-machine mode! are analo-
gous to the experiences of castings as they go through the castings-
and-machine system. Positioned on the path along which transac-
tions move are blocks. Each block represents a subroutine.
Movement of a transaction into a block causes the subroutine repre-
sented by the block to be executed. By choosing appropriate types of
blocks, the GPSS modeler can easily build an appropriate path
(sequence of blocks) for casting-transactions to move along to mimic
the sequence of events outlined above.

The sequence of blocks begins with the type of block used to
create transactions from time to time during a simulation and intro-
duce them into a model, the GENERATE block. The time that
elapses between introduction of consecutive transactions into a model
by a GENERATE block is "interarrival time." In this model, the in-
terarrival time random variable is uniformly distributed over the in-
terval 15.0 + 4.5 minutes. (15.0 + 4.5 describes the interval ranging
from 10.5 to 19.5.) The values 15.0 and 4.5 are provided in the
model as GENERATE block operands. In programming language
terms, a block’s operands correspond to the arguments whose values
are passed to a subroutine at the time of subroutine execution. (In
general, arbitrarily complicated interarrival time distributions can be
modeled at GENERATE blocks. This is done by defining functions
which describe the applicable distribution, then using these functions
as GENERATE-block operands.)

The sequence of blocks ends with a TERMINATE block.
When a transaction moves into a TERMINATE block, the block
subroutine destroys the transaction. A counter can be used with a
TERMINATE block so that, after a specified destroy count has been
reached (a count of 100 in this problem), a simulation will stop.
(More generally, arbitrarily complicated stopping conditions can be
specified in GPSS models.)

A SEIZE block is included in the sequence. A transaction re-
quests control of a single server by trying to move into a SEIZE
block. A SEIZE block operand is used to identify the single server.
If the server is idle when a transaction requests it, the requesting
transaction moves into the SEIZE block without delay and takes con-
trol of the server. But if the server is currently under the control of
one transaction when another requests it, the requesting transaction
cannot move into the SEIZE block. Instead, it remains in its current
block and waits its turn to capture the server. In the simplest case,
turns come in the order of first-come, first-served. (In general, arbi-
trarily complicated rules can be specified in GPSS to control the se-
quence in which servers are captured by requestors.)

A RELEASE block is also included in the sequence. A transac-
tion which is in control of a single server gives up control by moving
into a RELEASE block. A RELEASE block operand is used to iden-
tify the server involved.

GPSS automatically collects (and then, when a simulation
stops, prints out) statistical information about single servers modeled
with use of SEIZE and RELEASE blocks. (See section A.5 for an
example of these statistics.)

An ADVANCE block is used to delay transaction movement
along its path for a specified simulated time. In this model, an
ADVANCE block can be used to simulate the time required for the
machine to drill a hole in a casting ("service time"). The service time
random variable in this model is uniformly distributed over the inter-
val 13.5 + 3.0 simulated minutes. The values 13.5and 3.0 are pro-
vided in the model as ADVANCE block operands. (Arbitrarily
complicated service time distributions can be modeled at ADVANCE
blocks, of course. This is done by defining functions which describe
the applicable distribution.) By placing an ADVANCE block on the
path between SEIZE and RELEASE blocks, simulated time delays
between server capture and release can be modeled. o

By moving into a QUEUE block, a transaction initiates
membership for itself in a queue, or waiting line. This tpembershxp
continues until the transaction brings its queue membership to an end
by eventually moving into a DEPART block. An operand is used at
the QUEUE and DEPART blocks to indicate the particular queue in-
volved. By placing a SEIZE block between QUEUE and DEPART
blocks, transactions will be members of a queue while waiting their
turn to capture a server. GPSS automatically collects (and then,
when a simulation stops, prints out) statistical information about such
queues. (See section A.5 for an example of these statistics.)

Limited space does not permit a more complete explanation here
of the GPSS approach to modeling a one-line, one-server system.
For a detailed explanation, see chapter 6 in Schriber [1990].

Note that seven types of GPSS blocks have been commented
on in this section (GENERATE; TERMINATE; SEIZE;
RELEASE; ADVANCE; QUEUE; DEPART). In total, there are
more than fifty types of blocks in GPSS. By appropriate use of
these block types, GPSS models of extremely complex systems can
be built with considerable ease.

A.3 The GPSS Block Diagram for the Model

The model described above is shown in the form of a block dia-
gram in Figure A.1. The block diagram consists of a sequence of
seven Blocks. (Each block type in Figure A.1 has its own unique,
arbitrary geometry.) A simulation performed with the model will
start with an empty queue and an idle server, as requested. (See
Schriber [1990], chapter 6, for particulars.)

