Proceedings of the 1989 Winter Simulation Conference
E.A. MacNair, K.J. Musselman, P. Heidelberger (eds.)

IMPLEMENTATION OF RULE-BASED TECHNOLOGY IN A SHOP
SCHEDULING SYSTEM

David P. Yancey, Ph.D.
Scott Peterson
Pritsker Corporation
1305 Cumberland Avenue
West Lafayette, IN 47906, U.S.A

ABSTRACT

FACTOR is a product which schedules and se-
quences activities based on discrete event simulation;
recently two new software modules have beenadded. The
Output Analysis System (OAS) module analyzes simula-
tion output, determines performance problems, suggests
solutions, and implements the solutions by changing the
model. The Site Specific Tailoring (SST) module sup-
ports an in-model rulebase which can implement control
logic.

This paper provides an overview of the rule-based-

approach which was used to implement these modules
and areview of their operation. The focus of this paper is
to explore what expert system technology was utilized
and how it was implemented for scheduling. Develop-
ment issues and application examples are discussed.

1. FACTOR OVERVIEW

Effective production scheduling has been an impor-
tant area of concern for many years in manufacturing
facilities. Products like MRP II have provided a measure
of success in this area for high level planning and report-
ing. What has been missing, however, is effective finite
capacity scheduling, taking into account the current status
on the shop floor. FACTOR is a decision support soft-
ware package which was developed to address the needs
of the shop floor scheduling supervisor and provide
effective predictions of production performance. FAC-
TOR provides a tool for evaluating alternative responses
to changes in production plans such as machine failure,
expedited orders, or late material delivery.

FACTOR isdesigned to be integrated with other pro-
duction management software. Modules interface to
MRP and shop floor data collection to extract the infor-
mation required to schedule production. FACTOR loads

865

data into its model database either through standard or
customized import programs. Information from MRP
includes a list of orders and their due dates. Shop floor
data collection provides the status of in-process orders
released to the factory floor.

There are two users of FACTOR. The scheduler is
the “end user” who applies the factory model to create
schedules and solve scheduling problems. The details of
the simulation model are typically transparent to him.
The modeler sets up and maintains the factory model and
the external data files used by FACTOR.

FACTOR provides a large variety of modeling capa-
bilities with which the model builder can represent the
physical production system and its associated operational
procedures. A FACTOR model is a representation of
these physical and operational aspects of the manufactur-
ing system: machines, material handlers, personnel,
process plans, orders, and so on. The figure below
illustrates a few of the fundamental FACTOR model
components and their interrelation. More detailed com-

| ORDER]

idenu’.ﬁwed i
| PART] | LOADS

form

4
| BATCH |

identifies

PROCESS
PLAN

-

is composed of

N:d remove

MATERIALS —I

JOBSTEPS

allocate and fr%

I RESOURCES l

are on a

il

y

I SHIFT

ponents are used o represent resource groups, AGV sys-
tems, fixtures, tools, conveyor systems, SRS systems, and
others which are not represented here.

FACTOR performs adiscrete eventsimulation of the
manufacturing process to generate a detailed schedule.
The process begins when an order is released to the
system. Anorder is a production request for a quantity of
a particular part type. The quantity and the number of
parts per load determine the number of load transactions
introduced into the simulator. The load transactions are
routed through the production system based on a process
planand the jobsteps which comprise that process plan. A
jobstep is an action taken on (or because of) that load or
batch of parts. Anaction may be move, process, palletize,
setup, draw from inventory, etc. Time delays and re-
source requirements may be associated with a jobstep. A
load transaction may also require that material be drawn
from a material inventory area before it begins the job-
step. Material is a special type of consumable resource
which represents raw material or completed subassem-
blies. Materials may supply assembly jobsteps and link
the process plans of several subassemblies together.

In addition to the process plan, there are other aspects
of a system which cause the status to change. These
aspects include the production calendar, maintenance
schedules, shift schedules, order arrivals, and sequencing
logic rules. The production calendar, maintenance sched-
ules, and the shift schedules determine at what times
particular resources are operational. Order arrival initi-
ates the production cycle of a part. Sequencing logic rules
determine which load a resource will service when more
than one load waits for that service.

The end user supplies altecrnative management data
to control the production run of the model. The informa-
tion specified controls the start and end times of the
scheduling window, the sequencing and scheduling rules
to use, and the output reports to generate.

