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ABSTRACT

Optimistic systems execute events out of order and must undo
their errors to produce correct results. Undoing incorrect work can
be expensive. By restraining their optimism, such systems might
execute fewer events out of order and thereby run faster. This paper
examines two methods tested in the Time Warp Operating System.
The first method explicitly prevents events from executing in the far
simulation future. The second method tries to identify objects that
are doing work that has to be undone; such objects are allowed to
execute less often. Experimental results show that only modest
gains were realized, and that even these gains were unpredictable.
While other methods remain untested, the value of limiting optimism
seems small.

1. INTRODUCTION

The Time Warp Operating System (TWOS) is meant to speed up
event-driven simulations run on parallel processors, using
Jefferson’s (1987) method of optimistic execution based on virtual
time synchronization. An object on one node of a parallel processor
running TWOS may be executing far into the simulation future while
an object on another node may be executing far in the simulation
past, at the same real time. TWOS correctly synchronizes all
activities to ensure that the results of the simulation are the same as if
the simulation’s events had been run in strict virtual time order.

TWOS extracts good speedup from its simulations, most recently
demonstrated by Wieland et. al. (1989) and Hontalas et. al. (1989),
but in doing so TWOS does some work that is incorrect. This
incorrect work must be thrown away and redone in the correct
manner. TWOS’ goal is not necessarily to minimize the amount of
work that must be discarded, but rather to provide the best possible
speed for event-driven simulations.

Figure 1 demonstrates that substantial incorrect work is actually
done and discarded in TWOS runs, even those that achieve good
speedup. This chart shows the number of completed events that
were undone in one set of TWOS runs across varying numbers of
nodes. Like all measurements in this paper, these were made on a
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Figure 1: STB88 Events Undone Curve
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Butterfly Plus parallel processor running JPL’s implementation of
the Time Warp Operating System. The application used for these

Figure 2 shows the corresponding speedups for the same runs. In
some cases, tens of thousands of events were undone, yet good
speedups were achieved. In the case of 16 nodes, a speedup of
nearly 8 was achieved, even though almost 80,000 events were
undone. Since STB88 performs about 400,000 events along its
correct execution path, this run of TWOS had one sixth of its user
work discarded.
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Figure 2: STB88 Speedup Curve

Intuition suggests that one method of speeding up TWOS, or any
similar optimistic execution system, is to lower the number of
discarded events. By reducing the level of optimism in TWOS,
perhaps better performance could be realized. Mitra and Mitrani
(1984) did a detailed analysis of optimistic execution systems.
Based on this experience, Mitra (1985) suggested that limitation of
optimism might lead to improved performance. Instead of
permitting any object to surge ahead in the simulation, impeding
those objects that are too far ahead might prevent much of the mis-
done work, resulting in fewer discarded events. If less work had to
be undone, higher speedups might result.

This paper examines two methods of limiting the optimism in
TWOS and similar virtual time-based systems.  Window-based
throttling tries to prevent events from running far in the simulation
future. Penalty-based throttling tries to prevent objects that are
undoing a lot of their work from doing more work that must be
undone. The paper discusses some theoretical implications of these
methods, and present performance results from their actual
application to TWOS.



2. WINDOW-BASED THROTTLING

One obvious method of limiting optimistic execution is to place
some limit on how far in the simulation future any object can
execute. This method is called window-based throtiling. Any node
in the processor is only permitted to run those events that are within
a certain simulation time window of the furthest behind node. As
the furthest behind node catches up to the other nodes, the window
moves, allowing events at later simulation times to be run.

Sokol, Stucky, and Hwang (1989) have obtained some
preliminary results suggesting that window-based throttling can
improve performance of some applications. Their system contains
certain other features that differ from TWOS, and the application
they tested is not the same as those typically used under TWOS.

Window-based schemes suffer from certain theoretical problems.
First, they are based on particular values of simulation times. Every
application may need a different window size. For instance, an
application whose events occur between simulation times 0 and
1000 will clearly need a different window size than an application
whose events occur between simulation times —100,000 and
1,000,000. Thus, the window size is an application-specific
parameter that would probably have to be set by the user.

A second fundamental problem with window-based schemes is
that the appropriate value of the window size for a single application
changes under certain relabellings of simulation times. The only
significance of simulation time labels is that they imply event
ordering. Events with earlier simulation times must occur (or appear
to occur) earlier than events with later simulation time labels. The
operating system should not assume any further information about
simulation time labels. For instance, it should not assume that the
passage of a given amount of simulation time means that a given
proportion of the application’s work has been done. Nor should it
assume that the spacing of simulation time labels is uniform.

