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ABSTRACT

Cache memories are used in computer systems to reduce
average memory access times. Existing techniques for pre-
dicting cache performance are often unsatisfactory in terms
of cost or performance. This paper presents a method for
efficiently simulating the effects of a cache on the execution
time of a program. We use an execution-driven simulation
approach that requires no hardware support and provides a
highly accurate dynamic address trace to a cache simulation
model. Almost all of the overhead in this approach is in the
cache simulation rather than the address trace generation. The
cache simulator is used in conjunction with the Rice Parallel
Processing Testbed to study the performance of concurrent
programs executing on multiprocessor systems with caches.
We have also developed an estimative execution-driven simu-
lator that greatly reduces the simulation overhead by using pa-
rameters extracted from a detailed simulation of a program’s
execution on a processor with a cache, along with an analyt-
ical model of cache behavior. The predictions and overhead
of the estimative technique are compared with those obtained
from detailed cache simulations.

1. INTRODUCTION

The development of improved techniques for cache per-
formance analysis is important because existing techniques
typically suffer from drawbacks such as large time and space
complexity, specificity to an existing architecture, or lack of
accuracy. When examining the performance of multiproces-
sor designs that include multiple caches, additional problems
arise due to coherency enforcement and the size of the traces
required for a representative analysis (which is proportional
to the number of processors).

The goal of this research is to develop a technique that
accurately and efficiently simulates the behavior of computer
systems with cache memories. Toward this end, we have
extended the execution-driven (Covington, et al. 1988) para-
digm to support the efficient simulation of caches in unipro-
cessors and multiprocessors. This approach requires no hard-
ware support and adds relatively low time and space over-
head. It is based on the principle of basic block profiling
(Weinberger, 1984).

The execution-driven cache simulator is used in con-
junction with the Rice Parallel Processing Testbed (RPPT)
(Covington, et al. 1988) in order to efficiently simulate
cache-based multiprocessor designs. This enables an accu-
rate prediction of the time at which events occur on the target
multiprocessor, and prevents any shifting of their order that
unpredicted delays due to cache misses might cause.
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Performing a detailed cache simulation adds a signif-
icant overhead to the actual execution of the program. A
simpler simulation model, which gives an estimate of the ef-
fect of the cache on the program, has also been developed.
This simplified execution-driven simulator uses parameters
extracted from a detailed execution-driven cache simulation
of the program under study, as well as an analytical model
for the cache behavior, to give a fairly accurate estimate of
the performance of the system.

Existing cache performance prediction techniques in-
clude hardware measurement (Clark, 1983), trace-driven sim-
ulation (Smith, 1982, Smith, 1987), and analytical modeling
(Agarwal, et al. 1989, Smith, 1987). Hardware measurement
requires specialized support equipment as well as costly im-
plementation, and limits analysis to an existing cache. Trace-
driven simulation post-processes a collected address trace in
order to determine the performance of different cache orga-
nizations. It has the disadvantage of being costly both in
space and time. Large caches require the use of long traces,
exacerbating the problem. Analytical modeling tries to char-
acterize a trace of execution and its address reference pattern
using a few parameters, which are then used to determine the
performance of various cache designs. The predictions suffer
from lack of accuracy due to the inability to model program
characteristics correctly.

Most software-driven tracing methods use an instruction-
by-instruction simulation of the application. They require
some form of single-step interrupting support or specialized
microcode (ATUM (Agarwal, et al. 1986)). In the former
case, for every instruction executed, the state of the processor
is saved, the instruction is decoded, the effective addresses of
memory references are generated and passed on to the cache
simulator, and finally the original state is restored for correct
execution (Thiebaut and Stone, 1987). Lack of hardware trac-
ing support or the simulation of a different CPU implies an
instruction-level simulation that emulates execution by inter-
preting each instruction (examples are MILS (Mips Instruc-
tion Level Simulator) and TRACER (Agarwal, et al. 1986)).

2. EXECUTION-DRIVEN CACHE SIMULATION

The main goal of execution-driven simulation is to avoid
the high overhead associated with instruction-level simulation
of sequential computers, while retaining most of the accuracy.
The resulting system is program-driven, but the overhead is
significantly reduced by parsing the program to get timing es-
timates and address trace information (at compile time). The
information obtained is then used at runtime to generate per-
formance predictions dynamically while avoiding a detailed
emulation of each instruction’s execution.