FACTOR istypically used for detailed short interval
scheduling with a horizon from 24 to 168 hours, although
FACTOR has been used for medium to long term capacity
planning. Pritsker Application Engineers report that
typical FACTOR models contain roughly 500 orders,
almost as many process plans, and 30 resources. How-
ever, it's not unusual to find models with 10,000 orders or
80 resources. Consequently, simulation times can vary
greatly with the scope of the model. Application Engi-
neers typically try to scope the model such that the
simulation can be performed within 10 minutes on a mini-
computer.

866

2. ROLES FOR EXPERT SYSTEM
TECHNOLOGY IN FACTOR

In Version 4.0 of FACTOR, two new software
modules were added which provide expert system capa-
bilities: the Output Analysis System (OAS) module and
the Site Specific Tailoring (SST) module.

The FACTOR base system provides detailed sched-
ule generation capabilities. The amount of data gener-
ated, however, can easily overwhelm the end user who is
searching for trouble spots in the schedule produced by
FACTOR. The OAS module allows the modeler to
construct an expert system module which detects prob-
lems and suggests solutions to improve the schedule.
Solutions can be incorporated in a new alternative which
is created automatically by an alternative generator. This
analysis process can be iterated manually or automati-
cally until user-specified tolerances are met, or the prob-
lems are alleviated.

The SST module also supports the construction of
expert systems. The FACTOR base system is an open
ended product which supports user written extensions in
avariety of ways throughout the system. Each scheduling
application tends to be unique in its requirements for
implementing specific decision logic or other special
processing within the model (e.g. custom job sequenc-
ing). FACTOR provides a number of entry points where
the modeler can install his own C code. The SST uses the
expert system approach to offer an alternative for the im-
plementation of custom decision logic atkey points in the
simulation model.

3. CONSTRUCTING EXPERT SYSTEMS WITH
FACTOR

An expert system is a special-purpose computer
program which utilizes expert knowledge to analyze a
narrow problem area. It is developed through the use of
an expert system building tool. This tool provides a high
level language for describing the expert knowledge and
facilities to help the user interact with the expert system
once it has been built. Expert knowledge is present in the
form of facts and rules for decision making. FACTOR
employs these elements of expert systems to incorporate
decision logic to support the scheduling process.

In FACTOR, a rulebase is composed of a set of
related rules which represent the expert decision making
logic necessary to solve a particular type of problem.
Several different types of rulebases are supported for the

various types of decisions that can be made; a rulebase is
defined for each decision point to be programmed. The
function of a rule is to infer new knowledge about the
problem. New knowledge is inferred by the action part of
the rule (THEN clause), while the requirements to be met
are specified in the situation (IF clause). Thus, when a
rule is tested, the knowledge base must be searched, and
if the tests succeed, additional knowledge is inferred.

The knowledge base refers to the set of facts used and
generated by the associated rulebase. In FACTOR, an
object refers to the internal representation of a single fact.
Anobject class is a way to specify a collection of objects
(facts) of a certain type. For each type of rulebase
supported, there is a set of object classes available for use.
Each rulebase type and its set of associated object classes
iscalledarulebase context. Only those FACTOR object
classes which are relevant with each context is known.

Object classes which are known by the expert system
without having to be defined by the user are termed
predefined object classes. In general, there is a set of
predefined object classes for each rulebase type. These
are used to represent simulation knowledge available in
that particular context. Each object class has an associ-
ated set of attributes. For example, attributes of the object
CURLOAD (current load) include load size, priority,
remaining processing time, etc.

It is sometimes necessary to derive some additional
information about objects. Additional attributes which
may be determined for the purpose of effecting computa-
tions are referred to as computed attributes.

Additional objects (intermediate or inferred knowl-
edge) may be added to the knowledge base. User-defined
object classes are termed temporary object classes since
their definition is known only within the rulebase in
which they are defined. These will define the structure of
the new knowledge added to the system.

To provide programmers complete control over their
applications, the C programming language may be incor-
porated in the rulebase. Computed attributes can be based
on function calls involving other attributes on an object or
the simulation variables known within the current rule-
base context. C code can also occur in the action part of
arule. Ccode may include calls to user-written functions,
calls to predefined utility functions, or a code block to
execute upon firing a rule.

