Proceedings of the 1989 Winter Simulation Conference
E.A. MacNair, K.J. Musselman, P. Heidelberger (eds.)

INTEGRATING IBIS SIMULATIONS
AND SYSTEMS PLANNING MODELS
THROUGH MULTIPLE MODEL COMMUNICATIONS

Michael G. Ketcham
Ramesh Rajagopalan
Department of Industrial Engineering & Operations Research
University of Massachusetts
Ambherst, Massachusetts 01003

ABSTRACT

This paper describes a multiple-process, multiple-
windowed environment that allows users to interact with several
models concurrently, including IBIS simulations. One goal in
designing this environment is the transparent integration of simu-
lation with other types of models, such as mathematical models
for production planning. Its capabilities include interactive
development  of  experiment  specifications,  automatic
reconfiguration of simulations based on changing system
specifications, and concurrent execution of simulations and pro-
duction scheduling models to provide a detailed analysis of sys-
tem capacities. Concurrent execution is controlled through tech-
niques for multiple model communication.

1. INTRODUCTION

One goal in designing simulation environments is the tran-
sparent integration of simulation with other types of models,
such as mathematical models and models based on artificial intel-
ligence techniques. Transparent integration implies several capa-
bilities. These include sharing information across multiple
models, managing user interaction, and automatic reconfiguration
of simulations based on changing system specifications.
Developing such an environment requires (1) developing an in-
formation model and modeling database used to hold system
descriptions, (2) developing simulation routines that are driven
directly off of data specifications, and (3) developing a software
architecture for multiple model communication (MMC).

This paper emphasizes MMC, although it touches briefly
on other issues in simulation system design. It describes a
multiple-process, multiple-windowed environment based on IBIS
simulations, implemented on a workstation-class computer. This
environment allows users to interact with several models con-
currently. User interactions include the interactive construction
of simulation models guided by the structure of the information
model, interactive development of experiment specifications, and
concurrent execution of simulations and production scheduling
models to provide a detailed analysis of system capacities.

Among the most important motivations for developing
multiple-model environments is the rapid evolution of both
manufacturing and in modeling techniques. Particularly in
multiple-plant, multiple-stage production companies, manufactur-
ing planning involves complex planning hierarchies. These in-
clude corporate, plant, department, and shop floor planning. Yet
we do not know in advance or from system to system what the
structure of that hierarchy will be or what the planning require-
ments will be at a given level of the hierarchy. A multiple
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model environment will allow analysts to move between plan-
ning levels to appropriate planning strategies at each level.

Just as we do not know in advance what future planning
hierarchies will be, we do not know what manufacturing techno-
logies will be developed or what planning techniques will be
used to represent those technologies. Rather than trying to anti-
cipate planning requirements in a single model or a rigidly
prescribed set of models, we expect to see flexible planning en-
vironments actually comprised of multiple models representing
different facets of a manufacturing enterprise. A multiple-model
environment allows users to select of models with different solu-
tion characteristics, range of applicability, solution speed and ac-
curacy, or measures of performance. Similarly, it allows a single
solution methodology, such as simulation modeling, to be
brought to bear against different problems at different organiza-
tional levels in the planning hierarchy. We have focused on
simulation, in particular, since simulations tend to be "closed
boxes," in most application areas, which cannot be integrated
with other types of models without extensive special purpose
programming.

By pursuing a multiple-model environment we have gen-
erated a database-centered modeling environment for integrating
computational and simulation models of manufacturing systems.
By database-centered environment we mean development of a
production database that holds facilities configurations, produc-
tion requirements, and manufacturing parameters that can be ac-
cessed and updated by several planning and control models. A
database-centered design allows communication between models
that may have different data requirements or be written in
different languages. In this environment, the database controls
MMC, and preserves a high degree of data independence so that
the database schema can evolve and intelligent interfaces be
developed without needing to change models that have already
been implemented. Because the data model exists independently
of any one planning model, modeling techniques can evolve in-
dependently of other models without affecting the common view

of the system shared between them.

2. MULTIPLE MODEL COMMUNICATIONS

Before going further in explaining MMC we need to define
a number of terms related to modeling and model communica-
tion.

First, the word "model" itself is used in three contexts in
this paper.



1. A system model is used to refer to a set of data whose
elements represent the variables and their relationship in a real
system. It provides information about the components and the
dynamics of the real system for which the planning will be
made.