The ratio of emulation time to actual workload execution
time is called the slowdown factor or overhead. The overhead
associated with instruction-level simulation and address trace
generation is reported to be of the order of 1000 (Agarwal
et al.,, 1986). Using hardware tracing, the overhead is about
100, and if microcoding is used, the overhead is about 10 (this
figure applies to address trace generation, and not to the com-
plete cache simulation (Agarwal et al., 1986)) . By extending
the execution-driven concept to the dynamic generation of
address traces and simulation of caches, we have developed a
space-efficient approach that is significantly faster than con-
ventional instruction-level simulations.

2.1 Basic Block Profiling

The assembly language program is viewed as a collec-
tion of code segments called basic blocks. A basic block is
a series of consecutive assembly language instructions that is
contained within no larger basic block and has the property
that once the block is entered during execution, all instruc-
tions in it will be executed exactly once. Hence, accounting
for the execution time of the entire basic block can be done at
the beginning of the block (Covington, 1988). This approach,
called basic block profiling, keeps the overhead low without
sacrificing much in terms of accuracy. A similar approach
is used in (Mitchell and Flynn, 1988) for the simulation of
caches. However, only instruction addresses are traced. The
steps necessary in order to profile a program and simulate
the cache and the design of the translator are described be-
low. The implementation and issues described here are for
the 68020 CPU and the SUN Unix C compiler. The princi-
ples can, however, be extended to design a profiler for any
other processor and instruction set.

Generation of Assembly File and Executable Profiling is
done at the assembly language level, since the assembly code
is easily modified in order to capture the runtime information
required. A complete executable that corresponds to the
assembly version of the file must be generated. This is
necessary in order to generate accurate values for all virtual
addresses in the text space of the program, since these can be
statically determined at compile time.

Assembly File Parser and Profiler We have developed a
one-pass profiler, which parses the input assembly program
and inserts the necessary instructions to perform a dynamic
cache simulation of the program. Profiling analysis requires
the following steps —

1. The symbol table from the a.out executable is read
to determine the address at which each subroutine
begins.

The program is broken down into a set of basic
blocks.

At the start of the main procedure, code is inserted
to read the per basic block addresses that will be
statically determined and written to a file by the
profiler, as well as to initialize the data structures
for the cache simulation.

Instructions are inserted at the start of each basic
block to perform the runtime cache simulation and
determine the total execution time taken by each

basic block.
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As each instruction is parsed, its instruction space
address references are calculated, and, along with
the time taken by the instruction, are inserted into
a file (static address trace). The addresses are as-
sociated with the basic block to which the instruc-
tion belongs.

When an access by an instruction to a data refer-
ence is determined, code is inserted to extract the
data address dynamically at runtime, and a marker
is inserted in the static address trace to indicate the
point at which the reference is made.

As the profiler parses the start of every subroutine in the
assembly language program being profiled, it sets a simulated
program counter to the correct value, which is read from the
symbol table at the end of the a.out file. The value of the
label identifying the subroutine, along with the text address
base value, determines the starting address of the routine. The
symbol table is initially read from the a.out file and stored as
a hashed linked list in order to make the search for the value
of any label quick.

For each program file, the profiler collects the following
information:

virtual instruction addresses accessed by the pro-
gram,

the number of clock cycles required for each ref-
erence, and

a value to indicate whether the operation is a read
or a write

At runtime, the code inserted at the start of every basic
block reads the statically generated addresses and dynamic
address markers for that basic block and determines the effects
on the cache as well as on the time taken by the basic
block. Addresses are read until either the end of the trace
for the basic block or a marker for an address that must
be dynamically generated is encountered. The code inserted
before a data reference extracts the data address at runtime,
and then processes the rest of the static address trace for
the basic block until either another dynamically generated
address or the end of the reference stream for the block is
encountered. Figure 2.1 shows a piece of 68020 assembly
code with profiling instructions (indented).

jbsr _atoi
movl #2, _bblkno /*set the basic block
*number to the correct
*value*/
jbsr _genadr /*simulate the cache until
*the next data address*/
addgw #0x4, sp
pea a6@ (-56) /*extract the data address*/
movl sp@+, _addr
movl #0, memacctype
movl #3, _cycles /*indicate the time
jbsr _insert *taken by the access*/
movl a6@ (-0x38), dO
pea a6@ (-0x18)
movl sp@+, _addr /*write access*/
movl #1, _memacctype
movl 62, _cycles
jbsr _insert
clrl a6e (-0x18)
moveq #0x1, dO

Figure 2.1: Profiled Assembly Code



Statically Generated Addresses These addresses are nor-
mally instruction addresses since they are deterministic and do
not change after having been linked into the final executable.
Introduction of the profiling and simulation code changes the
values of program addresses. It is essential that the address
trace and timing information generated should be that which
would actually occur if the original program rather than the
profiled version were run. Since all instruction addresses are
generated statically during profiling, this guarantees that the
code inserted into the assembly language program in order
to accomplish the profiling does not affect the values of the
addresses generated. Hence, all instruction addresses are gen-
erated using information from the executable’s symbol table.

