Proceedings of the 1989 Winter Simulation Conference
E.A. MacNair, K.J. Musselman, P. Heidelberger (eds.)

SIMULATION WITH PCModel

Young G. Chung
David A. White
Simulation Soltware Systems, Inc.
San Josc, CA 95131

ABSTRACT

This paper reviews a PC-bascd graphic
simulation system known as PCModcl. PCModel
takes a unique modeling approach by providing the
user with a very simple yet powerful set of
instructions for graphic modeling plus a highly
interactive run-time control commands for effective
What-if gaming. The flexibility and user-
interactiveness of this system provides an accurate
and economical tool for analyzing manufacturing
systems.

1. INTRODUCTION

PCModel 1s a graphic simulation system
specifically designed to model the movement and
decision making of OBJECTs as they flow through a
series of process steps called a ROUTING. Typical
objects would be machine parts, silicon walfers,
purchase orders or invoices, clectronic messages,
appliances, printed circuit boards, or pallets.

PCModel has a unique feature of displaying the
actual movements of the objects in simulated time.
A crucial feature of PCModel is that only one object
can occupy an overlay location at a time. The
physical contingency of objccts, parts, or rcsources
i1s automatically sensed and maintained by the
underlying system.

PCModel will function on the IBM PC, PS/2,
or AT (and compatibles) with no additional
hardware requirements.

2. PCMODEL FEATURES

PCModel provides the uscr with a main
simulation screcn, seven dynamic information
screens, and a varicty of run-time commands and
modcling instructions. This is what makes
PCModel unique, because this cnables the user to
have a complete control over the simulation while
thc model is running as well as to develop a
sophisticated modcl using the modcling instructions.

The PCModel system automatically updates and
maintains the dynamic information scrcens. Any of
the these screens can be accessed by the uscr during
the simulation to provide up-to-date information on
the model status. The Help Menu screen of
PCModel shows all the run timc commands
available for controlling the simulation. The
following diagram shows the organization of
PCModel.

Jog EVENT PARAH. || ARRAY VALUE UTIL. DESCR
SCREEN || SCREEN | | SCREEN |{ SCREEN || SCREEN || SCREEN || SCRLEN

Simple Instructions Freeze/Save/Restore
FH/FL for Queuing On-1line Help Henu
Trace Feature Main Autonatic Utilization
Keyboard Sinulation Sixulation WIP/UCC

Dynanic Bar Graph Screen Clock Advance Hode
Mouse Interface Data/Report Files

Pop-up Henu Display Nodes

Custon Ikons (Option) 1 EMS Support

Highly]nfgmdi:ve :] Concurrent Animat ion
Built-in || PCHEDIT External || Linkage Built-in || PCHMOLYFR
Overlay || for text || Process to Nodel LINENUMB
itor | editing || featore || LOTUS || Builder ;| CONVERT

Figure 1: Organization of PCModcl

Other features of PCModc! arc summarized as
follow;

0 You can freeze the simulation by pressing the
space bar and resume it with G key. You can
save thc simulation in progress to a disk and
restore the saved simulation at any time.

0 You can define up to 100 locations for automatic
collection of percentage utilization. The
utilization screen can be accessed at any time
during the simulation.

0 A help menu screen can be accesscd by pressing
H or F1 key without disturbing the running
model.

1130

o]

A diagnostic trace feature allows you to trace
objcct statement processing on a line-by-line
basis.

PCModel typically simulates at greater than
1000 times real time. The simulation pace can
be adjusted.

Work-In-Process and Work-Complete-Counts
are constantly displayed.

You can display statistics with dynamic bar
graphs.

You can easily crcalc your own pop-up menus.
You can select different display modes.

A pop-up system status screen is available to
show the current status of memory allocations.

You can read and write free format ASCII
data/report files.

You can create sound effects.

The PCModel system also comes with
supporting utilities that make modcling even easier.

o The built-in Overlay Editor allows the uscr to
define the overlay over which the objects
(entities) will be traveling. It featurcs text edit,
line and box drawing, [ill and copy functions as
well as macro image save and retricval capability
(The complete IBM character set is supported in
sixteen colors). The logical screen can be over
32,000 grid coordinates and the ten number keys
can be assigned to dillcrent views of a model
overlay larger than the display screen.