2. A data model specifies objects, attributes, and informa-
tion relationships needed to implement a particular system
model. More simply, the data model allows us to create the da-
tabase containing information about the system.

3. A planning model is a technique by which a particular
planning problem can be solved to a particular degree of accura-
cy. It accesses the system model for the necessary information
about the real system and converts the problem in to a suitable
and solvable form.

In their discussion of decision support systems, Sprague
and Carlson (1982) argue that one important reason for the
disuse and misuse of planning models is the lack of multiple
model communication in the decision making process. The
models are used, in most cases, as stand-alone models and the
model communication is left to the decision-maker as a mental
or manual process.

Rather than standing independently, however, modeling
results may in fact have complex interrelationships. In one case,
planning models may address different facets of a planning prob-
lem. For example a demand forecasting model and master
scheduling model use different techniques to address two aspects
of long-term production planning. In a second case, two or more
models may address the same facet of the planning problem.
For example a scheduling model and dispatching model may
both be used to generate job release decisions, or a scheduling
model and simulation model may both be used to develop and
evaluate production schedules.

In both these cases we can expect some degree of depen-
dency among planning models. In the first group, the output from
the demand forecasting model is an input to the master schedul-
ing model; in the second group, the output from the scheduling
model can be fed to a simulation model to evaluate the job
release schedule.

More specifically, models can communicate with four de-
grees of interaction that we have called independent, sequential,
iterative, and concurrent execution.

In independent modeling two or more planning models
read a system description from the same database and execute in-
dependently.

In sequential modeling, results from one planning model
are passed as inputs to a second model.

In iterative modeling, results from one model are returned
as feedback to a second model to correct modeling errors or to
update state variables based on additional analysis.

Concurrent modeling is the most complex form of in-
teraction. In this case, two models are run simultaneously with
shared results posted between them by way of a shared database.
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The transfer of information between models can use one-
way or two-way communication. One-way communication is
comparable to sequential modeling, where results of one model
are passed to a second. Commonly, the first model runs com-
pletely and posts its results only after it finishes execution.
Two-way communication is comparable to concurrent modeling.
Here there is a dynamic synchronization of information wherein
all the participating models are concurrently run, and the infor-
mation is transferred "to and fro" between the models.

Kantowitz and Sorkin (1983) describe the communication
process as consisting of three blocks between the source and the
destination: encoder, decoder, and channel. The encoder encodes
the information from the source; the channel routes the encoded
message to the decoder; the decoder decodes the information,
and the decoded message reaches the destination. Thus, in one-
way communication, the encoder block is at the source, the
decoder is at the destination, and the channel allows information
in only one direction. In two-way communication, an encoder
and decoder are both available at the source and the destination,
and the channel is bidirectional since, in two-way communica-
tion, the destination is also a source, and the source is also a des-
tination.

An important assumption in this sequence of events is that
the source and the destination are appropriately prepared so that
correct information is available at the source, and the destination
is ready to handle the communicated information. For this as-
sumption to hold, some kind of initial processing has to take
place at the source and the destination points, so the initial
three-part communication model can be enhanced by adding an

initializer which will prepare the source and destination.

We have used this theoretical configuration to design an
MMC architecture in which the planning models are at the
source and the destination, the database becomes the channel,
and data extractors associated with each model behave as en-
coder, decoder, and initializer (Figure 1). These communications
are implemented using the UNIX socket mechanism for data
transfer between models, where a socket is an addressable end-
point for communication between two programs. Most applica-
tions of sockets use a “client" and "server" communications
model. A Client program initiates a connection and requests ser-
vice. A server program waits and accepts or rejects the connec-
tion. Once the Server and the Client form a connection, either
program can send or receive data or terminate the link at any
time (see Rochkind, 1985). In our implementation, the client is
a supervisory program called the model manager. The planning
models serve as multiple clients. In a windowing environment,
each process can execute in its own window and maintain its
own user interactions, while information is transferred between
concurrently executing programs along data sockets.