867

A template for rulebases is illustrated below. The
rulebase contains all the rules and special definitions
appropriate for its context. User-written C code may also
accompany the rulebase.

RULEBASE context
TEMPORARY CLASSES
object definition statements
END

COMPUTED ATTRIBUTES
attribute definition statements
END

rule_name:
IF EXITS situation THEN action;

Additional rules;
END

Rules are the key element for describing the decision
making logic. The IF clause expresses a requirement to
find an object (fact) in the knowledge base which meets
certain criteria. Its form is illustrated by the following
example.

rule_excess:
if exists
aresheld res_name where (res_name.capacity > 10)
then ...

The key phrase if exists signals the beginning of the
situation part of the rule. The construction “a resheld
res_name where (...)"” is the condition requirement which
must exist. There can be as many match requirements
(AND conditions) as needed to describe the situation.
The keyword resheld refers to a predefined object class
for this context. In thisexample, objects that are members
of the resheld class refer to a resource held by the current
load. Theresheld objecthas many attributes, among them
is capacity. If there were resources held by the current
load, the variable res_name would be bound to the first
resource in the list with a capacity greater than 10.

The keyword THEN signals the action part of the
rule. The action can perform operations on an object
found in the situation part, do something specific like
display amessage, or both. General actions which may be
performed include the following:

Add - Addan objectto a temporary class to repre-
sent intermediate or inferred knowledge.

Remove - Remove an object from a temporary class.

Goto - Try a specific rule next.

Message - Display a message.

Trace - Conditionally display amessage if the trace
option is on.

{Ccode} - Embedded C code actions, most commonly

used to call a custom C code function.

Other special context specific actions are described in the
OAS and SST discussions.

The basic strategy incorporated in processing the
rulebase is to test each rule in the order specified. When
a rule situation is found to be true, its action part is
executed and testing of rules begins again with the first.
Termination occurs either when none of the rules fire or
when a special action terminates the inferencing process.

The construction of expert systems is illustrated for
both SST and OAS applications in the sections that
follow.

4. SST MODULE OVERVIEW

There are many points within the FACTOR simula-
tion of a part’s process plan where decisions need to be
made. In many cases, the modeler is provided a number
of options for decision logic. For example, when a load
arrives at a jobstep, use option 17 for selecting between
this or an alternate jobstep. FACTOR provides a number
of standard options for these decision or processing
points. The SST module provides the user the capability
to install custom options via user written code. The
rulebase components of FACTOR provide an alternative
method, but are invoked and return information in a
similar manner.

The rulebase contexts supported by the SST module
are summarized in the following list.

load_rank Sequencing decisions for order releases,
resource requests, material requests, AGV
requests, and others are based on the
ranking of the candidate loads. This
rulebase returns a ranking value for the
current load.

When one or more units of a resource
becomes free the resource attempts to
satisfy the requests that have been placed

req_select

868

by loads. This rulebase decides which
request is selected next.

rgm_select Select a resource for allocation from a
group.

res_alloc Determine the manner and order for
allocating resources for a jobstep. Return
true or false to indicate resource allocation
success.

batch_sep At the batching jobsteps, arriving loads
may be placed into one of several batch
loads. This rulebase selects an appropriate
forming batch.

batch_quan Determine how much a load should
increase the quantity of a batch that it is
accumulated in.

Determine if forming batches should be
released even though they have not yet
reached minimum release quantity.

batch_ov

agv_select Determine which vehicle should be
selected from a list of idle vehicles in an

AGV fleet.

sjs_select Select a jobstep to process next from a
given list of jobsteps.

js_select Decide whether to execute the current

jobstep or an alternate.

step_time Determine the time duration for the jobstep
by this load.

Whenever an inference engine is invoked, current
simulation status information which makes sense for the
decision context is mapped into facts for the knowledge
base. Intermediate or inferred knowledge is maintained
in temporary object classes. The final result of the rules
processing is returned to the simulator in the form of a
decision. The following figure illustrates this strategy.

_invoke >

decision

FACTOR
Simulation

/i

Inference
Engine

. X
User Inferred
Code Knowledge,
LEGEND
- = —# Control Flow
Translator

——= Data Flow

Rather than providing a general purpose inference
engine which can be used for any set of rules, FACTOR
generates a custom inference engine and related utility
routines which are optimized for each rulebase. The
inference engine is linked with the simulation executable.