The Figure A.1 block diagram assumes implementation of the
model in Wolverine Software's GPSS/H, Release 2 (1987), which
uses a floating point simulated clock and therefore permits specifica-
tion of floating-point interarrival times at GENERATE blocks and
holding times at ADVANCE blocks. (In versions of GPSS which
use an integer clock, only integer-valued interarrival times and hold-
ing times can be realized. In integer-clock versions of this model,
units registered by the simulated clock could then have the implicit
dimension of tenths of minutes (instead of minutes), and the
GENERATE and ADVANCE block operands could be stated as
"150,45" and "130,35," respectively.)

The text aPpearing adjacent to the blocks in Figure A.1 (e.g.,
"castings arrive"; "check into the drill queue") is not part of the
model, but is simply commentary which has been (optionally) pro-
vided as documentation.

A .4 The GPSS Model File

Figure A.1 shows the block diagram for a GPSS one-line, one-
server model. To perform a simulation with this model, the szate-
ment version of the Figure A.1 block diagram must be prepared, and
then supplemented with additional types of statements used to control
compilation and execution of GPSS models. The resulting collection
of statements must then be arranged in a model file. The model file is
simply a computer file which can be used as the basis for performing
one (or more) simulations.

Figure A.2 shows the model file corresponding to the Figure
A.1 block diagram. The statements making up the model file are
shown against a "background” consisting of column identifiers (e.g.,
LABEL; OPERATION; and OPERANDS) and horizontal and verti-
cal lines. The background is provided here only as a guide for the
eye. The model file statements themselves have such simple forms
as "SIMULATE"; "GENERATE 15.0,4.5"; etc.

A column of statement numbers ("STMT NO.") has been ap-
pended at the far left in the Figure A.2 model file to support discus-
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A
GENERATE castings
arrive
15.0,4.5
QUEUE (‘I( check into
DRILLQUE the drill queue
SEIZE request/capture
the drill
DRILL
DEPART |/ N\ check out of
DRILLQUE the drill queue
ADVANCE drilling time
elapses
13.5,3.0
RELEASE | DRILL give up
v the drill
TERMINATE drilled castings

leave

Figure A.1 GPSS Block Diagram for a One-Line,
One-Server Queuing System

sion here. Statements 7 through 13 correspond to the blocks in
Figure A.1. These statements (optionally) include documentation
text identical to that appearing in Figure A.1. For example, the text
"castings arrive" has been appended to statement 7, but is not an op-
erational part of the statemnent, and could be deleted.

Statements 1, 19, and 21 in Figure A.2 are examples of state-
ments used to control the compilation and execution of GPSS mod-
els. They have been specified in Figure A.2 so that when the model
file is submitted for execution, only one simulation will take place.
The simulation will stop when the 100th casting has been drilled.

Any model-file statement beginning with an asterisk (*) is a
comments statement. Comments statements can (optionally) be in-
cluded in a model file to make it easier (for a person) to read the
model file. In Figure A.2, statements 2 througE%, 14 through 18,
and 20 are examples of such statements.

A.5 Discussion of Selected Simulation Qutput.

Selected output automatically produced at the end of the simula-
tion when the Figure A.2 model file was submitted for execution is
displayed in Figure A.3. The displayed output consists of: (a) clock
values; (b) block counts; (c) server statistics; (d) queue statistics;
and (e) random number statistics, to be discussed in that order.

(a) Clock Values

As indicated in Figure A.3(a), GPSS maintains two simulated

clocks: a RELATIVE CLOCK; and an ABSOLUTE CLOCK. The
ABSOLUTE CLOCK measures the simulated time that has elapsed
since the simulation began (that is, since simulated time 0.0). The
value of the ABSOLUTE CLOCK at the end of the simulation was
1488.9+. In other words, it took 1488.9+ simulated minutes to drill
holes in 100 castings in this replication.

The RELATIVE CLOCK has no special meaning unless one or

more RESET run-control statements are used in the model file.
RESET statements have not been used here, and so the RELATIVE
CLOCK has no special meaning in Figure A.3(a). )
(When a RESET statement is included in a model file and is exe-
cuted, statistical aspects of the model are reinitialized, but units of
traffic (transactions) are left intact wherever they are in the model at
the time of RESET statement execution. RESET statements are a
useful tool for eliminating biased statistical observations in cases
when a simulation proceeds through transient conditions and into a
steady state of operation. The RELATIVE CLOCK tells how much
simulated time has elapsed since a RESET statement was most re-
cently executed. When there are no RESET statements in a model
file, the RELATIVE and ABSOLUTE CLOCKSs have identical val-
ues, as in Figure A.3(a).)

