Proceedings of the 1989 Winter Simulation Conference
E.A. MacNair, K.J. Musselman, P. Heidelberger (eds.)

WATMIMS JIT/KANBAN BENCHMARK
SUMMARY AND RECOMMENDATIONS

Kenneth N. McKay
Michael Rooks
WATMIMS Research Group - Department of Management Sciences
University of Waterloo
Waterloo, Ontario, Canada N2L 3G1

ABSTRACT

Just-In-Time/KANBAN manufacturing concepts result
in models that must simulate pre-process inventories at each
stage, delayed processing until downstream operations indi-
cate work should be performed, and comprehensive analysis
on production orders (make/move Kanbans) versus inven-
tory and production activities. This style of manufacture is
different from the normal push environment where machines
will work on anything in the work queue, send the finished
parts to the next stage, and keep working until the pre-process
inventory queue is exhausted; the material arriving is itself an
order to make parts. The two styles imply different control
logic and statistics. Many packages support push production
directly, and easily provide the necessary controls and infor-
mation, but there are no packages known to the authors that
directly support JIT-pull. It is the purpose of this paper to
report on a JIT-pull benchmark comparison of eight simula-
tion tools and the resulting methodological recommenda-
tions.

1. INTRODUCTION

The pull style of Just-In-Time manufacturing with Kan-
bans is gaining in popularity among companies that have the
appropriate profile of demand, supply, process, and organiza-
tion to support the JIT concepts and even amongst com-
panies where it is not necessarily a good fit. In many cases
where the textbook situation does not exist, it is important to
simulate or analyse the dynamics of the manufacturing en-
vironment to ensure that the concepts are feasible and tonote
what attributes of the system should be monitored and tuned.

During the past few years, the WATMIMS Research
Group has been involved with many JIT simulations and
factory analyses (e.g., Moore et al (1986), Moore and McKay
(1986)) and the development of special tools or platforms for
JIT analysis (McKay et al (1989)). In each case, the basic JIT
concepts had to be implemented from scratch as none of the
simulation tools in our research laboratory had either low-
level or high-level primitives that directly matched the type of

773

control and/or analysis needed in a JIT environment. As a
result of these experiences, the authors decided that an in-
depth benchmark and comparison between a number of the
tools was warranted, resulting in general recommendations
regarding methodology. Methodology issues centered on the
ability to model the JIT process, as well as accurately repre-
senting the problem definition. The latter is a concern with
higher level tools or built-in functions. For example, the tool
might provide a construct for an AGV, but the construct’s use
implies a number of assumptions that could result in chang-
ing the problem definition and/or ignoring part of the defini-
tion and thus endangering validity and usefulness.

The research literature regarding simulation methodol-
ogy in the JIT situation is sparse. Some papers such as
Schroer et al (1985), Dyck et al (1988), Sarker and Harris
(1988), and Moll (1988) describe a JIT model and its use, but
do not critique in detail the methodology or simulation con-
cepts used to create the model. Thus, it is the goal of this
paper and associated full benchmark report to concentrate
on the simulation methodology and present the different
techniques used to support JIT modelling and analysis.

2. BASIC JIT PROCESS

In a typical pull production system, a machine resource
can be characterized as follows:

« order queue - first in/first out, each order identifies
the delivery point and quantity

« bill of material information - for each part to

assemble or fabricate, the number of
subcomponents which are neccessary - type and
quantity

« pre-process stores - for each sub-component or raw
material item, there exists one or more bins - each
containing a certain number of parts and an
identifier of order location for bin replenishment



 production logic - when an order arrives, sufficient
raw or sub-component parts are drawn from their
repective bins and if possible, the desired item made
- when a bin is emptied, a signal (commonly called
aKanban which can be physical or electronic) is sent
to the appropriate location for more parts

The above is a simple view of one possible structure;
there are many variations and extensions which can exist.

3. PROBLEM DEFINITION

The complete problem definition is fourteen pages in
length and is briefly summarized in this section.

The production area is composed of a final shipping area
with certain stocking levels of six final products stored in a
two-bin Kanban system. As one bin empties, an order (via
electronic means) is placed at the appropriate final output
machine to start making another bin. Each production
machine has two Kanban bins of each sub-component which
are ordered electronically in turn from the preceding process-
ing point. There are two final output machines, a paint line
that operates in a push fashion between two pull points, and
four other production machines. The first machines in the

process order raw material from an input stores also using a
two-bin Kanban method. The machines are constrained by a
limited output area and can be blocked or starved depending
on the arrival of orders, parts, and the material handling
system. One of the parts has a minimum order quantity which
causes the machine to make ahead and store the excess in its
output area until the next request.