Dynamically Generated Addresses Data addresses that
are referenced indirectly either through a register or through
memory cannot be generated statically. Similarly, absolute
address references cannot be generated statically, even though
they can be determined at compile time, since such references
would be at variance with the data addresses generated at run-
time that have a constant displacement due to inserted code
and data, as discussed later. Hence, all data addresses are
generated dynamically.

Insertion of code between existing assembly language
instructions can cause errors with instruction-space related
jumps. These jumps make implicit assumptions about the
pumber of bytes between the current program counter value
and the location to be read. Figure 2.2 shows an example.
Any errors can be avoided simply by not inserting code before
a jump statement, which is not required in most situations.

cmpl 46, dO

jhi L1421

movw pc@ (6, d0:1:2), dO/*insertion of code at
*this point will result
*in the wrong address
*pbeing loaded into dO*/

jmp pc@ (2, d0:w)

L142:

.word L125-L142

.word L128-L142

.word L132-L142

.word L131-L142

.word L135-1L142

.word L133-L142

Figure 2.2: Example of an instruction-space related jump.

In the specific case of the SUN Unix linker and loader,
the executable format consists of three logical segments —

1.  the text segment, which starts at the beginning of
the second page in virtual memory,

2. the data segment, which starts at the first segment
boundary immediately following the text, and

3. the stack, which starts at the highest possible ad-
dress in virtual memory, and grows downwards.

The addresses in the text segment are guaranteed to be iden-
tical to the onginal program’s addresses since they are gener-
ated at compile time. The stack addresses, which are gener-
ated at runtime, are also unaffected, since the stack is always
in the same state as the original program while it is executing
its own code. The data addresses generated at runtime, on
the other hand, will have a constant offset from the original
addresses because of the additional instructions and data in-
serted by the profiler. The effect of the additional instruction

segment space is minimized since the offset to the data is in
integer multiples of the segment size (128 Kbytes). Offset
of the data space because of the increase in the size of the
instruction segment is unlikely (it does not occur in the pro-
grams used in this research because of the small size of their
instruction spaces).

If the program does not use dynamic allocation, the
effect of the additional data added by the profiler can also
be removed. This will be guaranteed if the profiled program
is the first to be linked into the executable, causing no offset
to the data addresses. (In practice, however, the SUN Unix
linker tries to minimize allocated space by compacting the
initialized and uninitialized data segments together. This can
cause a slight displacement of the uninitialized data segment
due to differences in compaction of the segments in the two
executables. The displacement is not significant since it
is somewhat arbitrary, and causes a constant offset in the
mapping of the data to the cache. This should not affect
cache performance to any significant degree.) However, a
large number of programs use dynamic allocation. For these
programs, in order to ensure that there is no relative offset
within the program’s data, the profiling code must be the first
to be linked into the executable, and the ensuing constant
offset subtracted from the data addresses.

Assembly The profiler produces a modified assembly lan-
guage listing of the original program, which may then be
assembled and linked with the subroutines that perform the
collection of runtime information and cache simulation. The
result is a self-profiling executable image that, in conjunction
with the address trace file generated during profiling, can be
used to determine the cache and timing performance of the
original program.

2.2 Multiprocessor Version

The profiler can also be used in conjunction with the
RPPT. Currently, this allows the simulation of shared mem-
ory multiprocessors with independent caches (no caching of
shared variables) or of distributed message-based systems in
which each processor has its own cache and main memory.
This is useful in determining the shift of synchronization
points that may occur because of larger delays in data or
instruction access due to more cache misses on one processor
than on another. For example, if two processes sent messages
to a third at approximately the same time, the order in which
they are received could be interchanged due to the presence
of a cache.

Independent caches of any organization on a common
bus may be simulated. When a miss is encountered in
simulating the cache, global time must be updated, allowing
any synchronization that may be necessary due to bus access
by the cache to occur. The effects of bus contention are also
simulated.

23 Limitations and Possible Enhancements

The timing analysis performed by the profiler is not
100% accurate. Since timing analysis must be performed
at compile time, instructions such as shifts and branches may
introduce inaccuracies into the analysis. This is because the
time required by these instructions at runtime depends on
the values of the operands, quantities that are not available
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during the compile time analysis of the program. In order to
overcome this problem, an increased overhead is required in
determining the values of the data dynamically.