(b) Block Counts

Blocks in a model are assigned location numbers as part of
model compilation. These numbers are assigned serially, from 1
forward, in the top-down order in which blocks (block statements)
appear in the model file. In Figure A.3(b), the leftmost column (the
column labeled BLOCK) contains the numbers 1 through 7, corre-
sponding to the 7 blocks in the Figure A.2 model file. The
GENERATE Block is in location 1, the QUEUE block is in location
2, ..., the TERMINATE block is in location 7.

In Figure A.3(b), the second column (the column labeled CUR-
RENT) shows the counts of the number of transactions currently in
the corresponding blocks at the time the output was produced. When
the CURRENT count is zero, printing of the zero is suppressed. The
only block with a nonzero CURRENT count in Figure A.3(b) is the
block in location 2, the QUEUE block. (When the Figure A.3 print-
out was produced, there was 1 transaction in the QUEUE block,
simulating a casting waiting its turn to use the drilling machine.)

The third column in Figure A.3(b) (the column labeled TOTAL)
shows the counts of the number of transactions which moved into the
corresponding blocks during the simulation. For example, the
TOTAL count at the location 1 GENERATE block is 101, indicating
that 101 casting-transactions came into the model through that block.
The TOTAL count at the location 2 QUEUE block is also 101, indi-
cating that all 101 of these casting-transactions initiated membership
for themselves in the queue of castings waiting their turn to use the
machine. The TOTAL count at the location 3 SEIZE block is 100,
indicating that 100 of these casting-transactions captured the machine
during the simulation. (Of the 101 casting-transactions which moved
into the location 2 QUEUE block, 100 eventually moved into the lo-
cation 3 SEIZE block, and one is still in the QUEUE block.)

In general, CURRENT and TOTAL block counts indicate the
current state and total extent of traffic movement along the various
paths in a model. This information can be of considerable use in ana
lyzing model behavior. Furthermore, CURRENT and TOTAL block
counts can be accessed by transactions during the course of a simula-
tion (as values of GPSS standard numerical attributes, or reserved
words). Such block-count information can be used to support "real
time" decision making on the part of transactions as a simulation pro-
ceeds, so that transaction movement and path selection can depend on
the state of the model when the movement and path selection occur.

(c) Server Statistics

Figure A.3(c) shows server (drill) statistics accumulated during
the simulation. The columns in the figure have been numbered (not
by the GPSS software, but after the fact) to make it easy here to refer
to the information they contain. The meaning of the information in
each of these columns will now be indicated by column number:

(1) The FACILITY column lists the identifier used in the model for
the single server (the DRILL, in this case) for which statistics
are being reported.
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2
No. | vLaBeL [o| opEraTiON |

OPERANDS ‘H

1 SIMULATE 18

set a 1-CPU-Second time trap

y

4 > [« Model Segment 1 (Movement of Castings Through the System) *
5 > % .
6> *
7> GENERATE 15.04.5 castings arrive
8 > QUEUE DRILLQUE check into the drill queue
9> SEIZE DRILL request/capture the drill
10 > DEPART DRILLQUE check out of the drill quene
1u— ADVANCE 13.5,3.0 drilling time elapses
| PR RELEASE DRILL give up the drill
13 > TERMINATE 1 drilled castings leave
14 > |+
15 _9 ks ok ok ok ok s *« “
16 = |* Run-Control Statements *
17 — |« ke * ok ook K *
18 — |*
19 > START 100 start the simulation
20 > |+
21 D END end of‘model-file execution

Figure A.2. A GPSS Model File for the Figure A.1 Block Diagram

(In GPSS, the facility entity used to model single servers.
A single server is referred to as a "facility." The postsimulation
statistical report contains one row of information for each single
server, or facility, contained in a model.)

The --AVG-UTIL-DURING-- TOTAL TIME column shows
the fraction of total simulated time that the server was captured.
In this case, the DRILL was in use 91.7% of the time.

(Note that the expected value of the utilization random
variable in this model is 0.90. This expected value is computed
by dividing the expected service time, 13.5, by the expected
interarrival time, 15.0.)

(3) The --AVG-UTIL-DURING-- AVAIL TIME column shows
the fraction of available simulated time that the server was in a
state of capture. A server's "available simulated time" is the
amount of simulated time during which the server was "in
working order” (or "on duty") during a simulation.