A total of seventeen parts in a three-level bill of material
are specified - storage points, Kanban quantities, order
points, initial bin quantities, etc. With the three-level bill of
material, it is possible to have: the final output area pull from
the final machine which pulls from a middle machine (which
then implicitly pushes the part through paint on the way to
the final machine) which pulls from the first machine which
in turn pulls from the raw input stores.

The build ahead subcomponent and paint push area
provide elements of complexity and randomness. An
automated guided vehicle system is specified to provide the
material handling. The major questions directed to the ven-
dors pertained to the number of AGVs required to meet
certain levels of on-time shipments.

Moterial

W A

_4@"r

il

Product

Al
p Sub-oassembly !
3
4
]

5
P
A
inal Assembly 'lq

L -e

6 |/

=

Figure 1: Factory Layout



Figure 1 shows a simplified diagram of the manufactur-
ing layout. This final problem definition was non-trivial, yet it
was not as complex as many real-world simulation situations.
This simplicity was dictated by the desire to have solutions
that were manageable and comparable.

4. METHODOLOGY

Three general approaches to simulation tool com-
parisons have historically been used. First, a survey as con-
ducted by Law and Haider (1989) can tabulate and
summarize basic features and functions. Second, the re-
searchers conducting the comparison can create a project
description and then develop solutions in each language (e.g.,
Armstrong and Sumner (1988)). Third, a cooperative ven-
ture can be established whereby a project description is
created and then each vendor can provide a recommended
solution to the problem. We adopted the third style since it is
possible to have experience with a large number of simulation
packages, but it is not as easy to claim expertise in all. Thus,
to be fair, we allowed each vendor the opportunity to submit
the best solution.

Armstrong and Sumner (1988) propose a repre-
sentative project strategy utilizing templates for comparing
simulation languages. They propose a five step approach:
establish ground rules, select languages, select representative
project, build evaluation template, and evaluate languages.
This approach is similar to the way software is generally
selected: establish the requirements, identify the evaluation
criteria, solicit or select contenders, develop each solution,
and then compare the results. These approaches sound
simple and straightforward; however, expertise is required in
both simulation methodology and in the problem domain in
order to prepare and conduct the comparisons. Furthermore,
it is very difficult to quantitatively say that one package or tool
is better than another. If a tool cannot perform the task, it
may be eliminated from contention - but what happens when
all contenders can be made to execute the task? How does
one quantitatively compare tools as different as SLAM 1I,
PROMOD, and GENETIK?

4. 1. Comparison Strategy

Primarily, one must separate the issue of language from
that of supplied solutions, by asking: “what are the basic
concepts in the language used to solve the problem, inde-
pendent of how accurately and completely the vendor
answered the questions?” When languages are similar in
general structure and philosophy (e.g., SIMAN, SLAM II,
GPSS/H), a scoring system can be developed that counts the
numbers and types of concepts used to solve the problem.

775

For example, the ratio of work-arounds or creative sequences
of commands can be compared between the languages and
the theoretical minimum as represented by the real-world
case. Thus, the cleanest and simplest implementation can be
quantifiably stated. However, when the structures and sys-
tems are drastically different, numeric marking schemes and
feature tables are not appropriate. We have tried to address
this problem in two ways:

« This summary paper addresses the basic simulation
methodology and concepts in each language. This
description is relatively straightforward and is
devoid of head-to-head comparisons. We provide
what we believe is the simplest and most
straightforward approach to the problem which is
not directly implementable in any of the tools.

o The benchmark report documents our attempt at
applying a relatively quantifiable metric on the
solutions as supplied by the vendors. This was
difficult to perform and had to take into account
assumptions made by the vendors and the many
different ways of addressing the problem definition.

4. 2. Vendor Participation

A preliminary problem definition and model were
developed by the authors before the vendors were contacted
in order for us to understand the complexity and require-
ments of the solution. Subsequently, the feasibility of the
study was discussed with the vendors, who expressed en-
thusiasm and offered full support to the project. Without
vendor support, it would not have been possible to obtain
expert level solutions in the different packages in a realistic
timeframe - it was expected that each complete solution
would take approximately two man-weeks of effort.

After the complete problem description was finalized, a
restricted number of vendors were contacted and invited to
participate in the benchmark project. Unfortunately, only
about half of the simulation tools we have in the laboratory
could be included - this was not an indication of the software’s
capability or suitability. The vendors were provided the prob-
lem definition, access to telephone consultation to clarify
issues related to the description and requirements, and a time
schedule for submitting the solutions. Of the initial ten tools
solicited, eight solutions were returned, representing a major
investment and commitment by the vendors.

