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ABSTRACT effect) reasoning.

Computer simulation and expert systems This paper describes an expert-system/
technologies have the same goal: the study of graphic-computer-simulation interface for an
intractable, complex systems for which stan- Intelligent Simulation Training System (ISTS)
dard algorithmic methods of study are inade- which is currently under development. Section
quate. An expert system can be interfaced 2 describes the ISTS. Reasoning tasks which
with a graphic computer simulation to reason must be performed by the ISTS are outlined in
about physical systems. Such an expert system Section 3. In Section 4, the requirements for
needs the ability to reason qualitatively computer reasoning about physical systems are
about simulation objects. This reasoning enumerated. Section 5 includes discussion of
includes temporal, spatial, and causal (cause expert-system perception of the simulation and
and effect) reasoning. This paper describes prediction of future events. Finally, conclu-
an expert-system/graphic-computer-simulation sions are drawn in Section 6.

interface for an Intelligent Simulation
Training System (ISTS) which 1is currently
under development. Important design consider-
ations include the reasoning tasks involved,
mechanisnms for reasoning about physical
systems, and machine perception of simulation
data for use by the expert system. It is
necessary to carefully design the interface
between a graphic computer simulation and an

expert system in order to realize automated,
intelligent training related to physical
systems.
1. INTRODUCTION

Computer simulation and expert systems
technologies have the same goal: the study of
intractable, complex systems for which stan-
dard algorithmic methods of study are inade-
quate. The success of each of these technolo-

gies depends on how well the simulation model
or reasoning mechanism is fitted to the appli-
cation domain.

A domain may 1lie anywhere between two
extremes. At one extreme are domains in which
the knowledge is ill-specified. It is hard to
determine what the basic conceptual primitives
are within the domain because the underlying
theory 1is not sufficiently developed. At the
other end of the spectrum are domains which
have become so formalized and well-understood
that efficient algorithms have been developed
for problem solving. In the middle of the
spectrum lie domains which are amenable to
study via computer simulation and/or expert
systems. These domains are sufficiently
understood to be modeled, yet they cannot be
approached algorithmically.

An expert system can be interfaced with a
graphic computer simulation to reason about
physical systems. Such an expert system needs

the ability to reason gqualitatively about
simulation objects. This reasoning includes
temporal, spatial, and causal (cause and

2. INTELLIGENT SIMULATION TRAINING SYSTEM

2.1. Purpose

An Intelligent Simulation Training System
(ISTS) is currently under development at the
University of Central Florida (Department of
Industrial Engineering and Management Systems;
Dr. John E. Biegel, Principal Investigator).
This system consists of a graphic computer
simulation, an expert system, and a user
interface (Biegel, et al. 1988b). The pur-
pose of the ISTS is to instruct students in a

particular domain in such a way that the
instruction is tailored to the students’
individual needs. Artificial intelligence
technology is being applied in order to
achieve this goal. It is desirable to have
real-time processing capability in the final
system.
The ISTS is being developed on

Symbolics 3630 LISP machine in Symbolics LISP

(a superset of Common LISP). The ISTS is
generic; suitable for any domain which can be
described by a graphic computer simulation.
2.2. Description

The graphic simulation
manipulates objects within
which is represented in two dimensions on a
color monitor. The simulation is driven and/
or modified by an intelligent tutor. It is a
continuous, dynamic simulation, in which
objects are moved on the screen in a time-
dependent manner.

displays and
an "environment"

The wuser interface is the means by which
the student (user) can communicate commands to
the simulation objects (thus affecting the
simulation scenario.) The student’s objective
is to manipulate the simulation objects in
such a way that tutoring goals for the parti-
cular domain are met. At the same time, cer-
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tain constraints should not be violated. The
user interface is also necessary for viewing
or changing other aspects of the ISTS, such as
records of student performance in managing
simulation objects.