In order to support SST interaction with the FAC-
TOR simulation the following additional actions are
permitted in the THEN clause of rules.

Request - Register a request for a resource.

Allocate - Allocate an available resource.

Return - Haltinference engine processing and return a
decision made by the rulebase. This action is
required in every SST rulebase. The return
value expected depends on the rulebase type
(context).

Error - Declare a fatal error condition.

To illustrate these constructs, an example SST expert
system is constructed in the section below.

5. AN SST SCENARIO

A manufacturing system manager has a sequencing
philosophy which ranks all jobs according to priority.
When a tie occurs, the jobs with a lower remaining
processing time are given preference. Under this philoso-
phy, however, it is possible for an order with relatively
low priority at the beginning of the scheduling window to
become critically late during the manufacturing process.
The manager wants to avoid situations where an order
with low priority and a long processing time sits on the
floor and becomes critical. An order becomes critical if
the expected completion date is greater than the due date.

This policy can be incorporated when units of a
resource become available. If there are several loads
wanting the same resource and there are not enough units
of a resource to service all of the requests, the resource
should be allocated to the loads that are critical. If no
loads are critical then resources should be allocated to
loads by the stated philosophy according to job priority
and remaining processing time.

A resource request selection rulebase (req_select)
decides between loads which have placed requests for a
resource. This rulebase may be invoked when one or
more units of aresource becomes available. The rulebase
decides in what order the requests are examined, and in
some cases, how many of the requests are to be processed.

869

When aresource becomes free, it will notify the loads
which have placed requests for the resource. The requests
are contained in a list owned by the resource, and are
initially ordered by the appropriate load ranking rule. The
resource notifies these loads in the order of the list until
there are no more units of the resource available or all the
requests have been satisfied. Loads which attempt allo-
cation may or may not successfully allocate the resource,
since complex multiple resource decisions may be in-
volved.

Resource request selection rules differ from load
ranking rules in that they may modify a load’s position in
the request list each time the resource becomes available.
This allows the loads in the list to “age”. This dynamic
ranking of the list provides ameans to incorporate consid-
erations regarding changing system status and look ahead.

There are five knowledge classes which represent
predefined facts available within the resource request
selection (req_select) rulebase. One that is used in this
example is req, a class containing one object (fact) for
each request for the resource by a load. Other classes in
this context contain facts about the resource or the re-
questing loads. Among the attributes provided for the
REQ object class are:

priority Ranking priority of request

lremproc ~ Remaining processing time

oduedate Due date

remtim Estimated remaining processing time
stslack Static slack (oduedate-DATENOW)
dyslack Dynamic slack (stslack-remtim)

A total of 57 attributes are available for the req object
class. A similar, though less extensive, set of attributes is
available for each object class in the context.

The rulebase for the selection policy was constructed
as follows.

RULEBASE REQ SELECT 14

COMPUTED ATTRIBUTES
ATTACH TO REQ
(real rank priority*10000 + lremproc)
END

Rulel:
! If expected time remaining is greater than
! time to due date, then select this request.
if exists
a req R where (R.remtim > R.stslack)
then

return (R);

Rule2:
! If no request from “critical” loads were found
! then implement the load ranking logic.
if exists
a req REQUEST A
no req REQUEST B
where (REQUEST B.rank < REQUEST A.rank)
then - -
return (REQUEST A);
END -

The computed attribute added to the req object class
computes the rank value based on priority and remaining
processing time. Low values for rank are “hot” orders.
Rule rulel searches through the req object class looking
for any loads that are critical. If an object is found which
meets the condition, rulel returns this object and the
rulebase stops executing. Rule rule2 searches the request
queue for therequestrequest_asuchnorequestrequest_b
has a rank attribute which is lower. In effect, rule2
returns the request with the lowest ranking value.

For purposes of illustration, the above rulebase was
kept fairly simple. Although no intermediate facts were
inferred, they may be developed for more complex sce-
narios. As a matter of practice, however, SST rulebases
tend to be small (fewer than ten rules).

