Proceedings of the 1989 Winter Simulation Conference
E.A. MacNair, K.J. Musselman, P. Heidelberger (eds.)

A MODULAR STRUCTURE FOR A HIGHLY DETAILED MODEL OF
SEMICONDUCTOR MANUFACTURING

Sarah Jean Hood

IBM Corporation
T.). Watson Research Center
Yorktown Heights, NY 10598

ABSTRACT

A model of semiconductor manufacturing lines,
using the discrete event simulation language, SIMAN,
is described. A detailed, flexible, and generic model of
this large, complex system was constructed by using a
highly modular structure. A user interacts with the
through which
programming and no recompiling even
changes to the process sequence, number of resources

model an interface requires no

if major

(tools and operators), queue control, or number of job
types are made.

1. INTRODUCTION

has been
developed for simulating large, complex, semiconductor

A discrete event simulation model
manufacturing lines. The goal in designing the model
represent the
considerable detail, yet provide a flexible interface for
structuring different configurations. Thus, adding a
new tool group, process step, or product type requires
no programming, but only data entry through the user
interface. All concerning job
release into the line, job selection, and rework were
coded and the user simply sets a swilch to select among
them. In the event that the user wishes to add a policy,
the modular code ensures a direct interface with the
existing 10,000 lines of code. The reasons for modeling
in such detail are given in Section 3.

was to manufacturing lines in

anticipated policies

2. THE MANUFACTURING ENVIRONMENT

The semiconductor manufacturing environment
is a complex and dynamic one. After the transistors
have been buill, the process of joining them into
circuits, called the personalization process, involves
hundreds of process steps at many tens of tool groups.
The flow is highly reentrant; a job may revisit one tool

811

Amy E. B. Amamoto
Antonie T. Vandenberge
Systems Modeling Corporation
Sewickley, PA 15143

group ten limes or more as it advances through its
process plan. Figure 1 shows a typical process plan.
A job starts the personalization process at Level A
Apply Photoresist. When it exits Level A Clean it
enters Level B Quartz Deposit and so on until it exits
the personalization process at Level N Via Etch.
addition to the highly reentrant flow, a line may handle
multiple products. The competitive market drives the
frequent introduction of new products with smaller,
tighter tolerances; thus, tools may be operated at the
limit of their specifications
introduce significant variability.

In

and therefore, may

The cycle time, the time elapsed from when a
job enters the line to when it exits the line, is on the
order of months. One of the objectives in managing
the line is to reduce cycle time. Reducing the cycle
time results in accelerated learning due to more cycles
being completed in the same amount of time, quicker
response o changing demands, and shorter exposure

time to contaminating particles.

3. REASONS FOR A DETAILED MODEL

In the past, analytic models such as linear
programming and mean value analysis, simulations
with many simplifying assumptions, and manufacturing
experience have been exploited to their limits to reduce
cycle time. An alternative which could provide
thorough (detailed) insight was needed. The long cycle
times and complex dynamics made the alternative of
evaluating new scheduling or flow control policies by
experimenting on the line itself difficult (not to mention
using that could be going
generating production). Thus, a detailed model was
needed to serve as a substitute for experimenting on the
line. Details such as rework, test wafers, and operators

resources to revenue

were represented explicitly in order to reliably evaluate
the impact of detailed scheduling and flow control
policies proposed to reduce cycle time.

1
NML

——————

H

[T
FEDCBA

Fpply photoresist

|

LllLuiill .

expose/develop

»
14

- —

i

metal evaporation

]

P XX ¥

14

'S
nd

| Ly

Mo
—~mmd¢

quartz deposit

et
r
]

[

I B——

to final clean

Figure 1.

4. A DETAILED, FLEXIBLE, GENERIC
MODEL

In designing the model to accommodate this
of detail, the conflicting
requirements of flexible and gencric also had to be

level two seemingly
incorporated. A flexible model ensures that changes in
the details can be easily integrated into the model and
a generic model allows for straightforward application

to other semiconductor manufacturing lines.