The eXternal Process feature of PCModel
supports interaction of the model with user
wrilten programs in C, Fortran, or Pascal. This
fcature allows a varicty of new applications, such
as the real-time process monitoring, calculation
of complicated mathcmatical cquations, and so
on. This featurc along with the EMS (Expanded
Mcmory Specification) support cnables
modcling of very large and sophisticated models.

Software is available to assist pointing and menu
selcction using a mouse or other pointing
devices.

A software utility is available to creatc your own
custom characters (o usc as ikons for adding
rcalism to object representation.

The utility PCMLOTUS converts statistics files
into a format acceptable by Lotus. The utility
PCMLOTUS is a Lotus worksheet used to
calculate the Mcan, Standard deviation,
Minimum and Maximum percentage utilization
for any specified period.

1131

The utility PCMOLYPR converts an overlay file
into a format that can be printed. LINENUMB
creates a line-numbered version of the
application file for easy debugging.

The Builder enables an inexpericnced modeler
to build workstations/transporter modecls
graphically without writing any code.

PCMEDIT, the supplicd [ull screen text editor,
allows the user to edit programs.

3. MODELING PROCEDURE WITH PCMODEL

In general, deveclopment of a successful
simulation model requires the model developer to
follow a certain procedure. There may be slight
variations depending on the software. The first step
in model development is to define the problem and
prepare a model specification. This provides a basis
for designing the model structure and data input
and output formats. Once a specification is rcady,
data collection and model building can be started.
As long as all the input paramcters and their
formats are defined in the specification, you can
crcate a dummy input data file and start the model
building activity.

REAL
SYSTEM

MODEL SPECIFICATION
!
[1

GRAPHIC LOGIC
OVERLAY STATEMENT
| N
T
FEED BACK PCMode1
SESSION
4

I
REPORT FILES

ANALYSIS OF RESULTS

CONCLUSIONS

Figure 2: Modeling Procedure

Building a simulation model with PCModel
involves two components. You nced to draw an
overlay, a schematic representation of the actual
system, using the built-in graphic editor. Then you
create a model statements that describe the

movement and behavior of the system components,
i.c. entitics. Preparation of both the overlay and
model statements can be done without cver leaving
the PCModel system, since you can invoke the
overlay editor and the text cditor from the PCModel
help menu sercen.

Once the model is ready (both overlay and
modcl statements), you can analyze the system
bchavior as the model runs and try What-If
scenarios. You can also create report files after
cach simulation run (or further statistical analysis.

Il any change nceds to be made as you verify
and validate the model, you can invoke cither the
overlay editor or the (ext cditor to make the
appropriate change anytime during simulation. You
can then reload the model and start a new
simulation run without Icaving the PCModel system.
This allows the user to develop a complete model in
an cxtremely efficient fashion. The modcling
procedure using PCModecl is summarized in figure
v

4. PROTOTYPE MODEL FILE STRUCTURE

;~-—-DIRECTIVES AND SYMBOLS------eene--
; Wip Limit to 40 objects

L =(40)

BARBERSHOP SIMULATION

The typical structure of a PCModel application
(statements) file can be viewed as consisting of (wo
major parts: load-time directives & symbol
definition, and run-time instructions.

Load-time directives & symbol dcfinitions
consist of directives that are exccuted only during
the loading process. They initialize and dircct the
simulation environment. Examples include
specification of the background Overlay file,
reservation of memory space for symbols, delinition
of WIP limit, specification of the manncr in which
groups of objects following the same route are to be
released into the model, definition of utilization
statistic collection points, and definition of variable
names and initial values assignments, dcfinition of
array names and dimensions.

Run-time instructions are cxccuted only while
the simulation model is running. Instructions are
used to control the movement of objects or to
update model parameters. The various movement
paths and decision making processes that objects
follow are called routing and are made up of a
sequence of run-time instructions. Links
(=subroutines) are routing segments that can be
used by multiple routes.