The problem solution was solicited as two major parts:



o Part A included the basic model construction,
several questions pertaining to the model which
would require experimentation to derive, and a
number of statistics that could be used to tune the
production area.

« Part B asked the modeller to identify and address a
bottleneck, and in addition indicate how the model
could be changed given a number of additional
requirements.

The statistics and additional requirements were based
on real-world JIT simulation projects involving the research
group. All vendors agreed to have part of their supplied
solution (i.e. program listing) published in the full benchmark
report which would be distributed to all participants.

4. 3. Restrictions and Limitations

While all of the tools include concurrent graphics or
post-animation options, and most include material-handling
in their repertoire, the graphic capabilities and material-han-
dling features were not directly evaluated or commented
upon. The material handling analysis was limited to the
AGVS interface to the scheduling (JIT) control logic. The
development and execution times for the models were also
not critiqued.

As mentioned in the introduction, there were two
aspects of the benchmark - the language/tool characteristics
and the model accuracy and completeness as generated by
the vendor. This summary paper deals with the former and
the full benchmark report addresses both aspects.

5. THE SIMULATION TOOLS

The simulation tools cover the range of relatively low
level languages (GPSS/H, SIMAN, SLAM II w/MHEX),
integrated systems (GENETIK, WITNESS, PROMOD),
and specialized hybrid tools (AUTOMOD, PCMODEL). ,

5. 1. AUTOMOD

AutoMod (version 3.0) is a high-level language based on
GPSS/H and is available on a number of platforms. It is
designed to facilitate fast and accurate modelling of systems
in which material- handling is a central factor. It achieves this
in a unique way, using a non-procedural language and allow-
ing detailed procedures to be included where necessary. The
model consists of static entities such as resources and
material-handling systems, and dynamic entities which they
process, called loads. The material-handling systems are

776

defined using an accompanying CAD package called Auto-
Gram, which converts a CAD drawing of the systems into
data files which describe the system to AutoMod. Loads are
routed through resources and the material-handling systems
by user-written processes which describe the details of their
activity. Within these processes, detailed process procedures
and AutoMod subroutines can be included.

AutoMod’s modelling environment makes its repre-
sentation of the JIT system unique in several ways. The
AGVS system definition is done quickly and accurately in
AutoGram. The user is provided with a rich set of options for
its definition, and a high degree of accuracy can be achieved
in the generation of AGVS logic. Once defined, however,
control points must be referenced directly, making it neces-
sary to code explicitly each movement within the AGV sys-
tem.

After defining the AGVS, the user then writes processes
which guide loads through the system. The coding is
simplified with a macro coding feature, which allows defini-
tion of similar processes within one block of code (for ex-
ample, all sub-assembly and final assembly machines are
modelled within one block of code). JIT order generation is
modelled in a fashion similar to other block-oriented lan-
guages. A load is created to introduce a customer order into
the system, and when parts are ordered, a Clone clause is
invoked, sending a new load to a process which “routes” it to
the correct machine. Thus, the future events chain becomes
an order queue, and all details pertaining to the order are
carried with the load. After initializing several statistical
counters, the load then waits for the machine to become
available.

The interface between the production processes and the
AGVS is quite clean, facilitated by the AutoMod constructs
for placing loads on the material-handling system, and
removing them. AGV orders are generated in an indirect
fashion, however, since material-handling resources must be
guided by loads; a load sends a clone to the AGV parking area
which brings an AGV back to the ordering machine. Once
this is achieved, the clone is terminated, and the parent
continues on to its destination on the AGV. This indirection
and the Clone usage mentioned above resulted from part of
the problem definition that did not exactly match AutoMod’s
built-in capabilities.

When it was introduced, AutoMod provided a unique
means of producing factory simulations with excellent
facilities for layout definition and animation. While these
characteristics remain, tradeoffs occur when logic such as JIT
is considered, specialized extensive statistics are required, and



indirect programming practices result. AutoSimulation’s new
product, AutoMod II, may provide solutions to these draw-
backs.

5. 2. GENETIK

GENETIK (version 7.10) is a PC-based modelling sys-
tem enjoying popularity in Europe, and gaining in use in
North America. This is the third visual modelling system its
developers have been involved with and this has resulted in a
very extensive platform that combines database, user inter-
face, and modelling capabilities. These capabilities permit the
modeller to perform model maintenance (e.g., subroutines,
libraries), to create sophisticated user dialogs (e.g., for turn-
key applications), and to completely control the modelling
activity. The programming language is high-level and sup-
ports local/global variables, subroutines with parameters,
procedural logic, and a number of built-in data structures.
The modelling is performed with events which are scheduled
and conditional events which are possible consequences of a
scheduled event. If necessary, the modeller has access to the
dispatch logic and event queues - a design philosophy of
GENETIK is to make everything accessible.