Currently, timing analysis is implemented as a table-
driven lookup of timing costs for each instruction, which
requires a scan and parse of instructions to break them up
into opcode and operands. The 68020 is a pipelined processor
with an on-chip instruction cache. For each 68020 instruction
the manufacturer specifies a best-case, cache-case, and worsi-
case execution cycle count. The best-case cost reflects the
time for instruction execution when the instruction is in the
on-chip cache and benefits from maximum overlap due to
other instructions. The cache-case reflects the time when the
instruction is in the cache but has no overlap. The worst-case
reflects the time when the instruction is not in the cache, or the
cache has been disabled, and there is no instruction overlap.
For a given program, the timing analysis must choose which
weighted average of cases best represents the typical program
execution conditions.

The parser accounts for some of the pipelining effects
by assuming overlapping instruction fetches within a basic
block. Additional pipelining effects can be modeled to some
extent by dynamically determining successful and unsuccess-
ful branch conditions, and assigning different timing costs to
them. The cost of the added accuracy of such a scheme is the
extra overhead per basic block required by the status setting
and checking instructions. In the current implementation of
the profiler, the start of a basic block is always assumed to
flush the pipeline.

A possible source of error in generating the address trace
is any dependence of the number of addresses referenced
on the actual values of the data. As the assembly code is
analyzed at compile time, this is not taken into consideration
since extracting the necessary information would involve a
detailed dynamic analysis. An example of an instruction that
can potentially give rise to this problem is the move multiple
register instruction. One of the instruction’s operands is either
immediate (a constant) or register direct (variable, not used
by the SUN Unix C compiler), and indicates which registers
need to be saved or restored.

Our analysis also does not take into account any effects
of prefetching on bus and cache activity (prefetching could
cause references that are not actually made by the program to
occur). This prevents any implementation distortion (Agar-
wal, et al. 1986) of the trace (specificity to the implemented
architecture). The architecture-independent trace generated
by ignoring these effects is more suitable for examining the
effects of other architectural variations.

2.4 Trace Accuracy

The traces generated by the detailed execution-driven
simulation were validated by comparing them with actual
traces collected from the 68020 bus on a SUN-3/60 using
a logic analyzer. The on-chip instruction cache was disabled
in order to obtain an address trace that was not distorted due
to cache prefetches. The lengths of traces obtained from the
logic analyzer were 1000 addresses long, the maximum stor-
age available on the logic analyzer. The virtual address traces
were found to match exactly for the benchmarks used, which
were traces collected from runs of the FFT (Fast Fourier
Transform) and mergesort algorithms. The data addresses
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were displaced by a constant factor, which was to be expected
because of the addition of data space by the profiling code.

25 Timing Validation

The system for which the timing validation was carried
out was a SUN-3/280. It has a MC68020 processor with a
25 MHz clock, a MC68881 floating point coprocessor with
a 20 MHz clock, and a 64 Kbyte direct-mapped write-back
cache with a line size of 16 bytes. The access times for main
memory are 360 nsecs for a read and 680 nsecs for a write.
The timing validation was performed by comparing system
generated times for the execution of the unprofiled program
on the SUN-3/280 with the times generated by the program’s
simulation. The timing measurement for the unprofiled pro-
gram was performed with the help of the hardware clock and
software that ensures that only user time for the process is
measured.

In determining the time taken within the 68020, a mix of
best-case, cache-case and worst-case timings have been used,
namely, 0.6 xcache+0.4*worst—0.2%(cache — best). The
value of 0.6 was chosen since this was the average hit ratio
quoted using the benchmarks in (Smith, 1987) for the 64-byte
on-chip instruction cache of the 68020. The first two terms
contribute to instruction times assuming no overlap with other
instructions. In order to compensate for the pipelining effect,
the difference between the cache—case and best-case timings
was subtracted, presuming that the pipeline was effective 20%
of the time. In addition, the profiler compensates for some of
the pipelining within a basic block by subtracting the time that
would have been taken if part or all of the instruction were not
already fetched by the previous 4-byte instruction fetch. The
20% pipeline utilization is an experimentally derived factor
chosen in order to most accurately predict, for a number of
algorithms, the execution times as measured on the hardware.