Finally, MMC needs to manage control communications as
well as data transfer. Control communications include establish-
ing and breaking communication linkages between different com-
ponents of the system, scheduling and synchronizing model exe-
cution, handling various types of signals so that an experiment
can run smoothly, and managing user interactions. Control com-
munications are managed by the model manager. The interface
to the model manager allows the user to select experiments and
planning models based on the planning requirements for a partic-
ular session, and to choose a manual or automated model of
operation. In the manual mode, the user can communicate with
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planning models as they execute. In automatic mode, planning
models transfer data automatically, without user intervention.
3. MODEL INTERACTION

Figure 2 shows the overall structure of a multiple model
planning environment. Currently, our environment combines a

multi-level scheduling heuristic and a simulation modeling com-
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ponent that automatically configures models based on production
-specifications held in a database. Both the scheduling and simu-
lation models can represent complex assembly relationships with
multiple resource requirements, multi-level bill-of-materials rela-
tionships, and sequencing constraints. In concurrent execution,
they communicate through a common database so that the simu-
lation is driven by the scheduler and the scheduler is updated in
response to simulated system status regarding resource availabili-
ty, job releases, and job completions.

MMC between the scheduler and simulation has been test-
ed extensively against a set of assembly problems with a
moderate variety of product types, but possibly complex assem-
bly networks associated with each product. Figure 3 shows the
production sequence for a representative product type. As this
figure shows, each product may require one or more subassem-
blies to be completed before operations can take place, with pre-
cedence relationships among operations. There are also many-
to-many relationships between operations and the resource types.
A resource can be used in more than one operation and opera-
tions may require more than one type of resource, all of which
must be available before the operation can begin so that different
products and operations will compete for resources.

Node | Operation SubJob  |Res.C:
112 |3

1 OPR1 SuBASSY2] 2|0 |0
2 OPR2 SuUBASSY1| 4|0 |0
3 OPR3 SUBASSY1| 02 |0
4 OPR4 BYPROD1 3lo0fo0
5 OPRS BYPROD1 2|03
6 OPR6 BYPROD1 ojo| 2
7 OPR?7 BYPROD2 oo 3
8 OPR8 BYPROD2 20 2
9 OPR9 BYPROD2 53| 2
10 OPR10 BYPROD2 2l 2] 2
" OPR11 BYPROD3 ol2| o0
12 OPR12 BYPROD3 2l of o

Figure 3. Representative production requirements

Figure 4 shows a portion of the database files that
represent these assembly relationships and that are used directly
to drive the simulated system.

. Test problems have included five different product types,
which can be run simultaneously in the system using three types
of resources. There will be more than one unit of each resource
type available, but resource availability may vary over the plan-
ning horizon.



>File: OpTime

Operation Entity ProcTime

opr8 ByProd2 MORMAL (2.3, .2)
opr9 ByProd2 NORMAL (5.3, .5)
Opr10 ByProd2 NORMAL(1.1,.1)
Oprll ByProd3 NORMAL (12.3,1.2)
opri12 ByProd3 NORMAL (2.1, .2)

>File: OpRequirements

Operation Entity ReqgEntity NumInput NumOut put SourceQue
Opr8 ByProd2 ByProd3 0 1 -

Opr8 ByProd2 Resource-1 2 2

Opr8 ByProd2 Resource-3 2 2 -

opr9 ByProd2 Resource-1 5 9 -

Opr$ ByProd2 Resource-2 3 3

opr9 ByProd2 Resource-3 2 2 -

Ooprl0 ByProd2 Resource-1 2 2 -

Oprl0 ByProd2 Resource-2 2 2 -

Oprl0 ByProd2 Resource-3 2 2 -

Oprll ByProd3 Resource-2 2 2 -

Oprl2 ByProd3 ByProdl 1 0 ByProdQue
Ooprl2 ByProd3 ByProd2 1 0 ByProdGun
oprl2 ByProd3 Resource-1 2 2 -

Figure 4. Database repr ion of bly relationshi

Processing times are probabilistic, although the scheduling
algorithm treats them as deterministic and integer. In addition to
processing times, other probabilistic elements affect system per-
formance. System resources may fail with probabilistic times
between failures and down-times. New jobs arrive at the system
with probabilistic inter-arrival rates, and preemption may be al-
lowed for jobs in process if preemption is necessary to readjust
the production schedule.

3.1. Scheduling Component

The scheduling component in our current environment has
been adapted from a scheduling heuristic developed by Norbis
and Smith (1986) for resource- constrained scheduling problems.
This has proven to be a flexible and powerful schedule generator
than that can handle multiple products with distinct process flows
and competing resource requirements; several types of dynamic
events; and hierarchical planning based on batching of produc-
tion lots.

In its simplest outlines, the scheduling module produces a
schedule in three steps:

(1) It divides operations into three priority sets based on a,

critical path methodology.

(2) The scheduler schedules operations in each priority set
in order to maximize utilization of critical resources.