In general, a server in a system is usually not in working
order or on duty gll the time, and cannot be expected to provide
service when not in working order or not on duty. For
example, if a machine breaks down, it cannot be expected to
provide service until after it has been put back into working
order. As another example, even though a machine has not
broken down, its services might be withdrawn temporarily so
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RELATIVE CLOCK: 14889629 ABSOLUTE CLOCK: 1488.9629
(a) Clock Values
BLOCK CURRENT TOTAL
1 101
2 1 101
3 100
4 100
5 100
6 100
7 100
(b) Block Counts
2) 3) )
1) --AVG-UTIL-DURING-- (5) 6) ) (8) 9) (10)
FACILITY TOTAL AVAIL UNAVL ENTRIES AVERAGE CURRENT PERCENT SEIZING PREEMPTING
TIME TIME TIME TIME/XACT STATUS AVAIL XACT XACT
DRILL 917 100 13.655 AVAIL 100.0
(c) Drilling-Machine Statistics
(6)) 2) 3) @ (5) (6) 8) 9
QUEUE MAXIMUM AVERAGE TOTAL ZERO PERCENT AVE(I.?AGE $AVERAGE QTf\l)lLE
CONTENTS CONTENTS ENTRIES ENTRIES ZEROS TIME/UNIT TIME/UNIT NUMBER
DRILLQUE 2 215 101 42 41.6 3172 5.430
(d) Queue Statistics
(1) 2) 3) @) (5) (6)
RANDOM ANTITHETIC INITIAL CURRENT SAMPLE CHI-SQUARE
STREAM VARIATES POSITION POSITION COUNT UNIFORMITY
1 OFF 100000 100202 202 0.70
(e) Random-Number Generator Statistics

©)}

Figure A.3. Selected Simulation Output

that preventive maintenance can be performed on it. While the
preventive maintenance is taking place, the machine cannot be
expected to provide service. In GPSS, a server which is in
working order (on duty) is said to be available, and a server not
in working order (not on duty) is said to be unavailable. (Note
that the concept of "available/unavailable" is not at all the same
as the concept of "idle/captured.”) GPSS provides a rich
capability for moving servers back and forth between states of
"availability" and "unavailability,” in the sense just described,
and produces server statistics accordingly.  This
"available/unavailable" capability has not been used in the
simple castings-and-machine model here. As a result, the
simulated drilling machine was in working order during the
entire simulation.

Because available simulated time matches total
simulated time in this model, the entries in columns 2 and 3 in
Figure A.3(c) are logically identical. As a result, the --AVG-
UTIL-DURING-- AVAIL TIME column has been left blank
by the GPSS software.

The --AVG-UTIL-DURING-- UNAVL TIME column shows
the fraction of unavailable simulated time that the server was in
a state of capture. A server's "unavailable simulated time" is
the total time the server was "not in working order".

For an unavailable (not in working order, or off duty)
server to be in a state of capture (and therefore doing useful
work) seems logically impossible. But there are some systems
in which this situation can occur. For example, even though a
worker has officially gone off duty because the end of a work-
shift has come, the worker might continue to work on his/her
own time for a while to complete an unfinished task. (This

(5)

6)

)

might not happen when unions are involved, but it might hap-
pen in a worker-owned company.) As another example, the
time for scheduled machine maintenance might come (with a
period of official machine unavailability starting as a result), but
before maintenance actually begins, the machine might continue
t0 be used until an ongoing piece of work it is doing has been
finished.

Because the drilling machine was never out of working
order in this model, its utilization during unavailable time was
zero, and so the --AVG-UTIL-DURING-- UNAVL TIME has
been left blank in Figure A.3(c) by the GPSS software.

The ENTRIES column indicates the number of times the server
was put into a state of capture during the simulation. This
statistic is a capture count. In Figure A.3(c), the capture count
is 100. (After the 100th casting-transaction to take control of
the drill gave up control and terminated, the simulation
immediately stopped.)

The AVERAGE TIME/XACT column shows the average hold-
ing time per capture of the server. (XACT is an abbreviation
for transaction.) The AVERAGE TIME/XACT in Figure
A.3(c) is 13.6+. (Note that the expected value of the holding
time random variable is 13.5. This value has been supplied as
the first of the ADVANCE block's operands.)

The CURRENT STATUS column indicates the server's "in

working order” (“on duty") vs. "not in working order” ("off
duty") status at the time the statistical report was produced.
AVAIL means "in working order," whereas UNAVAIL means
"not in working order." Figure A.3(c) shows that the DRILL



T.J. Schriber

was AVAIL at the end of the simulation. (In this model, it was

AVAIL during the entire simulation.)