ONE-LINE SINGLE-SERVER QUEUEING MODEL
John Pcters, Simulation Software Systems, 10/20/87

$
0=(=)

ZINTER.ARRIV = (15:00)
ZARRIVAL = (00:00)
ZHAIR.CUT = (15:00) ;
%HAIR.STD = (2:00)

%CUT = (00:00)
@WAIT.CHAIR = (30)
*DOOR =(XY(7,15))
*BARBER = (XY(65,15))
J=(1,*,1,0,0,0,5000)
U=(1,Barber,*BARBER)

;----BEGIN ROUTE NUMBER ONE------------

; Begin Route 1 at *DOOR, Expo. arrival times.
; Move object right @WAIT.CHAIR steps

BR(1,*DOOR,%ARRIVAL)
MR (@WAIT.CHAIR,0:00.00)

; Overlay File with the same name

; Mcan time between arrivals

; Random time of arrivals

Mecan time required for a hair cut

; Std. deviation for a hair cut

; Random time to get a hair cut

; Maximum number of chairs [or waiting
; Door location on the screen

; Barbers position

; Job Directive - Job #1

; Collect the utilization of the barber

RV(N,%CUT,"ZHAIR.CUT,7 HAIR.STD); Rand. hair cutting time (Norm. Distr)

MA(*BARBER,%CUT)

; Move to barber and get hair cut

ER ; End of Route 1

Figure 3: A Barber Shop Model

1132

A complcte program listing of a barber shop model
is provided in the Figure 3. Directives and variables
arc defined and initialized in the top portion of the
program, then the movement and decision making
of the system entities arc described in the routing.

5. RUN-TIME INSTRUCTIONS

Begin Route, End Route; A ROUTING is
initialized with a BR instruction and ended with an
ER instruction. This BR (Begin Route) instruction
delines a routing number, where the starting point is
to be in the Overlay picture, what delay (hours,
minulces, seconds and hundredths of a second) there
is before proceeding to the next instruction, as well
as establishing the inter-arrival time of objects
entering that routing,.

BR(route,xy,tt), ER

Move Up, Movce Down, Move Right, Move
Lelt, Relative Move; Move instructions are
cither relative or absolute in their action. Move up,
down, right, left instructions move the object a
rclative distance from where it started, coming into
this instruction. RM is another relative move
instruction which also moves an object a relative
distance, but with a slightly dilfcrent approach. The
MU, MD, MR, and ML instructions delay
movement for the designated amount of time. Then
they check that the next location (ic the adjacent,
column-row cell in the dircction of movement) is not
occupicd before moving to it. They do this for cach
itlcration until reaching their destination. For
cxample, MU(3,%MOVET) moves the object up 3
rows, with a delay of ZMOVET after each of the 3
itcrations. Note that the time delay for all these
instructions may in fact be zero, causing the object
(o movce in zero time.

MU(w,tt), MD(w,t)
MR (vv,tt), ML(vv,tt)
RM([W’] +XX ’ 'XX’+yy| 'YYa“)

Move Absolutc; Onc must usc an absolute
move instruction, MA, when it is not ccrtain where
the object is located (such as coming into this
instruction from a jump).

MA (xy,Lt)

Wait Time, Wait Clock, Wait Advance, Wait
Event; These instruction causc the object to wait
for a certain time delay belore it exccutes the next
instruction. WT adds a specific time delay you
define, whereas WC causcs the object to wait until
the simulation clock becomes cqual to the specificd
time.

WT(tt), WC(tt)

WA causes the object to wait until the
simulation clock advances. WE causcs the object to
wait at the current instruction until at Icast one new
event occurs.

WA, WE

Test Position; TP is used to test the target
screen location(s) for occupancy. 1f any ol the
specified locations are blocked or posted, the object
will wait until all locations are clear.

TP([A,]xy[,--xy])
TP(R,(+ |30+ [yy) o+ 5.+ [-yy)])

POst, CLear location; PO posts a location as
occupied. CL is used to clear a posted location. PO
and CL are used in conjunction with TP [or
synchronizing objects movement.

PO(xy[,char(,bg[.fg]]])
CL(xy[,char[,bg[.fg]1])

JumP; This instruction is used to make an
unconditional jump to a specified routing label for
controlling logic flow. You need to specify the label
to jump to.

JP(:c..c)

Jump if Blocked; This is similar to JP, but it
jumps to a specificd routing label only if any of the
specified locations are blocked. Otherwisc, the next
instruction will be executed. You can specify
absolute or relative locations.