One of the most powerful and interesting structures is
TABLE. This structure is two dimensional and can have the
number of rows and columns increased or decreased under
model control. The columns can include any of the
GENETIK primitives such as routine names which can be
accessed and executed, and pointers to other tables, facilitat-
ing indirection. The table construct allows the modeller to
easily build data-driven models in a clear and concise fashion
- in a close approximation to object-oriented programming.

The generic pull process involves a significant amount
of logic to control the machines and manage inventory. In
languages supporting procedural constructs, the logical rep-
resentation can be explicitly stated - conversely, the repre-
sentation in a language not supporting high level procedural
functions can be obscure and difficult to follow. The JIT
functionality is implemented in GENETIK using a combina-
tion of procedural logic and tables. The tables provide a direct
way to maintain and manipulate the bill of material, orders,
Kanban status, bin contents, and routing. The program logic
is separated into a number of events to make parts, start
machines, and request AGV services. The events make calls
to a number of subroutines that check the contents of bins,
request bin replishment, and track production.

GENETIK does not directly implement queues and
multiple queue manipulation which is needed to avoid an
algorithmic solution to the pull problem. However, the object

777

oriented approach to modelling, combined with the high level
procedural language means that models are flexible, easy to
change, and understandable. While not recommended for
absolute beginners, GENETIK offers an attractive alterna-
tive to experienced modellers.

5. 3. GPSS/H

GPSS/H (version 2.0) is a block-oriented discrete-event
simulation language and is available for a wide assortment of
platforms. It is known for its execution speed, robustness, and
its rich assortment of control statements, blocks, and com-
piler directives. Typically, block-oriented languages such as
this are used to model a production system using little
abstraction; transactions move through the simulation repre-
senting parts (or groups of parts) moving through the actual
system. However, the power of block-oriented languages lies
in the generality of the blocks, which allows any desirable
degree of abstraction. Thus, in a JIT environment, a transac-
tion might be used to represent a control entity at each
machine, and others might represent the AGVs which inter-
face with the machines.

Several constructs in GPSS/H make it possible to model
the JIT process. Low-level blocks which set/reset logic
switches can be used for implementing the numerous checks
which must be made before a part can be built. The QUEUE
block provides a convenient vehicle for automatically gather-
ing a number of statistics. A drawback to using generic queu-
ing structures (e.g., user chains or the future events chain)
as opposed to a vector or array representation, is the difficulty
in performing efficient search and extract operations on the
queues. This issue is addressed in the recommendation sec-
tion of this paper.

The SPLIT block can be used to simplify the model
design. For example, all customer orders are represented as
transactions. These transactions then split when an order to
the next lowest level must be made; the children reside in the
order queue, and eventually split as necessary, sending their
children to the next level. This tree structure ensures that the
model code is analogous to the real-world situation - all low
level orders are generated from the final customer orders.
When an order has been filled, the transaction representing
it enters the AGV queue, and follows the order through the
AGYV code to delivery, completing the analogy.

GPSS/H is a well-designed and finely-tuned example of
the original school of thought in discrete-event simulation.
Although there are alternative modelling methodologies,
block-oriented languages such as GPSS/H should not be
considered outmoded: the overhead in performing some



tasks can be offset by the ease of others. Furthermore, none
of the block-oriented languages are standing still - adding
functionality in terms of modelling or in graphical analysis -
GPSS/H, SIMAN, and SLAM II all have animation options.

5. 4. PCMODEL/XP+

PCMODEL/XP+ (version 9.17) is a general-purpose
simulation language especially designed to make use of the
graphical capabilities found on IBM PC compatibles. There
are approximately fifty-four instructions in the language used
for general logic, variable manipulation, moving entities on
the screen, input/output, and simulation control. While the
operators are relatively low-level (i.e. more assembler-like
than Modula-2 or Pascal) it has a number of powerful fea-
tures such as those for moving items directly on the PCscreen
or the operators for using vectors and arrays. For example, it
has an operator that finds the lowest value in a vector and
returns the index position - useful for finding zeroed slots,
scheduling and dispatching algorithms, etc. Since the
operator set is kept simple, it is very flexible and it can be
made to do almost anything - it is just a case of programming
the solutions. We believe that individuals with programming
experience will find it easy to create solutions, but less ex-
perienced people will be challenged.