(8) The PERCENT AVAIL column shows the fraction of total sim-
ulated time that the server was "in working order" ("on duty").
Figure A.3(c) shows that the DRILL was "available" 100% of
the time during the simulation.

(9) The SEIZING XACT column shows the number of the transac-
tion (if any) holding the server in a state of capture when the
statistical report was produced. If a server is not captured, the
SEIZING XACT column is blank, as in Figure A.3(c). (The
simulation stopped immediately when the 100th casting to be
drilled gave up control of the drill and terminated. This ex-
plains why the drill was not in a captured state when the simu-
lation stopped, even though a casting-transaction was waiting at
that time to capture the drill. Had the simulation continued at
clock time 1488.9+, the waiting casting-transaction would have
captured and started to use the drill at that clock time, etc. For
particulars on the cironological order in which individual steps
are carried out when a GPSS model is updated at a particular
clock time, see chapters 4 and 7 in Schriber [1990].)

As suggested above, transactions have unique numbers.

They can also have many other individual properties, or
attributes, just as the individual units of traffic moving through
a real system often have individual properties. In a
manufacturing system, for example, units of work-in-process
might have properties such as a priority level, a job-type
designation, an order number, a customer number, a routing
sequence, and a due date. Information of this sort can be
attached to transactions in GPSS to support modeling systems
in which units of traffic have individual characteristics.
(10) The PREEMPTING XACT column shows the number of the
transaction (if any) holding the server in a state of preemption at
the time the statistical report was produced. A server is put into
a state of preemption if a transaction takes the server away from
another transaction. If a server is not in a state of preemption,
the PREEMPTING XACT column is blank, as in Figure
A.3(c). (The potential for preemptive use of the drill has not
been modeled here.)

(In many systems, preemptive use of some servers is
permitted. For example, suppose a doctor working in a
hospital emergency room is attending a patient who has
sprained his ankle. Suddenly another patient is brought in,
needing immediate attention as the result of an automobile:
accident. If the doctor interrupts his or her work on the
sprained-ankle patient and begins working immediately on the
automobile-accident patient, preemptive use of the server (the
doctor in this case) is being made. GPSS provides an extended
capability for modeling preemptive use of servers.)

(d) Queue Statistics

Figure A.3(d) shows queue (waiting-line) statistics
accumulated during the simulation. The columns in the figure have
been numbered (not by the GPSS software, but after the fact) to
support discussion. The meaning of the information in each of these
columns will now be indicated by column number:

(1) The QUEUE column lists the identifier used in the model for
the queue (the DRILLQUIE, in this case) for which statistics are
being reported.

(In GPSS, the queue entity is used to gather waiting-line
statistics. The postsimulation statistical report contains one row
of information for each queue in a model.)

The MAXIMUM CONTENTS column indicates the maximum
length of the waiting line (this statistic has the value 2 in the
case of the DRILLQUE).

2

(3) The AVERAGE CONTENTS column shows the average length

of the waiting line (0.215 in the case of the DRILLQUE).
(4) The TOTAL ENTRIES column shows the count of the number
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of times transactions joined the waiting line (101 in the case of
the DRILLQUE).

The ZERO ENTRIES column shows the count of the number
of transactions which passed through the waiting line in zero
simulated time (42 in the case of the DRILLQUE). (A trans-
action passes through a waiting line in zero simulated time by
initiating and then ending waiting-line membership at one and
the same simulated time. In the Figure A.1 model, note that
each casting-transaction passes through the waiting line,
whether or not it has to wait to take control of the drill.)

(5)

The PERCENT ZEROS column shows the percentage of trans-
actions which passed through the waiting line in zero simulated
time (41.6 in the case of the DRILLQUE). In other words,
PERCENT ZEROS is the percentage of castings which did not
have to wait to take control of the drill.

©)

The AVERAGE TIME/UNIT column shows how much time
transactions spent resident in the waiting line on average (3.172
in the case of the DRILLQUE). (Here, the term "UNIT" in the
AVERAGE TIME/UNIT label means "transaction.")

N

The $AVERAGE TIME/UNIT column shows how much time
transactions spent in the waiting line on average, excluding any
transactions which passed through the waiting line in zero sim-
ulated time. To put this in other words, the SAVERAGE
TIME/UNIT (5.43 in the case of the DRILLQUE) is the aver-
age time in line for transactions which did have to wait to take
control of the drill.

®)

If a gtable is used in connection with a queue, the QTABLE
NUMBER column gives the number (or name) of the qtable.