Figures 2.3-2.6 compare the time predicted by the sim-
ulator (sim) with the time actually taken to run the algorithm
on the Sun-3/280 (real). The validation was performed for
two algorithms — the FFT and the mergesort. The FFT is
floating-point intensive, while the mergesort has no floating
point computation. The error can be seen to be a maximum
of —4% for the FFT and a maximum of +4% for the merge-
sort algorithm. Since the error is almost constant, it can be
attributed to pipelining and instruction cache effects that are
not being modeled. The accuracy is also limited due to the 20
msec clock resolution of the Sun-3/280, and to instructions
whose execution times depend on the values of the operands.

The error in prediction by the profiler without simulation
of the cache, that is, assuming that all cache accesses are hits
(sim, h=100%), has also been plotted on the same graphs
for comparison. The error increases as the hit ratio for the
algorithm decreases (caused by an increase in the data size).

3. ANALYTICAL MODEL FOR CACHE MISS
RATIO PREDICTIONS

Trace-driven simulation is a simple method of evaluat-
ing cache memory systems with varying hardware parameters.
However, evaluation of realistic workloads is often impracti-
cal due to the enormous time overhead involved in the sim-
ulation. A simple analytical cache model for uniprocessors
that provides estimates of cache performance in terms of miss
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Figure 2.5: Validation of the Sun-3/280 68020 detailed
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ratios and shows the effects of varying cache parameters has
been developed. Our model is based on the work of Agarwal
et al. (1989), but requires fewer parameters and less calcula-
tion. It depends on the extraction of a few parameters from
the address trace during one detailed execution-driven cache
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simulation run (described in the previous section), and is the
basis of the estimative technique described in the next section.

3.1 The Cache Model

A cache miss may be attributed to any one of a number
of effects, as detailed in (Agarwal, et al. 1989). Start-up
effects comrespond to the misses that occur when a process
begins execution for the first time on the processor, or when
it abruptly changes phases of execution (a phase of execution
is a stage in the program with a significantly different work-
ing set). Non-stationary behavior corresponds to the misses
that occur when references are fetched for the first time after
the start-up phase. Since the cache has a finite size, multiple
memory references of a process may compete for a cache set
and collide with each other, causing additional misses due to
intrinsic interference. An additional source of cache misses is
multiprogramming, which causes references by one process
to invalidate cache locations that contained valid data for an-
other process (extrinsic interference). In a shared memory
multiprocessor, the protocol used to maintain coherence also
affects the miss ratio, along with other performance parame-
ters, of each individual cache.

Our cache model takes only the start-up, non-stationary,
and intrinsic interference effects into account. The underlying
assumption is that there is only one active process. The model
is separated into two parts — one that is not a function of the
cache size, and the other that is a function of the cache size.
The variables used in our model are as follows :

e B = line size of the cache in bytes

e S = number of sets in the cache

e D = degree of set associativity of the cache

. U = number of unique addresses referenced by the
program

. T = total number of references made by the pro-
gram

e m = miss ratio for a particular cache organization

The first part of the model characterizes the start-up
and non-stationary effects. These effects contribute to the
miss ratio of even an infinite cache, since they occur on the
first access to a line in main memory, namely, all unique
program lines, and can be characterized by the ratio of the
number of unique lines in the program to the total number



of references made by the program. The number of unique
memory lines accessed by the program is dependent on the
distnbution of run lengths, their alignment within a cache
line, and the distribution of space intervals between runs.
A run is defined as the maximum number of sequential or
contiguous references made by the program. Agarwal et al.
(1989) present a Markov model to characterize run lengths
that requires at least three parameters to determine the number
of unique lines accessed by the program as a function of the
line size. For simplicity, however, the number of unique lines
in the program is assumed here to be U//B. The miss ratio
that can be attributed to start-up and non-stationary effects
is, therefore,

U/(B+T)

The impact of intrinsic interference depends on how the
addresses are distributed over the address space (static), as
well as the sequencing of references and the relative frequen-
cies of their access (dynamic effect).

The static characterization of the intrinsic interference
effect is based on the assumption that the assignment of
program lines to sets in the cache is a random process in
which each set is equally likely to be the destination of a
line. This assumption appears to be reasonable based on the
results by Smith (1987) and Agarwal et al. (1989). Hence,
a binomial distribution can be used for the probability that d
unique program lines map to a given cache set. Let P (d)
be this probability and let v be the number of unique lines
accessed by the program, where u = U/B. Then

P(d) = C(u,d)(1/5)*(1 - 1/8)*"?

Let d, (the static component of the intrinsic interference
effect) be the total number of colliding lines, or the total
number of unique lines that map into sets with greater than
D lines mapped to them. Then

D
d=U/B-S> (dP(d))

d=0

The dynamic component is characterized by the collision
rate, ¢, which is the average number of collisions per colliding
line.