6. OAS MODULE OVERVIEW

This section describes the OAS module which is
designed to aid the user in the analysis of output produced
by a FACTOR simulation run. The output analysis
process is broken into three phases. Phase I is the process
of analyzing the FACTOR output database (and possibly
the model in the input database as well) to detect problems
in the generated schedule. As part of this phase, all
FACTOR input and output database records are con-
verted into knowledge objects and are stored as prede-
fined facts in the expert system knowledge base. The first
phase expert system is then invoked to derive a set of
problem objects (facts) and store them in the knowledge
base.

Phase II is a similar process which further analyzes
the facts that represent FACTOR output and input along
with the problem facts derived during Phase I. The end
result of the Phase II expert system analysis is a set of
solution facts which address the schedule problems.

Phase III is the process of implementing the set of
solutions resulting from Phase II. The end result of Phase
II1is a new alternative generated from the current model.
The OAS module supplies a standard set of solution

implementation options which can alter the FACTOR
model in a variety of ways. This standard set includes the
following.

DUE-DATE alter the due date of an order
LOAD-SIZE alter the load size of an order
PRIORITY alter the priority of an order

alter the release date of an order
alter the process plan for an order

RELEASE-DATE
PROCESS-PLAN

CAPACITY alter the capacity of a resource
MAX-OT alter the maximum overtime allowed
for a resource

RANKING-R alter the ranking rule used by a
resource to satisfy outstanding
requests

SELECTION-R alter the selection rule to use for a

resource by jobstep
SHIFT-SCHEDULE move a resource to a new shift

ON-HAND-A alter the on-hand amount of a material

RANKING-M alter the ranking rule used by a
material to satisfy outstanding
requests

RANKING-A alter the ranking rule for default order
sequencing

RELEASE set the order release rule for sequenc-

ing orders to be released at the same
time.

The above solutions were determined to provide
good coverage of techniques used by planners out in the
field. However, an open ended interface is provided to
support the programming of other solution implementa-
tion options which alter other elements of the FACTOR
model.

A conceptual view of the OAS integration is illus-
trated in the figure below. Model and simulation output
information is provided as predefined facts. Intermediate
or inferred knowledge is maintained in temporary object
classes.

FACTOR
Model Simulation ﬁ
Data Data
Phase [
Solution Translator
Implementation

t /

Inference
Engine

Predefined) (Intermediate
\Faci Facts

The three-phased approach described above has two
very important aspects. First, it breaks a complex prob-
lem into three manageable components. Second, since
the interfaces between Phases I & II and between Phases
II & III are accessible to the user (through standard
editors), the user has the ability to interact with the expert
system rather than just blindly following its advice.

The user is provided two modes of operation, manual
and automated. In either case, an expert system is
developed for each of the first two phases. In the manual
mode, the user controls each phase of the analysis proc-
ess. In the automated processing mode, an optional
Iteration Control rulebase is constructed to describe stop-
ping conditions for iterative analysis involving repeated
applications of Phases I, II, and III.

A PARAMETERS section may be added to the
rulebase structure for OAS expert systems. A parameter
is a constant defined in the rulebase file and set to some
initial value. In the rules, it can be referred to just as
though it were a literal number, character or string. The
advantage is that later, when that constant needs to be
changed, the user may invoke the parameter editor and the
value changed without recompiling the whole rulebase.
Parameters can be used to set limits on late orders (two
hours late for one analysis run, five hours late for the
next), declare maximum utilization of bottleneck re-
sources, and so on. The use of parameters is illustrated in
the subsequent example.

The OAS also features a context specific actionin the
THEN clause of rules. The stop action may be incorpo-
rated in an Iteration Control rulebase to terminate simu-
lation cycling.

The predefined facts available to the knowledge base
include information which describe the FACTOR model
and simulation results (whereas SST facts reference cur-
rent status information during the course of the simula-
tion). FACTOR model object classes include:

jobstep - adescription of a jobstep as part of a process plan
material - a description of a consumable material

order - adescription of an order

part - adescription of parts

resource- a description of a resource

and many more. FACTOR simulation output object
classes include:

loadsum - load summary data

ordsum - order summary data
resplot - resource plot data
resstat - resource statistics

resschd - resource schedule data

and a number of others. The OAS specific object classes
include the following.

iteration - an object identifying the current iteration count
phase - an object identifying the current phase
problem - identified problems from Phase I

solution - identified solutions from Phase II

7. AN OAS SCENARIO

A manufacturing center uses the FACTOR system to
schedule orders for its facility. It is now desired to alter
the schedule by changing load sizing as necessary to
minimize late orders. This is a schedule adjustment
technique that up to now has been applied manually and
has been reasonably effective.