The expert system is closely connected to
the graphic simulation. Its purpose is to
instruct the student and rate the student’s
performance in controlling the simulation
objects. The expert system contains two
expert components: the domain expert and the
domain instruction expert. The domain expert
contains knowledge of skills and methods to be
taught within the domain. The domain instruc-
tion expert contains knowledge of skills and
methods for teaching the particular domain
(e.g. which topics to teach initially, etc.).
These two modules comprise repositories for
all of the domain-dependent information
(except, of course, the simulation). This
design allows the remainder of the system to
be generic. Each time the ISTS is applied to
a new domain, a domain-dependent knowledge
base must be elicited (and a simulation must
be developed) . Other, domain-independent
modules (e.g. the tutor, student model, eval-
uator, etc.) access and use the domain-depen-
dent knowledge during inferencing. Therefore,
the success of the whole system depends on the
accuracy and sufficiency of the domain-
dependent knowledge bases.

2.3. ELICIT

We are undertaking to develop an auto-
matic knowledge acquisition module for elici-
tation of an expert system’s domain-dependent
knowledge base. This module will be called
ELICIT: Expertise Learner and Intelligent
Causal Inference Tool. ELICIT is intended to
ease the process of using the ISTS in a new
domain. It will serve as a front-end
knowledge-based system which elicits and
represents the domain-dependent knowledge base
in such a way that it can be effectively used
by the ISTS (Interrante. 1989).

In developing ELICIT, the main consider-
ations center around the following:

1. What type of reasoning must an expe;t
system perform to "understand" what 1is
happening in the simulation?

2. What kind of 1language 1is needed to
describe the succession of simulation
events (and the implications thereof) in a
qualitative manner for reasoning purposes?

3. What is the relationship between the
certainty of the current state of the
simulation and future uncertainty in

reasoning about possible future events?

4. How should the expert system "perceive"
the simulation?

In other words, what kind of knowledge must
the expert system possess in order to be gble
to successfully interface with the simulation?

Although these issues are central to ?he
entire ISTS project, they have surfaced dur}ng
the development of ELICIT for the following

reason. In order to design an automatic know-
ledge acquisition system, one must develop an
internal 1language (description language) that
is able to capture the information needed for
adequate reasoning in the application. 1In the
case of the generic ISTS, the application is
this: "understand" the simulation to the
point that expert performance in manipulation
of simulation objects is possible. The expert
system functions as an intelligent agent which
is "looking on" as the simulation progresses,
reasoning about the succession of simulation
events, and responding by issuing commands to
simulation objects.

3. REASONING TASKS
3.1. Analysis versus Synthesis Tasks

There is a broad range of reasoning tasks
which an expert system can exhibit. The sim-
pler of these tasks are interpretation, pre-
diction, and diagnosis. Expert systems which
perform these tasks are known as analysis sys-
tens. The majority of expert systems which
have been developed are analysis systems.
They are typically bottom-up, knowledge-sparse
systems which do not rely on a domain model or
a model of the knowledge base to perform
inferences. Many pure production systems fit
this category.

Unfortunately, most complex, real-world
problems cannot be solved via analysis sys-
tems. This 1is particularly true of problens

in which solution methods depend on models of
physical systems. Most problems in the field
of engineering fall into this category.

In addition to interpreting, predicting,
and diagnosing; engineers design, plan, moni-
tor, debug, repair, and control. Expert sys-
tems which are designed to teach expertise to
novices perform the complex reasoning task of

instruction. Synthesis systems perform these
higher-level reasoning tasks. They are know-
ledge-rich, top-down, model-driven systems
which rely on meta-knowledge and a sophisti-

cated representation paradigm for inferencing.

Relatively few synthesis expert systems have
been developed.
3.2. IST8 Reasoning Tasks

The ISTS must perform complex, synthesis-

The system must monitor
the simulation as it progresses. It must
interpret a particular simulation scenario.
It must predict the events that will occur in

type reasoning tasks.

the future, based on the current scenario.
The system must determine the roles which
particular elements of the current scenario

will play in upcoming events. It must plan
methods for achieving domain goals, as well as
for avoiding negative events. The system must
monitor student actions and analyze these
actions by comparing them to expert behavior
within the same context. This expert behavior
is generated by the ISTS by drawing upon the
domain expert component. The system must be
capable of "repairing" the scenario (carrying
out plans to avoid upcoming negative events)
when a student asks for help.
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In short, the system must monitor and/or
control the movement of simulation objects, as
well as monitor student behavior. It must
instruct the student in such a way that the
instruction is unique to the state of the
simulation as well as the particular student’s
needs. These are very complex reasoning
tasks.