The discrete event simulation language SIMAN
(Pegden, 1987) was used, butl the requirements for a
detailed, flexible, and generic model led to a model that
is structured diflerently than the conventional model

Job Flow in a Semiconductor Manufacturing Line

and experiment frames. A customized configuration
file serves as the user interface to the model. It
contains all the input data describing the line and the
information necessary to conduct simulation runs. The
model frame uses submodels called station macros to
create modular units representing the tool groups and
tools. These macros call events to execute FORTRAN
subroutines which make determinations such as how to
assign operators, which job to process next, and how
to route a job needing rework. These FORTRAN
subroutines depict detailed aspects of the system and
are easily manipulated by turning options on or off in
the configuration file. The model also uses
FORTRAN user functions which replace the need for
many entity attributes, resulting in a flexible structure
with reduced memory requirements.

4.1 Configuration File: The User Interface

The standard approach for a SIMAN model
requires that the structure and relationships of the
system’s components be described in the model frame
and that the specific variable values be entered in the
experiment frame. Changing either of these files
requires recompilation and relinking before executing
the updated model. However, a different approach
was needed o implement the semiconductor
manufacturing model. An interface was designed to
provide a simpler means of entering the voluminous
data and to avoid the recompilation step.

The interface is an ASCII file referred to as the
configuration file. The model and experiment frames
were built to accommodate an extendible model with
many manufacturing options. In the configuration file,
the user customizes this generic simulation model by
providing information on tool groups, operator pools,
control policies, schedules, and other parameters. At
the beginning of the simulation run, the configuration
file is read in, and the appropriate variables are set.
Since this file contains all the system specific
information, recompilation and relinking is
unnecessary. The user simply modifies the file to
represent the changed system (or new system) and
executes the simulation model.

Specifically, the configuration file contains
secions which represent the following: input control
parameters, the input schedule, shift and simulation run
(ime) parameters, expediting policies and parameters,
rework policies and parameters, job selection policies
and parameters, product types, standard and rework
sequences (routing), tool group parameters (capacity
changes, failures, setups, operator ratio), and operator
pool parameters (capacity changes, staffing levels).

The configuration file is processed using
unformatted read statements (list-directed input). This
provides latitude in laying out the configuration file and
in entering the data. However, it also mandates
considerable error checking to prevent the user from
inadvertently running the model with incorrect
parameter settings. Several issues which aided in the
implementation of the configuration file include the
following: an organization of the filc which is easily
understood by the user (related sections are ncar each
other and infrequently used sections are grouped at the
end of the file), complete, concise directions in the file
for entering the data with examples provided in some
sections, and error checking during the processing of
the configuration file. The placement of check points
helps the user identify the section in the configuration
file in which the error occurs; errors checked for

813

include too little data, too much data, mismatched data
types, and an incomplete data file.

4.2 SI'MAN Model

The configuration file is integrated with the
model in the Initialize event (see Figure 2 for the model
layout). The model is customized based on the
information entered in the configuration file. The
modular, generic model design ensured an easy
approach for controlling the numerous options in the
configuration file and a simple method for expanding
on those options.

The SIMAN station macro provides such a
modular design. A station macro is similar to a
subroutine in that it is a generic set of logical
statements which act on the parameters passed into it.
Each macro consists of a range of individual stations
which represent a range of related resources such as
tool groups or tools within a tool group. In the model,
two macros represent the flow of jobs through the
manufacturing process. One station macro contains
the generic code which applies to all tool groups. The
other station macro comprises the generic code for all
individual tools within a tool group. Each station in
the macros embodies each tool group or tool. Thus,
jobs flow from tool group to tool group by looping
through the two macros. As the job reenters either
macro with its current tool group or tool number, the
same model code is traversed with the options pertinent
to that particular tool group or tool.

Station macros were also used for three
tool-based external events: preventive maintenance,
major setups, and failures. Again, in each macro, the
same model code applies to all tools and only the
values of the variables change to specify the particular
tool and its maintenance, setup, and failure parameters.
With tools numbering in the thousands, this design
greatly reduces the overhead of these events by only
activating the control entities for the duration of the
events. The external events are independent
occurrences which affect the system. Jobs do not flow
through these parts of the model; instead, these events
affect the system’s performance by changing resource
availability or job attributes. These events were
implemented as separate sections of model code with
their own control entities. The time between execution
of these events and their durations are specified in the
configuration file and may be random. In addition to
the three tool-based external events which use macros,
there are four external events which did not require the
macro structure: initialization of variables, assignment
of a roving operator group called the flying squad,
expediting jobs, and preloading the queues at the
beginning of a simulation run.