The first step is to identify late orders from order
summary information. Late orders are those orders that
complete after their due date. The ordsum object has
attributes which describe order due date, completion date,
lateness in hours, and other order summary information.
A test on the lateness attribute of ordsum will identify
late orders. An additional test is added to determine that
no problem has already been registered for this order.
This test is added to prevent repeated firing of this rule.

We realize in formulating this rule that the threshold
for declaring order lateness to be a problem may be
somewhat subjective. Consequently, the LIMIT parame-
ter is introduced which allows the scheduler to establish
the point at which problems are identified and addressed.

The following illustrates this Phase I rulebase. Three
attributes are used for the problem object class; descr,
part_name,andordr_name. (The FACTOR UIT module
was used here to define mnemonic attribute names.)

RULEBASE PHASE 1

PARAMETERS
LIMIT (param label “Max Hours Late Allowed”
data type real
initial value 0.0

checking_type NO_CHECK)
Rulel:
if exists
an ordsum OS where (0S.lateness > LIMIT)
no problem PROB
where (PROB.ordr name = OS.order)
then
add problem
where (descr = “LATE ORDER”
ordr name = OS.order
part_name = OS.part)
message (“Late order: %s\n”, OS.order) ;

END

The next step is to outline a strategy for the expert
system to use in determining solutions. For the sake of
this example, we select a strategy in which a late order for
acertain part will cause all orders for that part to have their
load size halved. However, if more than one order for a
given part is late, the load sizes will still only be halved
once for the new schedule alternative simulation. This
solution strategy is the reason behind saving the part
number from the order object in Phase I analysis. This
part number is needed to find all orders that are to have
their load size changed.

The rulebase implementation of this logic is illus-
trated below. The part number is declared in the
part_name attribute of the problem object class. From
this, a solution object is stored for each of the orders (from
the model database) with a matching part number that has
not already been declared as a solution object. Four
attributes are defined for the solution objectclass: name,
prob, order, and factor.

RULEBASE PHASE 2

Rulel:
if exists
a problem P
where (P.descr = “LATE ORDER”)
an order O where (O.part = P.part_name)
no solution S where (S.order o.1id)
then
add solution
where (name = “CHANGE-LOAD-SIZE-R”
prob = p.descr
order = o.id
factor 0.5);

END

The solution “CHANGE-LOAD-SIZE-R” is one of
the standard implementations provided by the output
analysis system. It needs to know the name of the order
to change and the factor by which the load size should be
multiplied. The solution objects will drive the alternative
generator of Phase III to make referenced changes in the
model database.

After we have compiled the rulebases, and run the
simulation, we can perform Phase I and II analysis. The
new alternative can then be simulated and the analysis
performed again. For those occasions where it is desired
to automatically control the simulation iteration process,
an iteration control rulebase is developed. For example,
suppose that we want to iterate the output analysis process
until either four iterations have completed, or there are no
problems in the knowledge base following Phase I. The
rulebase would appear as follows.

872

RULEBASE ITER CONTROL

Rulel:
if exists an iteration I where (I.count = 4)
then stop;

Rule2:
if exists
a phase P where (P.number
no problems
then stop;
END

1)

8. INDUSTRIAL APPLICATIONS

The FACTOR OAS and SST modules were first
released by Pritsker Corporation in January 1989. As of
this writing, it is too early in the process to report on
applications of these modules in production. However, as
part of the software development process, several corpo-
rations participated in a beta test program which sought to
evaluate the product and make recommendations for
improvement prior to commercial release. The discus-
sion below reviews a few of the applications and customer
observations.

A large aerospace corporation developed two OAS
applications witha FACTOR system then being installed.
The FACTOR system will be used to schedule the pro-
duction of composite material parts for one production
cell over a 24 hour horizon. This first OAS application
was designed to identify resource bottlenecks and try to
balance the load by increasing some resources while
decreasing others. This reflected the condition where
some men could perform more than one operation, and
could be reassigned to other work stations depending on
where they were most needed. For this application, 12
rules were used in the problem rulebase and 3 for the
solution rulebase. The iteration rulebase stopped simula-
tion cycling after a fixed number of iterations or when no
problems were left.