(The column (7) AVERAGE TIME/UNIT statistic only
provides an estimate of the expected value of the "queue
residence time" random variable. A qtable is a tabular
histogram for the "queue residence time" random variable.
Information contained in a qtable includes not just the average
in a sample of queue residence times, but also includes the
sample standard deviation, and the relative frequencies with
which the sampled queue residence times fell into various
frequency classes prescribed by the model builder. A gtable
could have been requested in this model by including one
additional statement in the model file.)

)

(10) The CURRENT CONTENTS column shows the number of
transactions which were members of the waiting line at the time
the Figure A.3(d) report was produced This column has been
cropped from Figure A.3(d) because of space limitations here.
DlgILLQUE had a CURRENT CONTENTS of 1 in Figure
A.3(d).

(e) Random Number Statistics

Figure A.3(e) shows statistical information for the random num-
bers used to drive the simulation. The columns in the figure have
been numbered ( after the fact) to support discussion.

Before discussing Figure A.3(e), some things should be said
about the use of random numbers in a simulation. It's often nec-
essary in the Figure A.1 model to sample from the distribution of
casting interarrival times, and of drilling times. This sampling
involves two steps: (1) A value is drawn from the population
uniformly distributed on the 0-1 interval; (2) This value is then
converted into a value from the population of interest, e.g.,
interarrival times uniformly distributed on the 15.0 + 4.5 interval.

To support step (1) above, GPSS provides built-in 0-1 uniform
random number generators. (Many older versions of GPSS have 8
such generators; MINUTEMAN Software's GPSS/PC and
Wolverine Software's GPSS/H have a virtually unlimited number of
such generators. The motivation for having more than one such
generator is explained and demonstrated in chapters 14, 15, and 16
of Schriber [1990].) These generators are numbered 1, 2, 3, 4, etc.
In the Figure A.1 model, generator 1 is used to sample from both the
interarrival-time and the service-time distributions. (For particulars,
see chapter 13 in Schriber [1990].)
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_ The 0-1 uniform random number generators often built into
simulation software usually use a deterministic algorithm to produce
what are called pseudo-random numbers. These numbers aren't truly
random, because they are computed by a reproducible deterministic
procedure. This raises a question about how "good" a sample of
such pseudo-random numbers is, statistically speaking. This matter
of statistical "goodness" can be tested in one or more ways by
simulation software for the pseudo-random numbers actually used
during the course of a simulation. Results of such a test (or tests)
can then be reported as part of the simulation results.

Suppose the pseudo-random numbers contained in the samples
coming from the 0-1 generators used in a simulation (replication)
don't test well for 0-1 uniformity. The modeler might then decide to
throw away the results from that particular simulation (replication).
The "suspect” (or low probability) results can be replaced by using
other pseudo-random numbers to carry out another replication.
("Other" pseudo-random numbers would be obtained by specifying a
different starting point for the random number generator or
generators. For particulars, see chapter 14 in Schriber [1990].)

As part of its postsimulation output, GPSS/H, Release 2,
includes a statistical report on the 0-1 uniform random numbers used
in the simulation just completed. Referring to Figure A.3(e) by
column number, the following information is contained in this report:

(1) The RANDOM STREAM column gives the number of the 0-1
generator to which the report applies (generator 1 in Figure
A.3(e)).

The ANTITHETIC VARIATES column indicates whether the
random numbers themselves or their antithetic equivalents com-
ing from the indicated generator were used. Column entries of
OFF and ON are used to indicate whether the random numbers
themselves (OFF) or their antithetic equivalents (ON) were
used. For the case at hand, the random numbers themselves
were used.

(An "antithetic random number" is the 1's complement of
the random number. In some circumstances, random numbers
and their antithetic equivalents can be used to reduce the
variance of one-population estimators. For particulars, see
Law and Kelton [1982], or Schriber [1990], Chapter 15.)

2)

(3) INITIAL POSITION indicates the ordinal position (in the time
series of random numbers produced by the generator) from
which the first random number came (position 100,000 for the
case at hand).

(4) CURRENT POSITION indicates the ordinal position from
which the next random number will come for the generator
(position 100202 for the case at hand) if the simulation is re-
sumed.

(5) SAMPLE COUNT indicates how many random numbers were
sampled from the generator (202 in this case).