The JIT logic dictates keeping track of many variables
(e.g., quantities of parts in bins, backorder status, etc.) which
can make good use of vectors, arrays, and queues. The vector
and array manipulation is simple and easy to do in
PCMODEL. Per se, PCMODEL does not have queues in
the sense that GPSS/H, SLAM II, and SIMAN have them.
Queues are created and maintained by the user using vectors
or two dimensional arrays. An empty slot is found, an item
placed in it, logic is written that scans the vector, and so forth.
Loops are written that go through the sub-component list for
each machine, picking parts, swapping bins, indicating when
a bin is full, and when parts should be ordered.

The material-handling logic is separate from the
machine logic and there are not any built-in mechanisms for
sending messages or entities between separate logic sections
(called Routes) in PCMODEL. Two different routes can
communicate via a two-step procedure. First, an entity in a
route can be suspended and wait for an event to occur. Logic
in a different route can cause an event to be triggered - thus
waking up all suspended entities. The freshly awakened en-
tities can then check one or more variables (mailboxes) and
determine if something should be done. The mailbox techni-
que is used to request AGV servicing, to place work orders
at other machines for pulling, and for indicating when a bin
of parts has arrived.

778

PCMODEL can be used to program almost any model.
The degree of maintainability, readability, and re-usability of
the programs is dictated by the care, attention, and foresight
of the programmer. If good programming practice is followed
(e.g., using appropriately designed data elements, naming
conventions, comments, etc.), PCMODEL can do the job
casily and quickly.

5. 5. PROMOD

PC based PROMOD (version 4.0) is a specialized
simulation tool for quickly specifying and building models of
production facilities. It is not a comprehensive language in
the same sense as the other systems; there are not general
variables, programming structures, etc. It is composed of a
number of pre-defined structures for part routing, distribu-
tions, AGVs, conveyors, and animation.

The JIT implementation in PROMOD is perhaps one
of the most cleanest and most obvious of the tools evaluated.
This is possible because of a number of options in the routing
table. It is possible to automatically delay parts and processing
at one machine until another machine asks them to be made
by using the JOIN function. In essence, there are the major
routing steps from machine to machine and a minor routing
abstraction that breaks down the JIT process into a number
of sub-operations at each major operation. For example, for
each major operation, an ORDER representing demand is
JOINed with the bin quantity - resulting in a trigger to JOIN
the necessary sub-components from the pre-process inven-
tory queue. Then the bin quantity is JOINed with a bin and
shipped off. This is an illustration of part of the basic control
concept. A second function, UNQUE, is used in conjunction
with JOIN to permit a single queue to have more than one
type of part in it, yet allow similar parts to leave together - not
necessarily in a first-in first-out fashion.

While it is possible to quickly construct a JIT model for
a specific set of parts and part routings, it is necessary to build
up the minor abstraction routing at each machine for each
part being made there. Everything is explicitly named in
PROMOD - for example, it is not possible to have the model
data driven using parameters - ie. have multiple parts utilize
the same abstraction logic, maintain their identity, obtain
unique characteristics from arrays, etc.

PROMOD might appear quite simple and limited on
the surface because it is a table-oriented, high-level system
and is not a procedural or block-oriented language, but it has
a large number of concepts that can be utilized together to
achieve relatively simple solutions to non-trivial problems.
This requires creativity on the part of the modeller, and



requires thorough documentation within the model toensure
maintainability.

5. 6. SIMAN

SIMAN (version 3.5.1) is a simple and easy to learn
block-oriented simulation language capable of discrete/con-
tinuous modelling which runs on a wide variety of platforms.
Models in SIMAN are composed of two separate sections
that assist and guide the modeller in separating executable
model statements and data elements. This separation is very
useful for keeping the run parameters together for experi-
ments without re-compiling the model or modifying the
model code.

SIMAN has many general purpose modelling constructs
to control the flow of entities through the simulation model
(e.g., semaphores SIGNAL and WAIT) and a number of
special-purpose functions specific to manufacturing. For ex-
ample, it has special conveyor and transporter constructs.
Subroutines with passed arguments are not directly sup-
ported; however, SIMAN has a STATION structure that
permits one set of executable model code to be used to
represent similar processes.

In a fashion similar to the other block-oriented lan-
guages, it is possible to clone orders to control the JIT work
demand flow. Bringing the subcomponent entities together
is more difficult. If the bill of material uses only one of each
subcomponent, the MATCH block can be easily used to
control the multiple queues. However, when the bill calls for
multiple items, the JIT pull logic must be manually
programmed using counter loops, queue processing loops,
etc. The JIT problem is very data intensive and SIMAN does
not have general-purpose array structures, though it is pos-
sible to use the TABLE and PARAMETER constructs to
represent data stores - bill of materials, flexible routings, etc.