IJB([A,Ixy[,.-.,.xy],:c..c)
IB(R,(+ |-, + | -y¥)[seon(+ | =%, + | -yy)],:C..C)
Jump if Clearcd; This instruction will causc
the object movement control to transfer to the label
only if ALL locations spccificd in the instruction are

cleared. Otherwise, the next instruction will be
exccuted.
JC([A,Ixy[,...,xy],:c..c)

JC(R,(+ |-, + |-yy) [(+ |-xX, + [-y¥)],ic..0)
Random Seed; PCModel allows for using up
to ten different random number strcams. This
instruction is used to initialize the pscudo-random
number generation function by speciflying its sced.

RS([strcam,]nn)

1133

Random Valuc; This instruction is used to
generate a random number following a certain
distribution. PCModel supports Normal,
Exponential, and Uniform distributions. If your
data does not form a known distribution, you can
define your own custom distribution (both
continuous and desercte). Note that the random
number stream should have been initialized with RS
before RV is used for the first time.

RV([stream,|rand, lolimit,hilimit)
RV([stream,|U,rand,mcan,sprcad)
RV([stream,|N,rand,mcan,dcviation)
RV([stream,|E,rand,mcan)
RV([stream,]C,rand,tablc)
RV([stream,|D,rand,table)

Sct Value; This instruction is used to set the
value of a symbolic reference to a known value. It
allows mixed opcrations between all data types and
object parameters (with a few restrictions).

SV(vv,nn)

Arithmetic Operation; This is used for
arithmetic operations on two valucs. Notc that the
first operand is multiplicd by the sccond opcrand
and the result is stored in the first operand.

AO(W1+ |-|*|/>nn)

Increment Value, Deerement Value;, 1V
increments, and DV dcerements the present value of
a variable by 1. Note that clock values will be
incremented or decremented by 00:00:00.01.

IV(w), DV(w)

Print Message; PM is used to print a message
at a specific location on the screen or to a report
filc. You can specily the background and
forcground colors when printing on the screen.
When printing to a file, a comma after the message
will concatenate the next message.

PM(xy,"msg"[,bg[,lg]})
PM(F,"'msg"(,])

Print Value; PV is uscd to print a valuc at a
specific location on the screen or to a report file.
You can specify the background and forcground
colors when printing on the screen. Also you can
control the start and lcngth of the value to be
printed. When printing to a file, a comma is used to
concatenate the next ficld.

PV(xy,w[,start[,length[,bg[.fg]]]])
PV(F,w[star([,length]][.]))

IF; This instruction is used to compare two
different values and select the processing statement
based on the result.

1F(nn,cond,nn,[THEN][GOTO],truc[,ELSE]],
GOTO]],false])

Begin Link, End Link, LinK; This instruction
is uscd to specify the start of a link with a link name.
A link in PCModel is cquivalent to a subroutine in
Fortran. Use EL to designate the end of a link. LK
causes the object to jump to the specificd link and
cxecute from the first instruction of the link. At the
cnd of the link, the object will jump back to the next
instruction after the LK instruction.

BL(!label), EL
LK(!label)

Initialize Array; This instruction initializes all
members or specificd column or row clements of an
array to a specified value. Declault value is zero.

[A(array[(col,row)][,valuc[,start[,length]]])

Set Color; This instruction allows you to
control the foreground and background colors of an
object.

SC(bg,fg)

Find-High, Find Low; Thesc instructions arc
used to scan a specificd column or row of an array
to find its highest/lowest value, returning the index
(or indices) to the value. You can also specily a
sccond array to be used as indices into the array of
values.

FH(highest,data(c,r)[,index(e,r)][,start[,length]))
FL(lowest,data(c,r)[,index(c,r)](,start[,length]])

Get Character; This instruction is used to get

the character ID (ASCII valuc) and color attribute
value for any character displaycd on the overlay.

GC(xy,char[,be[,fg]])

Generate Sound; This instruction is uscd to
generate a sound. You can control the duration and
the pitch of the sound.

GS([pitch[,duration]])

Get Value; This instruction is used o accept a
value from the user.

GV([xy,]valuc)

1134

Time Stamp; ~ This instruction is uscd to
access the the actual time uscd by your system.

TS(%var)

KeyBoard; This instruction basically allows
you to simulate any keyboard action [rom within
your program.

KB(command)

Simulate Event; This instruction is used for
signaling to the system that somcthing has happencd
to change the state of the simulation, which
normally occurs for all cvent type instructions.