(3) It schedules remaining operations (those that are not on
any critical path) where feasible.

The scheduler reads product specifications from a specially
formatted numerical data file which is compact but which is
difficult to generate or interpret. As a result, one task of the data
extractor associated with the scheduler is to interpret database
entries describing product specifications and translate them into
the input format required by the scheduler. A second task is to
translate the schedules and error messages generated by the
scheduler from its internal notation back to a shared database
format that can be accessed by the simulation.

The scheduler also responds to four types of events which
can be triggered by the executing simulation and must be com-
municated to the scheduler in the appropriate format. These are:
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(1) new job arrivals; (2) deviations in observed processing times
from expected processing times; (3) changes in resource availa-
bility; and (4) changes in job due dates.

3.2. Simulation Component

Earlier research by Ketcham has examined information re-
quirements for manufacturing simulation (Ketcham, 1988; Ketc-
ham, Shannon, and Hogg, 1989). The software developed as
part of this research is called IBIS, which stands for
"Information-Based Integrated Simulation,” and constitutes a
general-purpose simulation environment. IBIS modeling tech-
niques allow for the generic description of a large class of
manufacturing systems and information network, including com-
plex bills-of-materials and multi-resource manufacturing opera-
tions, flexible production scheduling, and the representation of
both "push” and "pull" inventory control.

More formally, IBIS is a database-centered simulation en-
vironment, where objects, relationships, and attributes in a simu-
lated system are represented by database entries. The IBIS data-
base stores specifications about a system to be simulated. IBIS
simulations then read system specifications directly from the da-
tabase without needing to generate an intervening model. As a
result, a model does not exist as programming code but exists in
the form of information stored in the database that is selectively
retrieved in executing different models and different experiments.
Because IBIS uses a database rather than programming code to
control simulation execution, simulation values can be easily ac-
cessed and modified as a simulation runs by using database
management commands. This capability allows users to develop
automatically reconfigurable simulations based on database en-
tries and has simplified the development of data extractors for
concurrent model execution.

3.3. Model Management

Each experiment has a defined scope and can be associated
with one or more planning models. When a user selects an ex-
periment, a subset of the main (permanent) database is copied
into a working database, based on the scope and other
specifications for the selected experiment.

The modeling database is designed in such a manner that a
user can select from several experiments and planning models to
evaluate the control policies or to project system performance.
Experiments specifications can control the characteristics of the
system being modeled, and identify the planning models to be
executed as part of the experiment. Different experiments can,
for example, execute over different planning horizons, identify
jobs to be considered in a particular planning problem, add new
products or remove products from the experiment, or change in-
put rates or number of pieces in process at the start of the simu-
lation.

When a user begins a session, the model manager opens a
port to the database so that the user can interactively select a
suitable combination of an experiments and planning models. It
also provides a view of the selected portion of the database to
assist the user in specifying experimental details. Based on ex-
periment specifications, a data extraction module searches the da-
tabase to retrieve the required information about the system and
extract a subset of the system model.



Depending on the experiment specifications, the model
manager determines which planning models will be executed:
For example, if the user selects an experiment which uses a
simulation model independently, it extracts the modeling infor-
mation needed for this one experiment. Since the data require-
ments of IBIS simulations match the way data is stored in the
database, simulations are loaded without a dedicated data extrac-
tor. For other planning models, the model manager formats data
as required for each planning model through dedicated data ex-
tractors. The model manager opens a window for each planning
model and immediately sets up the control communications to
synchronize information flow between models.

When running concurrently, the simulation is driven by the
scheduler and the scheduler is updated in response to simulated
system status in a repeated cycle: (1) The scheduling model is
initialized and an initial schedule is obtained. (2) The database
is updated with schedule information. (3) The simulation reads
this schedule and schedules entities on the event calendar accord-
ing to the posted schedule. (4) Events produced by the simula-
tion that move the system off schedule are posted to the schedul-
ing model, which recalculates the schedule and updates reorder
information the database.

Changes in the simulated system, such as changes in
resource availability, new job arrivals, changes in job due-dates,
or variations in processing times, are stored in the database. At
each time unit, the data extractor associated with the scheduling
model accesses the database for event information which will be
posted to the scheduler prior to recalculating a schedule, if
necessary. Once the database is updated, the simulation is start-
ed, and is continued until an event occurs. In our implemented
version, the model manager has included additional operations so
that user interaction is not needed. That is, when the model
manager detects an "EVENT" message, it immediately reads the
event information and automatically posts the event information
to the scheduling model, stopping the simulation model until a
new schedule is calculated. When a new schedule is obtained
from the scheduling model, the model manager interpreis the
schedule and posts the job release schedule to the database.