Let
d' = Average number of lines mapped to a set,
given that the number mapped is greater than
D.
¢’ = A constant of the collision rate dependent on
the program trace characteristics.
S, = Number of sets that have greater than D lines
mapped to them.
Then

The collision rate ¢ is defined as follows :
if (d' > (D + 1.5+ 0.5log.D))

¢ = C’ (d/ _ D)tl/(l+loggD))Iog(zl/logg(D-Q-l)) (B + l)
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else

, dl_D_l (14log2aD)
€=c (0.5 1+ logzD))

x logy!/1e92(P+1) (B 4 1)

The expression used to estimate the collision rate is
empirical, though some intuitive explanation can be given.
The collision rate is inversely proportional to the cache size.
This is reflected in its proportionality to (d' — D). It is
intuitive that the collision rate is proportional to the average
number of colliding lines per set that exceed the set size,
given that the sets have a number of lines greater than the
set size mapped to them. However, this proportionality to
(d' — D) decreases as the set associativity increases. The
proportionality of the collision rate to (d' — D)*/(1+t°92P))
was chosen because of the behavior of all the test programs
as the set size increased. There was a sharp increase in hit-
ratio as the set size increased from one to two, but a further
increase in the set size caused a more gradual change in the
hit ratio.

As the line size increases, although the overall miss
ratio decreases, the collision rate has a tendency to increase.
The use of the proportionality to the log, of the line size
was suggested by a similar use in Smith’s empirical model
(Smith, 1987). Smith’s model, however, does not account for
set size, assuming a fully associative cache. This is because
there is a higher probability of replacing a live line (a live line
is one that is likely to be reaccessed in the future (Agarwal,
et al. 1989)). This proportionality decreases as the set size is
increased in the same way as the proportionality to d'.

Agarwal et al. assume that the collision rate is stable
over different cache sizes. They also define the collision rate
for d and determine an average collision rate for the entire
cache by calculating a weighted mean over all possible values
of d. We compute an average value d’ for the number of lines
that map to any set, and use this to determine the collision
rate for the entire cache. The characterization of the collision
rate for a given d (or d') is also different.

Thus, the total miss ratio may be represented as

missratio=U/ (T * B) +c*d/T

3.2 Extrapolation of Program Parameters

The program parameters U and T are extracted using
one run of the detailed simulation, as is the miss ratio for the
simulated cache. These parameters are useful in performance
prediction only for program runs that use the same data
size. In order to make predictions for the algorithm using a
different data size, it is necessary to extrapolate the program
parameters.

It is possible to predict the number of unique references
for an algorithm given the input data size and the number of
unique references for any one other run. It is also possible
to predict the total number of references for a particular data
size A using parameters extracted from a run for a different
data size B for an algorithm that is data-independent (time
complexity independent of the values of the data), if the time
complexity of the algorithm is known. For large data sizes,
the change in the number of unique references is proportional



to the change in data size, while the change in the total
number of references made by the program depends on the
time complexity of the algorithm. The collision rate is a
characteristic of the algorithm and should not vary with data
size for data-independent algorithms (the manner in which
the instruction and data space is accessed is independent of
the values of the data or the data size). Thus, the parameters
determined from one program run can be used to predict the
cache performance not only for different cache organizations,
but also for runs using different data sizes.

33 Performance Measurements

The performance of the analytical model was determined
using the sequential versions of the FFT, SOR (Successive
Over-Relaxation), mergesort and quicksort algorithms. In
most cases these algorithms were simulated in detail for a
cache size of eight Kbytes, set associativity of two, and line
size of eight bytes. The parameters extracted from each
detailed run were then used to predict the miss ratios for the
algorithm for other cache organizations. The size of the cache
simulated was chosen so as to hold a fairly large portion of the
working set size of the algorithm (at least 20%). This is the
normal range of interest, and the range of cache organizations
for which the analytical model holds. The data size was
chosen so that the programs accessed at least three million
addresses. Results from the FFT and quicksort algorithms
are presented (see (Dwarkadas, 1989) for additional data).

The graphs in Figure 3.1 show the miss rate versus cache
size for the sequential FFT algorithm using a data size of
4096, for set sizes of 1, 2 and 4 and a line size of 8 bytes. The
maximum error is 60% while the average error in prediction
is 30%.
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Figure 3.1: Miss rate vs. cache size for FFT -
data size=4096 points and line size=8

The miss ratios for the FFT algonithm were also pre-
dicted for a data size of 2048. The collision rate used was
the same as that predicted for a data size of 4096 and U
and T were extrapolated as detailed in the previous section.
The results were similar to that for the larger data size, as
illustrated by Figure 3.2.