]

| INITIALIZE
-

’— OUTSIDE EVENT

—
| RATE INPUT I
MACRO | TOOL GROUP BUFFERS J | ACTUAL JOBS
l L
MACRO [TOOLS I E}n
—_ p—
S— -
r FLYING SQUAD |
R
TOOLS: PREVENTATIVE
MACRO r MAINTENANCE |
INTE
=
MACRO FOOLS: MAJOR SETUPS l
T S
MACRO [TOOLS: FAILURES | |— OUTSIDE EVENTS
L

e

iEXPEDIT]NG: ON DEMAND l

I |

| —
EXPEDIT]NG: RANDOM J
l

PRELOAD

!

Il

1

Figure 2.

Future enhancements are simplified by the usc of
the station macros. For instance, each tool (station) in
the tool macro may refer to another macro in which
several stations relate to the one tool. In this way,
separate stations in the new macro may represent
multiple processing steps at one tool. The station
macro design also allows for the direct integration of
material handling schemes between stations (tool group
to tool group, or tool to tool group).

4.3 FORTRAN Code
The simulation model interfaces with the
FORTRAN code by issuing event calls which indicate
the subroutine to execute. An event call may be
initiated by a job flowing through a tool group or tool,
or by a control entity in an external event loop.
Similarly, FORTRAN functions are also called from
the model by explicily referring to the function in the
simulation model statements. The FORTRAN code
depicts detailed aspects of the input schedule, shift
(ume) events, operalor assignments, resource (tool and
operalor) capacily changes, expediling policies, rework
policies, and job selection rules.

Model Structure

814

The independent external event loops deal with
either input controlled or shift controlied events. The
input controlled events are split into either rate or job
list. The rate input provides a job creation macro with
one control entity for each job type and uses a random

number gencrator to pick job attributes from
distributions. Alternatively, the job list provides input
from a sequential list of jobs with all attributes

explicitly provided. The job list has a daily release
schedule pointing into the sequential list of jobs and a
cycle schedule pointing into the daily release schedule.
A single control entity creates the next X number of
jobs from the job list at a time specified in the daily
release schedule. The control entity is then placed onto
the event calendar until the next specified release time
in the daily release schedule. See Job List Input in
Figure 3.

The shift controlled events are all called either at
the start of every break period, shift, day, or month (no
weekly events have so far been implemented). See Shift
Logic in Figure 3. The operator pool capacities can be
varied throughout the shift to reflect break periods. At
the start of each shift, individual operators are assigned
to individual tools. This is accomplished by using
indices in the resource names and in the queues of the
station macros. These indices are examined by the job

INIT SHIFT LOGIC

START DAY

START SHIFT S

SUMMARY REPORT

!

START BREAK ~ SHORT TERM CAPACITIES: OPERATOR POOLS

FLYING SQUAD

ASSIGN OPERATORS TOOLS
SHIFT CAPACITY CHANGES: OPERATOR POOLS

FLYING SQUAD
FLYING SQUAD REALLOCATION

> INPUT BLOCKING: DURING WEEKEND

L STARTMONTH , | ONG TERM CHANGES: OPERATOR POOL CAPACITY

FOR CONSTANT WIP

FLYING SQUAD CAPACITY
TOOL GROUP CAPACITY

NEXT DAY

NEXT CYCLE

Figure 3.

selection subroutine to ensure that the correct operator
from the correct pool serves the corresponding tool.
Operators may be assigned to more than one tool, and
may perform up to three different tasks at a single tool:
load, monitor, and unload. By assigning individual
operators to specific tools, the simulaton model
controls the fact that operators may monitor up to N
tools (tool group attribute) but perform load and
unload on only one tool at a time. A secondary
operator pool called the flying squad is also reassigned
at the start of every shift to tool groups (attribute) to
help out the operator pools. Long term capacity
changes to tool groups, operator pools, and the flying
squad are applied on a monthly basis.