SE[(D]
6. APPLICATIONS OF PCMODEL

PCModel has been used by more than 1200
professional enginecers world-wide. Its application
areas include Production and Assembly Line,
Warchouse Operation, Material Handling Systems,
Job-Shop Scheduling, IC Fab Operation, Service
Industrics, and JIT/Kanban System, to list a few.
The following presents some of the PCModel
applications with a brief description.

Group Technology - This model is developed
to comparc performances of different process
layouts in a bike asscmbly plant; the conventional
process layout by product and a new design with GT
concept. This model clearly decmonstrates the
concepts and benefits of Group Technology.

Circuit Card Asscmbly Line - This is a
simulation of an electronic circuit card packaging
facility consisting of an automatic transportation
system and four Lypes of inscrtion machines
cquipped with automatic load-unload devices. This
modcl shows dynamic qucuc status and statistics
using bar graphs. Different process routings and
device dependent process times are specified in
uscr input data file.

Automated Kitting Facility with ~ Carouscl
Inventory - This model was developed to simulate a
kitling ~process of military ~ communication
cquipments at Rockwell International, Dallas, TX.
The primary purposc of the model was to verify
their proposcd system design against throughput
objectives. It also had a sccondary purpose of
exploring various proposcd control algorithms to be
implemented as part of the final process-control
soltware.

Integrated Circuit Fabrication Processing - The
model was developed to graphically simulate the
fabrication activity at a major I.C. manufacturer,
The modecl has proved to be an excellent vehicle for
cvaluation of scheduling rules, for studying the
impact of changes in machinc and opcration
altributes on system performance, and in training
managerial personnel.

Random Access Waler Processing Equipment -
This model was devcloped for an manufacturer of
waler processing equipment, and provides a tool for
designing control algorithms for wafer transfer
system and for evaluating dilfcrent cquipment
layout tradeoffs.

Warchouse Simulation - This model was
developed for a major garment industry distributor
implementing radio-dispatched material handling
cquipment. The primary objectives of the model
were lo analyze material llow patterns in the
warchouse and to cvaluate different dispatching
rules for radio equipped trucks.

Containerized Marinc Cargo Facility - This
model was devcloped to study the impact of
container layout strategics in the containcr-yard on
the utilization of the matcrial handling cquipment
and the efficiency of the ship loading proccess.

7. CONCLUSIONS

PCModcl provides the modeler with a complete
cnvironment for efficicnt modcling activitics.
Unlike other menu-driven simulation systems,
PCModecl requires the modeler to be fluent with a
sct of high level programming instructions. This
tradeoff results in morc detailed and flexible
simulation models that more accurately reflect the
actual or proposed systems.

8. REFERENCES

Chung, Y. G. (1986). An Animated Simulation
Model for a Transtainer-based Container
Handling Facility. Master's Thesis, Oregon State
University, Corvallis, Oregon.

White, D. A. (1989). PCModcl, Personal Computer
Character Graphic Modcling System.
Simulation Software Systecms, Inc., San Jose,
California.

Chung, Y. G. (1988). Course Outlinc for Graphic
Simulation using PCModel and CADmotion.
Simulation Softwarc Systems, Inc., San Josc,
California.

1135

9. AUTHOR'S BIOGRAPHY

Young G. Chung is a simulation analyst at
SimSoft. He has been providing graphic modeling
and cngincering consulting scrvices for a varicty of
industries since 1986. Hec holds a Bachclor of
Scicnee in Industrial Engincering from Hanyang
University and a Master of Scicnce in Industrial
Engincering from Oregon State Universily.

Young G. Chung

Simulation Sof(ware Systems, Inc.
2107 North First Strect, Suite 680
San Jose, CA 95131
(408)436-8300

David A. White is president and founder of
Simulation Software Systems, Inc. He rcceived his
B.S. in Electrical Enginecring from San Jose State
University in 1974, Prior to founding his company,
he worked as an Advisory Manufacturing Engineer
for IBM's General Product Division. In that
capacity he had technical responsibility for
cstablishing manufacturing and test processes for
that company's stratcgic products. His current
activitiecs include cnhancement of personal
computer basecd modeling and simulation software
and techniques. He is a member of SCS and IIE.

David A. White

Simulation Software Systems, Inc.
2107 North First Strcet, Suite 680
San Jose, CA 95131
(408)436-8300

1136