Results for the quicksort algorithm (gsort) are shown
in Figure 3.3. When the set size is one, the model is not
accurate until the cache size is larger than the data size. This
is because of successive replacement of data lines still in use.
When the set size is larger than one, the predicted miss ratios
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Figure 3.4: Miss rate vs. cache size for gsort -
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show a fairly good correlation, with a maximum error of 45%
and an average error of 12%. The data size used here was
10,000 integers.

The predictions made by the model for a set size of one
do not always follow the detailed cache simulation results.
This is because, for a direct mapped cache, the cache behavior



of the algorithms is far more erratic and sensitive to the
actual location of the lines in the virtual address space and the
assumptions made by our model about random access patterns
no longer hold and the predictions may not be correct. The
predictions of the model as the degree of set associativity is
increased are fairly accurate.

The performance of the model as the line size is in-
creased is reasonable. The model’s predictions, however, do
pot follow the same trend for certain cache sizes, in which
the hit ratio peaks at a particular line size and then begins
to fall as the line size is increased further. As the line size
is increased, the number of misses due to accesses to unique
lines decreases. However, there is a larger probability of a
collision and replacement of a line that may be accessed in
the future, since each line now contains a larger amount of
information. Our model assumes that the collision rate is pro-
portional to the log of the line size. For certain algorithms
this is not enough to account for the large collision rates as
the line size is increased.

4. AN ESTIMATIVE TECHNIQUE FOR THE
SIMULATION OF CACHE-BASED SYSTEMS

Prediction of the cache miss ratio is sufficient to accu-
rately predict the program’s execution time, as long as there
is no interaction among processes of the program involved.
This is not true in the case of several processes synchronizing
with each other, either explicitly through message passing or
access to shared variables, or implicitly because of access to a
common memory. Delays due to cache misses could change
the points in time at which processes synchronized, as well as
change the order in which synchronization events occurred.
The distribution in time of the cache misses becomes equally
important for performance prediction.

In a tradeoff between the speed of simulation and the
accuracy of its predictions, a profiler that is based on the
analytical model presented in the previous section has been
designed. The profiler is suitable for use in conjunction
with the RPPT and allows an efficient simulation of any
uniprocessor or multiprocessor cache-based system.

4.1 Implementation

The profiler is based, as in the case of the detailed sim-
ulation, on the concept of basic block profiling (Weinberger,
1984). Instead of generating an address trace, a count of the
total number of references made in the basic block and an
aggregate time for the basic block (excluding cache misses)
are generated.

At the start of the basic block, the profiler inserts code
to read the number of references made in the block as well
as to determine, as accurately as possible, the time taken to
execute the basic block. The overhead due to cache misses is
calculated by assuming a constant overhead per miss, which
can be determined after considering factors such as bus delay
and contention (in the case of a common main memory). The
aggregate miss ratio generated by the analytical model using
parameters from a detailed simulation run is applied to the
total references for the block to estimate the number of cache
misses in the block.
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4.2 Performance Measurements

We compared the time predicted by the estimative tech-
nique with the time predicted by a detailed simulation for sev-
eral parallel algorithms. The simulated system was a shared-
bus multiprocessor with explicit message passing. The pro-
cessors have independent private caches and common main
memory, the caches communicating with main memory by
means of another shared bus. No sharing of writable data
is allowed. The cache organization simulated was a write-
through write-allocate cache with a least recently used re-
placement policy.

Figure 4.1 presents the results for the eigenvalue/ eigen-
vector algorithm for 1, 2, 4, and 8 processors, showing the
timings obtained from the detailed simulation (def.*p, where
'*' is the number of processors being simulated) and the sim-
pler estimative simulation (simple *p). The two curves follow
the same general trend. The data size used was a 16 x 16 ma-
trix. The error in timing prediction can be seen to be within
1% for caches larger than 8 Kbytes (Figure 4.2), and within
3% of the results from the detailed simulation for caches as
small as 2 Kbytes.
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Figure 4.1: Comparison of detailed and estimative
simulation timings - eigenvalue, line size=8, set size=2
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Figure 4.2: Error in prediction by the estimative
simulation for the eigenvalue algorithm

The accuracy of the estimative simulation is heavily
dependent on the accuracy of the analytical model used.
Additional sources of error are introduced by the use of a



uniform hit ratio through the execution of the entire algorithm,
a sitation that is far from reality. This can change the time
at which messages are sent and received, and thus affect
the overall execution time. A sequence of cache miss ratios
might be used to give better accuracy. This can be done by
splitting the program into phases, possibly at synchronization
points or at points where there is a significant change in
the program’s execution behavior, or using intervals with a
convenient and large number of references, depending on the
desired accuracy. This involves a tradeoff between speed and
accuracy.