The code for expediting jobs describes three
policies for altering a job’s priority. The policies are
referred to as random expediting, end of month
expediting, and expediting based on demand. Random
expediting reassigns a job’s priority at random
intervals. The job’s priority may be increased or
decreased, and the affected job may reside at any stage
in its sequence. End of month expediling represents
the push to ship product at the end of the accounting
month. A few days before the end of the month, those
jobs which can be completed by the end of the month
are assigned priorities above all other jobs. Expediting

815

1 EXPEDITING
[NEXT RELEASE »;, cREATE JOBS AND ENTER TOOL GROUP BUFFER

>leD NEXT RELEASE IN JOBLIST

>>FIND NEXT DAY IN DAILY RELEASE SCHEDULE

FORTRAN Structure

based on demand is an event which occurs at regular
intervals. This event considers all jobs and compares
their current progress with their due dates. Based on
these comparisons, the jobs’ prioriies are either
increased or decreased. Each of these three policies
may be turned on or ofl, independendy of each other,
through the configuration file.

The rework code represents various possible
policies on how to split bad wafers out of a job and
how to recombine reworked wafers with original good
wafers.

The job selection code embodies the various
rules which determine which job to process next. Job
selection is performed when a tool and its operator are
available. The waiting jobs are considered for
processing in the following manner: jobs with the
highest priority ever possible are selected first, split jobs
(the first part of the job has already been processed
and the remainder is waiting due to the tool’s batch
size) are selected next, and then if no job has been
found, the job is selected based either on highest
priority remaining in the queue or to minimize setup.
The user chooses the rule through the configuration
file. The selected job may be immediately rejected if its
downstream tool group’s queue is full or if it cannot be

completely processed before the end of the current
shift. Once a job has been found, it is then checked for
how it should be processed. It may be a job which
requires a test wafer (sending part of the job ahead
first, and then sending the remainder through), it may
require batching with other jobs, or it may require
splitting due to its job size relative to the batching
capability of the tool.

The FORTRAN code is split into approximately
sixty subroutines, continuing support of the modular
theme. For instance, all code relating to job expediting
is contained in three subroutines, thus limiting the
amount of code one has to deal with when making
modifications.

5. MANAGEMENT ISSUES

There are several management issues which were
also vital to the successful completion of a project this
large and complex. They include development of the
functional management of
data, frequent meetings between the manufacturing

specification document,

members and the design members of the modeling
teamn, and preparation of the user’s guide.

5.1 Functional Specification

Of primary importance was the development of a
functional specification. This document established a
common understanding, of the model’s objectives,
among the team members and provided an outline for
The functional
specification contained an explicit description of the

planning the project’s milestones.

data required, the output to be provided, and the
details to be modeled. The initial objectives were
revised based on their importance within the limitation
of resources. Afler the first draft was written, the team
members and the
document. Once this cycle was completed, there was a
mutual, comprehensive understanding of what the

revised, circulated, rewrote

model would and would not do.

The starting date of any milestones should be
based on the completion of the functional specification
rather than a specific date. Estimating the development
time of the functional specification itself may be the
most difficult milestone to ascertain.

816

5.2 Data Management

Due to the copious amount of data required by
this model, the considerations for obtaining and
managing the data was important. Design issues were
approached with the data requirements in mind.
Wherever possible, the input data format for the model
mirrored that which already existed for other uses.
The output could also have been overwhelming in size.
The pertinent performance measures and their exact
meanings were defined as part of the functional
specification. Defining the model output at the
beginning of the project enabled the team members to
know exactly what information the model would
provide and how Lo interpret that information.

5.3 Frequent Meetings

Throughout the development of the functional
specification and into the design and implementation of
the model, the participation of a team was crucial. The
primary importance of these meetings was the transfer
of expertise between team members. At first, the
manufacturing members conveyed their knowledge of
the semiconductor process to the design members.
Then during implementation, the design members
explained their implementation to the manufacturing
team members. The team functioned best when all
members were able to participate fully and when an
agenda of clearly defined problems was constructed.
Meetings of two days seemed to be sufficient,
maintaining the intensity beyond two days would have
been difficult. Those two days of problem solving
usually provided an implementation window of three to
four weeks, at which time the same process was
repeated.