The AGV logic can be modelled in SIMAN using a
number of different techniques. All of the techniques require
the modeller to build an abstraction of the real system using
the primary SIMAN functions which may require imagina-
tion and creativity on the part of an absolute beginner.

A problem common to the block-oriented languages is
complex logic representation: often the modeller must use
FORTRAN subroutines for the procedural logic. While it is
possible with SIMAN to construct logic required by JIT using
the simple built-in primitives (e.g., ASSIGN and BRANCH),
the lack of sophisticated procedural constructs can result in
unwieldy code when more complicated logic must be repre-

779

sented. SIMAN has become a very popular language for
discrete-event simulation and can be expected to improve as
it matures.

5. 7. SLAM Il wMHEX

The SLAM II simulation language was introduced in
1981, and allows discrete/continuous modelling in both
process and event orientations. In its process orientation, the
language uses a network of “nodes” (blocks) to represent the
processes which entities undergo. “Activities” are used to
connect nodes, and hence define the paths of entities through
the network. They control multiple branching through the
use of probabilistic and conditional statements, providing a
flexible means of coding complex logical relationships.
SLAM Il is available on many platforms, and has been avail-
able for the PC since 1984. The MHex (Material Handling)
extension available on many workstation/mainframe
machines, provides constructs for modelling several types of
material- handling systems, one of which is AGVS.

Modelling concepts for JIT systems used in SLAM 11
(version 4.03) are similar to those found in other block-
oriented languages. JIT pull logic is accomplished using the
entity-cloning features of multiple-branch activities. All
production system information is maintained in the table
ARRAY(i,j), including static information such as bill of
materials, and the dynamic counters for inventories, bins, and
order lists. If a particular product is depleted and a new order
is required, an activity sends one entity to fill the product
order, and another one to produce a bin of product at the
specified machine. This “order entity” increments the
ARRAY element corresponding to the order list for the
machine, and simply awaits availability of the machine to
which its processing is assigned. The activity construct thus
combines conditional logic with an entity-cloning mechanism
to provide a natural construct for modelling the tree structure
of the JIT logic.

Statistics are provided through automatic reports
and/or user-specified tables. Each activity can have a number
associated with it, allowing statistics on entity counts and
utilization to be maintained. Similar reports on resources are
provided. The AGV system defined using MHex constructs
also provides automatic reports on AGV utilization, and
segment/control point entries and utilization. User-specified
statistics are generated using the COLCT node, which can
collect one of five types of statistics. All statistics-gathering
functions provide mean and standard deviation (where ap-
plicable), and the COLCT node can optionally provide his-
tograms.



In summary, SLAM II supplemented with the MHex
extension is a mature, flexible base for simulation and like all
of the block-oriented languages deals effectively with the JIT
problem through the use of future event chains and/or data
structures. MHex supplies a number of functions which
might require FORTRAN routines to capture the variety
found in the real world, and this implies the need for an
experienced modeller.

5. 8. WITNESS

WITNESS (version 5.0) is a specialized simulation plat-
form that runs on several machines. WITNESS is a high-level
application using SEE-WHY, which is an extensive simula-
tion programming language. The package is visually interac-
tive and the model is developed using menus. The menus are
very flexible and it is possible to build logic components such
as IF-THEN-ELSE. WITNESS supports a wide variety of
functions and data structures that can be used together to
model almost any manufacturing situation.

The WITNESS system has built-in constructs for parts,
tracks, vehicles, and machines. APULL rule exists that blocks
an upstream machine until the downstream machine indi-
cates production is required. A machine can wait for a num-

ber of PULLs and similarly, a machine can PULL a number
of parts at the same time. A major routing takes the bins
(empty and full) between the real machines being modelled
and when the bin arrives at a machine, a minor routing takes
over. The minor routing emulates the splitting of bins, count-
ing of parts, and ordering of replacement bins by using a
number of “internal” machines.

The approach to modelling JIT with WITNESS is
similar to other high-level packages: a number of phantom
machines and parts can be used to mimic the real inventory
control and decompose the problem. The degree of indirec-
tion in the modelling activity will depend on the complexity of
the situation, and the creativity and problem solving skill of
the modeller. Although the programming interface is menu
driven and interactive, the tool retains power and flexibility.

6. RECOMMENDATIONS

Figure 2. illustrates one possible interpretation of the
problem definition, and indicates the decision logic involved
in one of the machines in the model. It is neither too complex
nor trivial. It is a good starting point for discussing the
methodological requirements of simulating JIT processes.