We have run five planning strategies against each of two
problems These strategies are:

1. Apply simulation model alone with FIFO scheduling.

2. Apply scheduling model alone.

Apply simulation model driven by the initial schedule
obtained from the scheduler. Schedules are recalculated
whenever a new job arrives, but are not updated in
response to machine failures, increases or delays in
processing, or other events.

Apply simulation model with the schedule obtained
dynamically from the scheduling model, with preemp-
tion of operations not allowed. All four types of
events are allowed.

Apply simulation model with the schedule obtained
dynamically from the scheduling model, with preemp-
tion of operations allowed. All four types of events are
allowed.
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These planning strategies are sufficient to tést the MMC
architecture. Strategies 1 and 2 require application of a single
planning model whereas strategies 3, 4, and 5 require application
of two planning models, with the strategies 4, and 5 needing
dynamic synchronization of the results between the two planning
models. These strategies, thus, provide a way to test MMC for
independent, sequential, and concurrent execution of planning
models.

Several experiments were run using each planning strategy.
For example, initial experiements with the simulation run in-
dependently indicate that resource levels can be reduced to 9, 4,
and 3, with new jobs of all five times arriving (approximately)
every 100 time units. Any further reduction the resource levels
would result in an infeasibility.

For strategy 2, in which the scheduling model is run in-
dependently, the results were obtained only for the initial set of
jobs. Since the simulation model was not coupled to the schedul-
ing model, the scheduler had no information about new job ar-
rivals coming after the initial schedule was computed. Because
of this restriction, the results obtained by running the scheduling
model independently cannot not be compared directly with the
results obtained by adopting other strategies. However, running
the scheduler and simulation iteratively (Strategy 3), and running
the scheduler and simulation concurrently (Strategy 4 and Sta-
tegy 5) gives insight into how the scheduler’s assumption of
deterministic processing times and the scheduler’s priority sets
perform in probabilitistic conditions.

Although results need to be tested further, these trial prob-
lems suggest that preemption is not a good strategy for this sys-
tem, and that elaborate scheduling rules are not significantly
better than a FIFO rule when resource utilizations are less than
approximately 50%. Dynamically updating the schedule in
response to events does provide some improvement in overall
system performance by increasing resource utilization and max-
imizing overall earliness, although this improvement is marginal
and may not be justified if running the scheduler is computation-
ally expensive. In this case, the best policy would appear to be
running from the initial schedule until new jobs arrived in the
system.

4. CONCLUSION

From the point of view of MMC, these results show that
simulation can be "opened up" to interact transparently with
computational models by way of a shared data model and inter-
process communications taking place through special-purpose
data extractors. The concurrent sessions with the simulation and
the scheduling models provide a testbed for evaluating deter-
ministic models in a probabilistic environment, and they have in-
dicated that a multiple model environment would allow for
powerful capabilities in sensitivity analysis, error detection, and
error recovery. There will be errors in any model due to approxi-
mations and simplifications in numerical formulas. In many
cases, these errors can be compensated by sensitivity analysis
within a model. Alternatively, modeling limitations can be com-
pensated for by sensitivity analysis across multiple models. That
is, several models, such as simulation and scheduling models in
the prototype, can be executed based on a single system model
to serve as correctives on each other.



A database-centered design thus allows communication
between models that address different aspects of the enterprise
and that may have different data requirements or be written in
different languages. Significantly, this includes simulations
which can be dynamically adapted to changing system
specifications and results obtained from separately executing
scheduling models. Experiments with MMC show the advan-
tages of combining simulations with static and deterministic
models in (1) vnderstanding the performance characteristics of
the simulated system, and (2) understanding the performance
characteristics of the modeling strategies themselves. Users are
able to execute models independently or in dynamic combina-
tions, and users can choose to execute models automatically or to
intervene in model execution to guide decisions in system
design.

The database-centered design preserves a high degree of
data independence so that the database schema can evolve and
intelligent interfaces can be developed without needing to change
models that have already been implemented. Moreover, by em-
phasizing information relationships, we have begun to establish
information structures that will combine simulation with compu-
tational models, database management techniques, and, in more
recent research, knowledge representation techniques drawn from
artificial intelligence.
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