4. REASONING ABOUT PHYSICAL SYSTEMS

Inherent to an
capable of

expert
synthesis tasks is

system which is
a method of

representing the physical domain upon which
the reasoning is based. In traditional engi-
neering problem solving, this representation

is quantitative. The representation consists
of variables which represent state parameters,
with numeric coefficients in equations. The
equations represent relationships and
constraints in the domain.

An expert system, however, needs a quali-
tative representation of the domain. This
reduces the information about the domain to
the essential features of the problem. This
information reduction eases the task of
focusing during problem solving. Appropriate
focus is necessary for efficient problem
solving in expert systems which perform com-
plex reasoning tasks. Time, space, and cau-
sality must be represented to capture impor-
tant concepts for reasoning about a physical
systemn.

4.1. Temporal Reasoning

Temporal reasoning is a mechanism for
drawing inferences about objects whose
behaviors are time-dependent. Time may be
represented discretely or continuously.
Shoham states that a theory of time must
provide:

1. A description language for stating the
true and false predicates at various

points in time and for comparing scenarios
at different instances of time to deter-
mine relevant changes.

2. A way of reasoning about acceptable or
unacceptable changes (a way to constrain

the allowable type of change) in the
description language (Shoham. 1988).
4.2. Spatial Reasoning
Spatial reasoning cannot be separated

from temporal reasoning when drawing inferen-
ces about a physical system which contains
moving objects. It is necessary to know where
objects are at a certain instance of time as
well as where objects are expected to be at
some future instant. Spatial reasoning (as
well as temporal reasoning) can be absolute or

relative. In absolute spatial reasoning the
object’s position is compared to a fixed
origin. Relative spatial reasoning deals with

the position of one object as compared to that
of another object (or objects).

4.3. Causal Reasoning
objects in a

Reasoning about physical

system requires more information about the
relationships among objects than temporal or
spatial information alone. It is necessary to
have information about how the behavior of one
object affects the rest of the physical sys-
tem. A model must be employed 1in reasoning
about domains which are related to physical
systems.

A causal model cause-effect
relationships among objects in a domain.
causal reasoning involves deduction of the
global behavior of a system based on cause and
effect behavior of its individual components.
In this way, the system supports top-down
reasoning about the domain represented by the
model.

represents

Another benefit of a model is that it
serves as an organizer of domain Kknowledge.
Related bits of knowledge are grouped together
with the object to which they correspond.
Reasoning about a particular object or rela-
tionship 1is efficient since all knowledge
related to the object or relationship is
stored in one place. Furthermore, knowledge-
rich, top-down methods such as causal modeling
exhibit noise immunity and they are relatively
easy to extend and modify.

Causal models are necessary for expert
systems which perform synthesis reasoning
tasks in domains which involve physical
systems. Knowledge of cause and effect is
necessary in order to explain or predict the
behavior of physical systems. Without causal
information it is difficult, if not impos-
sible, to have the understanding necessary for
reasoning about the state of a physical system
and for predicting events within that systemn.
A causal model provides knowledge of the con-
sequences of particular actions on components
of the system. Causal reasoning provides
information about when and why changes occur-
red in the system by maintaining a history of
dependencies among system state changes.

Elements of the expert system (causal)
domain model should be analogous to simulation
objects. In this way, a cross-reference
exists between the expert system model and the
simulation model. The expert-system/graphic-
computer-simulation interface must be designed
to take advantage of this cross-referencing.
Figure 1 illustrates the type of information
which must be passed through the interface.