STARTUP

WAIT FOR
BIN PICK UP

WAIT FOR WORK

SUBS ARRIVEQ

WAIT FOHA
SUB-COMPUNRENTS

REQUEST AGY.
PICKUP

BICK NEXT suB

<ORDER sSUBS

GO LOOK FOR
MORE WORK

Figure 2: Finite State Description Of A Possible Interpretation



This model implies the need for a number of modelling
primitives or concepts - some quite common and others less
so. With aimost any simulation language, one can assume that
there are ways to wait for things to happen or to ‘wake up’
periodically to review the situation. Similarily, one can as-
sume that meta structures exist for queues or that queues can
be easily modelled with vectors, arrays, or lists and that it is
relatively straight forward to determine the contents of the
queue. A third common capability relates to local values per
entity being modelled and global variables that can be used
for gathering statistics. While the eight tools provide different
solutions and concepts for each of these assumptions, none
are so convoluted that the specific implementation is cause
for concern.

The problems arise in dealing with multiple queues (or
vectors) simultaneously and controlling part-pulling and con-
sumption. In very trivial problems of one or two machines,
the overhead and annoyances are minor. However, when
many machines or resources must be modelled with many
parts being produced, the inconveniences are significant.
Similarly, maintaining the required statistics on orders, part
consumption, Kanban usage patterns, machine starvation,
etc. is not pleasant. For example, it was common for complete
solutions to the problem definition to be approximately 1200
to 1600 program statements in length (declarations, ex-
ecutable model including statistical constructs, and report
generation).

Based on our experiences, there are a number of
methodological enhancements that could be added to
simulation tools to make this type of manufacturing modell-
ing more concise. The three major extensions are:

« theability totrigger events based oninventory levels

« the ability to manipulate inventory levels based on
bill of material and part production

« the ability to report on the relationships between
resources, inventory, and the material handling
system

These three specific manufacturing modelling exten-
sions can be described via the following abstract modelling
constructs:

1) the ability to have logic triggered when a queue
reaches a level

e MmOnitoring parameters:

° identifier of queue to be monitored
- label/routine to activate when level reached
- one or more levels to be monitored for

> direction of approach - positive or negative

2) the ability to remove a number of items from a
number of queues in a synchronized fashion

e queuc extraction parameters:

- the total order quantity used to factor the
extract request

- the queue identifiers
° quantity per queue (minimum, maximum) to
be multiplied by the order quantity
« control options:

- only pull items with a matching attribute value
and leave others

° abort and reset the queues to the state prior to
the synchronized pull

° retry the pull - completely or just unsatisfied
requests

 wait and to retry the pull only after queues
have been incremented

°check the pull before actual attempt and see if

sufficient items exist
« names of different routines to activate:

> (optional per queue) if the queue has
insufficient items in it - this call would occur as
a queue is processed with optional return
actions: to swap to a different queue and
continue, continue with this queue and assume
it is all fixed up, continue with the pull and get
all of the ones we can, or to abort the pull
immediately

° (optional per queue) if the queue to swap to
also does not have sufficient parts

° ifatthe end of the synchronized pull, there are
unsatisfied extracts

» if the synchronized extract was successful

3) the ability to provide statistics on the way the
synchronized extracts were utilized - aggregate totals
and time-based values

e per queue set:
- number of times the different type of actions
were taken and the time between actions

< number of times extract was performed and
the time between extracts

e per queue:

< time between queue arrivals

- number of times the different type of actions
were taken and the time between actions

7. CONCLUSION

This benchmark project has attempted to illustrate how
the JIT type of manufacturing simulation problem can be



solved using a number of simulation tools. Based on the
verbal reports we obtained, each vendor invested ap-
proximately the same level of resources to obtain a solution.
Some of the solutions are easier to enhance and maintain
than others, and some of the supplied code was rather in-
direct - however, all of the eight tools were able to model the
problem. It is believed that these issues could be addressed
by consistent software engineering practices - documenta-
tion, naming conventions, etc.

When we started this benchmark, we suspected that
there would not be a single clear winner - each tool has
strengths and weaknesses depending on the context of who is
doing the work and the type of work required. Each of the
tools we included has been available for at least two years and
is well-established. We hope the short descriptions of each
approach and language will help other simulation prac-
titioners in choosing appropriate software for modelling JIT
problems. We also hope that the various vendors have
learned from the exercise and can improve the situation at
the source by enhancing their packages or providing tutorials
that address this type of problem.