5.4 User’s Guide

The user’s guide contains sections on how to set
up a configuration file, how to run the model, and how
to interpret the output. Two other sections address
topics concerned with the maintenance of the model
structure and the FORTRAN structure. Additionally,
it contains an updated version of the functional
specification listing the final assumptions and details
modeled.

The user’s guide is arranged to serve two levels
of users’ needs. Most users will be concerned only
with running the model by using the configuration file
as the interface to the model. They will not have to do
any programming or compiling. A few users will be
involved with the maintenance and enhancement of the

model and will have to deal with the SIMAN and
FORTRAN code directly.

6. CONCLUSION

This project demonstrates that simulation models
can be developed to represent large, complex systems
with great detail and flexibility while maintaining their
generic nature. The techniques used to design and
implement the model were presented; they were the
Configuration File (the user interface), the SIMAN
Model, the FORTRAXN Code, and the Management
Issues.

The goals of the simulation model design were
attained. Considerable detail from the manufacturing
lines was incorporated in the model; the user has a
simple, flexible interface for choosing these detailed
options and the generic structure allows for the direct
application of this model to other semiconductor
manufacturing systems and configurations.

ACKNOWLEDGEMENTS

The authors extend their appreciation and
thanks to their fellow team members: Paul Feeney
(IBM East Fishkill, NY), Bob Leavitt (IBM T. J.
Watson Research Center, Yorktown Heights, NY), and
Dave Robideau (IBM Burlington, VT). The authors
would also like to thank Manu Patel (Manager,
Industrial Engineering, Fishkill) for his support of the
project, Randy Sadowski for his help with the project
in all its phases, and Barbara Werner and David
Amamoto for proofreading this manuscript.

REFERENCES

Pegden, C. Dennis (1987). Introduction to SIMAN.
Systems Modeling Corporation, 504 Beaver Street,
Sewickley, PA 15143.

AUTHORS’ BIOGRAPHIES

SARAH JEAN HOOD received her Ph.D. in
Mechanical Engineering from the University of
California, Davis. She joined the Manufacturing
Research department at the IBM Thomas J. Watson
Research Center and worked in the continuous system
domain on an automated method of modeling
electromechanical systems for the purpose of design

817

evaluation. She is now working in the discrete system
domain exploring various methods and tools including
Petri \ets and discrete event simulation languages for
modeling semiconductor manufacturing. She is a
member of the Society for Computer Simulation and
the Institute of Electrical and Electronics Engineers.

Sarah Jean Hood 2-114

IBM Corporation

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Hts., NY 10598

AMY E. B. AMAMOTO is currenldy an
Engineer performing manufacturing systems analysis
for the Simulation Services division of Systems
Modeling Corporation. She received her Bachclors
Degree in Industrial Engineering from the University of
Pitsburgh. She has developed SIMAN and SimKit
simulation models used in the evaluation of various
electronics and transformer components manufacturing
systems. She is a member of the Institute of Electrical
and Electronics Engineers and the Institute of
Industrial Engineers.

Amy E. B. Amamoto

Systems Modeling Corporation
504 Beaver Street

Sewickley, PA 15143

ANTONIE T. VANDENBERGEL is a Senior
Project Engineer at Systems Modeling Corporation.
He received his Bachelors and Masters Degrees in
Industrial Engineering from Purdue University. He
joined Systems Modeling Corporation in July 1986,
where his responsibilities include performing
manufacturing systems analysis and training functions
for the Simulation Services division, and product
research and development for the Software
Development division. His areas of interest include
using shop floor information systems to aid in the
simulation and scheduling of manufacturing and
material handling systems. He is a member of the
Institute of Industrial Engineers and the Society of
Manufacturing Engineers CASA.

Antonie T. Vandenberge
Systems Modeling Corporation
504 Beaver Strect

Sewickley, PA 15143