The second OAS application was used to reduce the
jobstep times of a few key jobsteps when certain produc-
tion goals were not met. The problem rulebase contained
7Trules for identifying production goals that were not met.
Seven rules were also used in Phase II. To implement
Phase III, custom solutions were developed to change
jobstep times.

On the basis of these applications, several observa-
tions were made regarding the OAS module and its
approach. Thiscustomer’s previous method of analyzing
schedules required pouring over the standard reports,

manually reviewing statistics, and looking for various
problem patterns in the data. The rule-based approach
expressed the patterns directly. The biggest advantage
cited was the ability to accelerate the cycle: identify
problems, apply solutions, and re-simulate the model.

Similar beta tests were conducted for the SST rule-
based module. Test applications were developed to
support the manufacture of off-highway truck compo-
nents and the implantation area of an electronic chip fab-
rication process. Several rulebases were developed to
capture decision logic tobe integrated with the simulation
model. Rulebases tested resource allocation strategies
based on jobstep setup conditions, alternate jobstep selec-
tion based on setup conditions, and special batch release
decisions.

On the basis of these applications, a few observations
were made. First,aprogramming knowledge was deemed
necessary for developing SST rulebases, although re-
duced programming skills were required. It was also
observed that the rules are expected to provide improved
maintainability over standard C code.

9. CONCLUSION

The above discussion has shown how the expert
system tools provided by the Site Specific Tailoring
module and the Output Analysis System can implement a
wide variety of decision logic within the FACTOR simu-
lation framework. It is extremely important for a tool as
powerful as FACTOR to be easy to use, yetit must be able
to address the wide variety of needs and expertise in
different manufacturing situations. The rulebase lan-
guage provides a way to apply expert system techniques
inan intuitive, English-like environment, and the support
functions allow smooth integration of this environment
into FACTOR. An important aspect of the SST module
is efficiency. In a production scheduling environment,
logic decisions may be required by the simulation thou-
sands of times. By code generating an embedded infer-
ence engine, the use of rule-based techniques becomes a
practical problem solving technique. In addition, the
OAS support utilities which include a parameter editor,
knowledge editor, and new alternative generator provide
the scheduler with an environment tuned to solving eve-
ryday scheduling problems.

The OAS and SST modules demonstrate practical
applications of expert system technology to the simula-
tion process. With their application, we expect to realize
greater efficiency and effectiveness in the process of
scheduling with simulation.

873

REFERENCES

Grant, F. H., “Simulation and Factory Control - An
Overview”, 9th International Conference on
Production Research, Cincinnati, OH, August,
1987.

MacFarland, Douglas and F. H. Grant, “Shop Floor
Scheduling and Control Using Simulation
Technology”, Modern Machine Shop Conference,
Shop Control ‘87, March, 1987.

MacFarland, Douglas, “Tutorial - Scheduling Manufac-
turing Systems with FACTOR”, Proceeding of
the 1987 Winter Simulation Conference.

Pritsker Corporation, Qutput Analysis System, FAC-
TOR User Guide, Version 4.0, 1989.

Pritsker Corporation, Site Specific Tailoring, Volume 1,
FACTOR User Guide, Version 4.0, 1989,

Pritsker Corporation, User Interface Tailoring,
FACTOR User Guide, Version 4.0, 1989.

Pritsker Corporation, Base System, Conveyor Systems,
Tooling Systems Autoguided Vehicles, Storage
and Retrieval Systems, FACTOR Implementation
Guide, Version 4.0, 1989.

AUTHORS’ BIOGRAPHIES

DAVID P. YANCEY is a Vice President at Pritsker
Corporation. He received his Ph.D. from Purdue Univer-
sity in Industrial Engineering in 1981. Currently, he leads
the Product Research group and is involved in simulation
research and long range product planning. He is a
member of TIMS, SCS, and ACM.

SCOTT PETERSON is a Senior Systems Analyst at
Pritsker Corporation. He received his MS from Purdue
University in Computer Science in 1987. Mr. Peterson
led the product team which developed the OAS and SST
modules for FACTOR. He is currently working on new
FACTOR extensions which will support the manipula-
tion of schedules and collection of status data.

David P. Yancey, Ph.D.

Scott Peterson

Pritsker Corporation

1305 Cumberland Avenue

West Lafayette, IN 47906, U.S.A.
(317) 463-5557