Three major methodological recommendations have
been made regarding the modelling of JIT concepts. We
believe that the three modelling constructs would greatly
simplify all of the solutions and clarify the code. While the
constructs have evolved from our JIT modelling experience,
the multiple queue capabilities would benefit many other
modelling situations.

This summary has been necessarily subjective and inter-
pretive by nature. Distribution of the quantitative analysis
and full benchmark results has been restricted to the vendors.

ACKNOWLEDGEMENTS

All of the companies that participated in our benchmark
must be gratefully acknowledged for their unselfish and en-
thusiastic support of the study - AutoSimulations, Inc. -
801-298-1398 (AUTOMOD), Insight International Limited
- 416-896-0515 (GENETIK), ISTEL Incorporated - 216-
292-2668 (WITNESS), Pritsker Corporation - 317-463-5557
(SLAM IT w/MHEX), Production Modeling Corporation -
801- 226-6036 (PROMOD), Simulation Software Systems
Inc.- 408-436-8300 (PCMODEL), Systems Modeling Corp.
-412-741-3727 (SIMAN), and Wolverine Software Corpora-
tion - 703-750-3910 (GPSS/H).

782

REFERENCES

Armstrong EB. and S. Sumner (1988). The project approach
to simulation language comparison. Proceedings of the
1988 Winter Simulation Conference (M.A. Abrams, P.L.
Haigh, and J.C. Comfort eds.). IEEE, San Diego, Califor-
nia, 636-645.

Dyck H.,Johnson R.A.,and J. Varzandeh (1988). Transform-
ing a traditional manufacturing system into a JUST-IN-
TIME system with KANBAN. Proceedings of the 1988
Winter Simulation Conference (M.A. Abrams, P.L. Haigh,
and J.C. Comfort eds.). IEEE, San Diego, California,
616-623.

Law AM. and S.W. Haider (1989). Selecting Simulation
Software for Manufacturing Applications: Practical
Guidelines & Software Survey. Industrial Engineering, 31-
5,33-46.

McKay K.N., Buzacott J.A., and D.A. Phillips (1989). Cell-
Sim - A Simulation Tool For Hybrid Environments. (to
appear), Third ORSA/TIMS Special Interest Conference
On Flexible Manufacturing Systems: Operations Research
Models And Applications, Cambridge, Massassuchetts.

Moll WH. (1988). JIT, truck docks, and simulation. Proceed-
ings of the 1988 Winter Simulation Conference (M.A.
Abrams, P.L. Haigh, and J.C. Comfort eds.). IEEE, San
Diego, California, 719-721.

Moore J.B. and K.N. McKay (1986). Experience with MAP/1
in a Manufacturing Simulation, Proceedings of CCICS 86,
Montreal, Canada, 61.1-61.5.

Moore J.B., McKay K.N., Kostelski D., and J.A. Buzacott
(1986). Using Simulation to Plan Storage Space Needs
With Just-In-Time Manufacturing. Proceedings of SIM-2,
Chicago, Illinois, 95-106.

Sarker B.R. and R.D. Harris (1988). The effect of imbalance
in a just-in-time production system: A Simulation Study.
International Journal of Production Research, 26-1, 1-18

Schroer B.J., Black J.T. and S.X. Zhang (1985). Just-In-Time
(JIT), with Kanban, manufacturing system simulation on
a microcomputer. Sirmulation, 45-2, 62-70

AUTHORS’ BIOGRAPHIES

Kenneth N. McKay is Associate Director of the WAT-
MIMS Research Group and is a Doctoral candidate in the
Department of Management Sciences at the University of
Waterloo. He received a MASc in Management Sciences in
1987 and a BMATH in 1978 from the University of Water-



loo. His research interests include the Job Shop Scheduling
task in the real world, JIT manufacturing methods, and a
number of research activities relating to simulation
methodology - design flexibility, project management, and
software engineering. Before joining the research group, he
was a software specialist in industry for eight years, working
in software design evaluation and system architecture.

Kenneth N. McKay

Department of Management Sciences
University of Waterloo

Waterloo, Ontario, Canada, N2L 3G1
519-888-4519

Michael Rooks is affiliated with the WATMIMS Re-
search Group and is pursuing graduate studies in Natural
Systems Simulation. He has a B.Eng (Manufacturing) from
McMaster University, and an extensive background in
simulation development and analysis in the automotive in-
dustry. His research interests include simulation methodol-
ogy in combined (continuous and discrete) applications,
scenario generation and simulated system optimization,
macro level modelling, and JIT manufacturing concepts in
simulation languages.

Michael Rooks

Department of Systems Design
University of Waterloo

Waterloo, Ontario, Canada, N2L 3G1

783