S. OVERHEAD COMPARISON

Figure 5.1 shows the overhead of the different simu-
lation detail levels as compared to the time for actual exe-
cution of the program in the case of a uniprocessor. The
overhead added to the numerical algorithms, SOR (sor) and
FFT (ff1), can be seen to be much less than that added to the
non-numerical algorithms since they involve floating point,
and hence do more computation between simulation points.
Hence, the overhead for the estimative model (estimative sim-
ulation) in the case of the non-numerical algorithms is in the
range of 18 while for the numerical algorithms, it is in the
range of 4.5. Speedup of the estimative simulation as com-
pared to the detailed simulation is in the range of 12-15. Two
data sizes were used for the FFT algorithm, 2048 (ff11/) and
4096 (fft12), in order to show that the overhead is constant
for a given algorithm and does not vary with the size of the
computation.

The overhead added by the detailed execution-driven
simulation for trace generation alone (trace generation) is
in the range of 1548, the low end being for the numerical
algorithms that use floating point. Simulation of a direct-
mapped cache (det. dmap cache sim.) doubles this overhead
(35-90), while simulation of a full-fledged set-associative
cache (det. set-assoc. cache sim.) increases the overhead
by a factor of six (100-325). Hence, the total overhead can
be largely attributed to processing the address trace. The
overhead associated with I/O activity is completely removed.

400

setass. cache
dmap cache

trace gen.
estimative

SENE

overhead

fft12 fft11 sor mgsort qsort

Algorithm

Figure 5.1: Overhead comparison for different
levels of simulation detail

Simulations of parallel algorithms on a parallel archi-
tecture were also carried out. Results for the two-processor
case are shown in Figure 5.2. The overhead for each mul-
tiprocessor simulation is determined as the ratio of the time
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it takes to execute to the time taken to carry out an RPPT
simulation without emulation of the cache. The algorithms
used were the eigenvalue/eigenvector (eigen) determination
and the mergesort (mgsort), and the simulated architecture
was that described in the previous section.

Simulation of the cache bus added a fairly large over-
head to the total execution time of the simulation in the case
of a write-through cache (det. sim., WI'WA), since it required
process synchronization at every write and at every miss. The
overhead with (det. sim., WB) and without (det. sim., nobus)
modeling the cache bus is shown in the case of a write-back
algorithm as well. These overheads are more than double
that for simulating a direct-mapped cache (det. sim., dmap).
The overhead of the estimative simulation (simp. sim.) is
also shown, and is a factor of 2 for the eigenvalue algorithm,
while the overhead is 8 for the mergesort algorithm. The
simulation overhead incurred merely to generate the address
traces (without writing them to a file) is also shown (det.
sim., trace gen).

600
7 W del sim, WTWA
500 7 det. sim., WB
400 det. sim., dmap
_ [] det. sim., nobus
E 300 - [0 det. sim., trace gen
fo. 4 W simp. sim.
2 200 -
4
100
4
0 T
mgsort . eigen
Algorithm

Figure 5.2: Overhead comparisons for different levels
of multiprocessor simulation detail (2 processors)

The RPPT simulations without emulation of cache be-
havior have been found to add an average overhead in the
range of 1.5 to 15 (Covington, et al. 1989) to the Concur-
rent C (Madala, 1987) versions of the programs. In the case
of the mergesort and eigenvalue algorithms, this overhead is
around 2.

6. CONCLUSIONS

We have developed a software execution-driven method
for generating address traces and simulating caches, providing
results almost as accurate as conventional instruction-level
simulation but with higher efficiency. We have also developed
an estimative technique for determining cache and system
(uniprocessor and multiprocessor) performance, as a tradeoff
between speed and accuracy.

In order to simulate shared memory multiprocessors
with private caches and shared, cacheable data, the RPPT's
support of shared memory systems must be extended, and
the design of the cache simulator must also be extended to
support cache coherency mechanisms. These extensions are
currently being implemented, and will enable the generation
of parallel traces for shared memory multiprocessors, which
are a scarcity at present. The RPPT could also be used to



simulate the effects of multiprogramming in a single proces-
sor, and to determine the effects of varying the time slice on
the performance of its cache. Thus, these tools in conjunction
with the RPPT provide a powerful environment for the study
of cache-based systems.
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