The simulation passes object position and

object speed information to the expert system
when requested (see Section 5). The expert
system issues commands to the simulation to

change object movements.
4.4. ISTS Reasoning about Physical Systems

The graphic computer simulation makes use
of time-dependent equations to determine where

to depict objects within a scenario (i.e. on
the CRT) at any given time. These equations
are necessarily quantitative. They express
the ‘"physics" of the domain. Unfortunately,
these equations cannot support efficient,
knowledge-based reasoning related to the
simulated domain. The processing requirement

would be prohibitive for drawing inferences on
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Figure 1: Simulation/expert-system interface.

this basis because of:
1. the complex reasoning tasks involved,

2. the many simulation objects that may exist
in one scenario, and

3. the 1lack of a real-time processing capa-
bility.

A mechanism is needed for analyzing the
state of the domain qualitatively and making
decisions on this basis (as much as possible).
This 1is similar to what human experts do.
After a certain amount of experience, e.g., a
human air traffic controller can '“eye" an
undesirable situation developing on a radar
screen and perform the necessary actions to
correct the situation. The expert controller
needs little quantitative information in order
to do this.

To build this capability into a computer,

the expert-system domain model must include
qualitative causal, temporal, and spatial
reasoning mechanisms. Objects affect each

other in time and space during the simulation.

These effects cause events to occur which are
also time- and space-dependent. Events, in
turn, affect simulation objects and cause

other events to occur. There is a network of
complex, interdependent interactions which may
be event-to-event, object-to-object, object-
to-event, or event-to-object relationships.
The domain model and associated heuristics
must represent these interactions qualita-
tively.

5. UNDERSTANDING THE SIMULATION AND PREDICTING
THE FUTURE

S.1. ExXpert-8ystem Perception of the Simula-

tion

the

Important questions arise in design

of the expert-system/computer-simulation
interface. The graphic simulation provides a
wealth of information from which the expert
system can draw for reasoning. As stated
previously, it is too time consuming to exa-
mine and attempt to use all of the simulation
data in this process. What data is most
useful for reasoning purposes? In a system

which performs complex reasoning tasks such as
the ISTS does, some data is more significant
than other data. Furthermore, the sign@fi—
cance of a particular datum changes with time.
How often should the simulation data be exa-

mined in this time-dependent application? 1In
other words, when should the expert system’s
data be updated by more current simulation
data? There 1is a tradeoff here between pro-
cessing time and accuracy.

a method is

Currently, being developed

for allowing variable time increments between
accessing of simulation data, depending on the
state of the simulation. At times when
objects are widely spaced and no critical

events are imminent, the time interval between
"glances" at the simulation should be rela-
tively large. At other times, for example,
object collisions may be imminent and more
frequent accessing of simulation data will be
necessary. The goal is to develop a situa-
tion-dependent type of machine perception for
the expert system.

S.2. Implications in the Prediction of Future
Events

In order to Jjudge the frequency for
accessing simulation data, it is necessary for
the expert system to be able to predict future
events based on the current state of the simu-
lation. To this end, a modal logic is being
employed. This mechanism will enhance the
expert system’s ability to monitor and control

simulation objects. The expert system’s
ability to pass this information on to the
student user during instruction will be en-

hanced as well. Information about the aspects
of the simulation which provoked particular
expert-system responses will be represented
explicitly in the expert systemn.

6. CONCLUSION

Computer simulation and
technologies are used to study similar
systems: intractable, complex systems for
which standard algorithmic methods of study
are inadequate. A problem-solving tool which
draws upon both technologies should prove to
be very powerful.

expert systems

much work needs to be accom-
designing an interface mechanism
for intertwining these technologies. This
paper defined some of the necessary design
features of such an expert-system/computer-
simulation interface which are being incorpor-
ated into ELICIT: Expertise Learner and
Intelligent Causal Inference Tool. Important
considerations include the reasoning tasks
involved, mechanisms for reasoning about

However,
plished in
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physical systems, and machine perception of
simulation data for use by the expert system.
Systems such as the ISTS provide a deeper
understanding of the application domain by
adding reasoning ability to a graphic computer
simulation. It is only with this "deep"
understanding that automated, intelligent
training related to physical systems can be
realized.
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