(6) CHI-SQUARE UNIFORMITY gives the achieved significance
level of a Chi-square goodness-of-fit test for the uniformity of
the random numbers sampled from the generator. An achieved
significance level is a probability. The purpose of the chi-
square goodness-of-fit test is to examine the hypothesis that the
sampled random numbers come from a source of random
numbers uniformly distributed on the 0-1 interval. If the "Chi-
square uniformity” number is 0.05 or less, then the probability
is 0.05 or less of drawing a sample with this sample's Chi-
square statistic from a source of true 0-1 uniform random
numbers. In such a low probability case, the modeler might
want to throw away the results of the simulation, substituting
the results of another replication instead. (The CHI-SQUARE
UNIFORMITY statistic in the Figure A.3(e) replication is 0.7.)

A.6 Replications in GPSS

This section briefly reviews the concepts of point and interval
estimates of the expected value of a random variable (or, mpre
generally, of an unknown population parameter), provides numeric
examples for these concepts in the setting of the section A.1 one-line,

11

one-server model, and introduces the use of the GPSS CLEAR
statement as a means for carrying out a series of independent
simulations (replications) whose results can be used to form interval
estimates.

Figure A.3 provides point estimates of the expected values of
such dependent random variables as the time required to drill holes in
100 castings (ABSOLUTE CLOCK), the average length of the line
of castings waiting for the drill (AVERAGE CONTENTS); and the
average time castings spend waiting for the drill (AVERAGE
TIME/UNIT). Recall (from a first course in statistics) that a point
estimate is a single number used as an estimate of the value of an
unknown population parameter (e.g., an expected value). The point
estimates in Figure A.3 result from one simulation, or replication. In
general, if a series of independent simulations is performed, the value
of a point estimate will vary from simulation to simulation. One
point estimate provides no information about the variability of the
point estimator, and so it can be misleading to use a single point
estimate to estimate the expected value of a random variable.

By way of example, consider Table A.1, which shows the
values of eight point estimates of: (a) the time required to drill holes
in 100 castings; (b) the average length of the line of castings waiting
for the drill; and (c) the average time castings spend waiting for the
drill. The Table A.1 values result from a series of eight independent
replications performed by using a slightly modified version of the
Figure A.2 model file. (The modifications made in the Figure A.2
model file to produce the Table A.1 results are discussed below.)
The variability in the point estimates from replication to replication is

Table A.l. Summary Statistics for Eight Independent Replica-
tions with the One-Line, One-Server Model

Castings Waiting for the Drill
Replication |Time to Drill| Average No.| Average Time
Number [100 Castings Waiting Spent Waiting
1 1489.0 0.215 3.172
2 1544.7 0.130 1.995
3 1488.6 0.193 2.851
4 1522.8 0.064 0.970
5 1507.8 0.199 3.001
6 1527.5 0.110 1.667
7 1561.2 0.049 0.770
8 1503.0 0.152 2.259
Mean: 1518.1 0.139 2.09
Standard ,
Deviation® 25.97 0.062 0.910

evident in Table A.1. For example, the time to drill 100 castings
ranges from about 1488 minutes (replication 3) to about 1561
minutes (replication 7), with a sample mean (for the sample of eight
replications) of 1518.1 minutes and a sample standard deviation of
25.97 minutes. Here, the sample standard deviation is relatively
small (just under 2% of the sample mean).

Similarly, for the eight replications in Table A.1, the average
number of castings waiting for the drill ranges from 0.049
(replication 7) to 0.215 (replication 1), with a sample mean of 0.139
and a sample standard deviation of 0.062. Here, the sample standard
deviation is quite large (just greater than 40% of the sample mean).

Finally, the average time castings spent waiting for the drill
ranges from 0.770 minutes (replication 7) to 3.172 minutes
(replication 1) in Table A.1, with a sample mean of 2.09 and a
sample standard deviation of 0.910. Here, the sample standard
deviation is again quite large (about 45% of the sample mean).

The variability evident in the Table A.1 point estimates can be
taken into account quantitatively by using the sample standard
deviations to form interval estimates for the expected values of the
corresponding random variables. Recall (from a first course in
statistics) that an interval estimate of a population parameter is a pair
of numbers determining an interval within which the value of the
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parameter may lie. The interval which the pair of numbers
determines is called a confidence interval. A confidence coefficient,
such as 90% or 95%, is attached to this interval to indicate the
confidence level, or degree of confidence we have that the population
parameter does lie within the confidence interval.

Table A.2 shows the 90% confidence intervals computed from
the set of eight replications given in Table A.1. For example, the
Table A.2 90% confidence interval for the time required to drill 100
castings is [1499.5, 1536.7]. In other words, we are 90% confident
that the expected value of the "time to drill 100 castings" random
variable falls somewhere in the interval between 1499.5 and 1536.7.

Table A.2. 90% Confidence Intervals Resulting
from the Table A.1 Replications

Castings Waiting for the Drill

Time to Drill
100 Castings Average No.

Waiting

Average Time
Spent Waiting

[1499.5, 1536.7} | [0.094, 0.184]1] [1.434, 2.737]

(Recall that a given confidence interval either does or does not
contain the expected value of the population parameter being esti-
mated. Each number in the pair determining a confidence interval is a
random variable. This means that if we produced another 8 indepen-
dent replications, then computed the resulting 90% confi-dence inter-
vals as in Table A.2, they would, in general, differ from the Table
A.2 confidence intervals. Suppose we repeatedly formed 90% con-
fidence intervals for the problem at hand, each based on another set
of eight replications. Then, among all such confidence intervals,
90% of them will contain the value being estimated. This is what it
means to say we are "90% confident” that any one such confidence
interval does contain the value being estimated.)

(The steps followed in computing confidence intervals can be
found in any introductory textbook on statistics, and in any general
simulation textbook. It is recommended that interested persons con-
sult a general simulation textbook, which will not only summarize
how to compute confidence intervals but, perhaps more importantly,
will also discuss the issues involved in producing statistically valid
results via simulation. A simulation text will also discuss the distinc-
tion between "terminating” and "steady state" simulations, will ex-
plain various alternative statistical methodologies for analysis of
simulation output (e.g., the method of replications; the method of
batch means; time series methods), and so on.)

Now consider the operational aspects of producing replications
in GPSS simulations. The replications whose results are summa-
rized in Table A.l were produced with use of a GPSS CLEAR
statement. The CLEAR statement is a run-control statement. When a
GPSS model is "cleared” (that is, when a CLEAR statement is exe-
cuted), the following two actions occur:

1.  All transactions in the model (if any) are destroyed.
2.  Statistical aspects of the model are reinitialized (e.g., facility
capture counts are set back to zero; facility total time captured
is set back to zero; queue entry counts are set back to zero; to-

tal queue residence time is set back to zero; the RELATIVE and
ABSOLUTE CLOCKs are set back to zero; etc.).

CLEARing a model has the effect, then, of returning the model
to its original starting point, with one important exception. Executing
a CLEAR statement does not cause the setting of the random number
generator(s) being used in a model to be reinitialized. Instead, the
random number generators are left "as is." The result of CLEARing
a model, then, is to set the stage for carrying out another simulation
with the model, a simulation which will be independent of one or
more immediately preceding simulations because the 0-1 uniform
random numbers used to drive the simulation will (or should) be in-
dependent of those used to drive the preceding simulation(s).

For example, suppose the START statement (STMT NO. 19)
in Figure A.2 were followed by a CLEAR statement, and then by
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another START statement, and then by an END statement. This se-
quence of four statements would take the form shown in Figure A4.
If the Figure A.2 model file were modified accordingly, and were
submitted for execution, two replications would be performed with
the one-line, one-server model. By including another six
"CLEAR/START" statement pairs in the model file, then submitting
the resulting model file for execution, the eight replications whose re-
sults are summarized in Table A.1 would be carried out.

START 100 start the 1st replication
) CLEAR clear the model
) START 100  start the 2nd replication
) END end of model-file execution

Figure A.4 Modified START/../END Sequence
for the Figure A.2 Model File

If the technique described in the preceding paragraph is fol-
lowed, then there will be seven consecutive "CLEAR/START" pairs
preceding the END statement at the bottom of the model file. In
Wolverine Software's GPSS/H, a single "CLEAR/START" state-
ment pair can be made the subject of a DO/ENDDO loop, with con-
trol then traversing the loop any number of times (such as 7 times)
specified by the modeler. This is but one example in a large set of
capabilities included in GPSS/H to facilitate the execution of run-
control statements in GPSS modeling.

Another way to produce confidence intervals in GPSS model-
ing is to design the model file in such a way that confidence intervals
themselves (rather than just the individual results from a series of
replications) are reported out at the end of a simulation. This can be
done in GPSS/H, for example, with the use of LET statements
(which are computational statements), PUTPIC statements (which
are general purpose output statements), and external ampervariables
(which make it possible to invoke an external routine to obtain dy-
namically the t statistic(s) needed to compute confidence intervals).
This can also be done in MINUTEMAN Software's GPSS/PC, for
example, by combined use of the RESULT command (to put simula-
tion results into a specified file) and of the ANOVA command (for
postsimulation analysis of variance).
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