Other than ordering constraints, users should no more be forced to
follow conventions about simulation time labels than they are to
follow conventions about the labelling of variable names. In
particular, if a user relabels all of a simulation’s events with new
simulation times, preserving ordering but no other relationships, he
should expect that the simulation will perform in precisely the same
way as before relabelling. Just as changing the names of the objects
in the simulation should cause no change in performance, so
changing the simulation times of the events should cause no
performance change.
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Figure 3: Simulation Time Relabelling
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But, as Figure 3 demonstrates, such a relabelling could cause
performance changes under a window-based throttling scheme. The
left line shows several events with simulation time labels,
representing one run of a simulation. The right line shows the same
simulation, but with different labellings of simulation times to
events. Clearly, if a window size of 100 proved good for the first
run, it would not do well in the second run. It would not permit any
events to run in parallel in the first half of the simulation, and would
permit every event to run in parallel in the second half.

A third disadvantage of window-based systems is that they cannot
distinguish between foolish optimism and wise optimism. They
prevent objects from running far ahead on both good and bad paths.
Having no way to tell which events in the far simulation future are
likely to be committed and which discarded, window-based
throttling schemes must impede work along both good and bad
paths.

Figure 4 and Table 1 show the performance of window-based
throttling on actual TWOS applications. Figure 4 shows a timing
chart for STB88, the theater level military simulation mentioned
earlier. Table 1 contains the performance results for STB88; for
Warpnet, a computer network message passing simulation described
in Presley et. al. (1989); and for Pucks, a simulation of hard disks
moving and colliding on a table, described in Hontalas et. al.
(1989).

Figure 4 contains two curves, one for runs made on 8 nodes, a
second for runs made on 16 nodes. STB88 was run with a variety
of window sizes, chosen to be appropriate to its simulation time
scale. Points for the run time with no window value used at all are
also included. Each point is the average of the run time of 4
identically configured runs.As the window size decreases, optimism
is limited more and more, so the left hand side of the curve shows
the greatest limitation of optimism.

Neither Figure 4 nor Table 1 show all the points that were
gathered. All three simulations were also tested with higher window
values. In all cases, the highest window value shown in Table 1
gave identical performance to all larger window values.
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Figure 4: STB88 Timing Curves, Varying Windows

Table 1 shows results for all three applications. For each
application and each window size tested, the speed relative to
running without any window is shown. The numbers in the speed
columns are the run time with no window divided by the run time
with a window. Speeds less than one imply that the simulation ran
slower with a window than without one; speeds greater than one
imply that the window improved performance.

Figure 4 and Table 1 demonstrate that window size rarely provides
any substantial improvement in speed. In the 8 node case, STB88
ran no more than 2% faster with a window than without it. On 16
nodes, at best a 1% improvement was seen. For Warpnet, any
window on either number of nodes ran no more than one second



Table 1: Relative Speed of Window Runs
Application | Window Size 8 node 16 node
Speed speed

1000 .55 .30
g% 1.01 .80
10000 1.01 1.01
20000 1.02 1.01
50000 1.02 1.01
10 .59 .39
25 .86 72
580 94 .89
1 .99 .94

Warpnet 150 99 97
200 .99 1.02
250 1.01 .99
300 .99 1.01
10,000,000 .48 31
25,000,000 .96 .73

Pucks 50,000,000 1.00 1.07
75,000,000 1.00 1.06
100,000,000 | 1.00 1.06
200,000,000 | 1.00 1.06

faster, which is below the resolution of the timing accuracy. Pucks
achieved up to a 7% improvement on 16 nodes, but the runs were
rather short, so the improvement could fall within the limits of
accuracy. Pucks showed no improvement at all on 8 nodes.

As the table shows, if the window value is set too low, then the
simulation can slow down dramatically. For Pucks on 16 nodes,
changing the window size from 50,000,000 to 25,000,000 caused
the run time to increase by more than 25%. Cutting the window size
to 10,000,000 made the run time more than triple the non-window
run time. The other two applications showed similar effects. A
wide range of window values had little effect, or showed a slight
improvement in run time. Moving just beyond that range began to
cause very poor performance. The point at which performance
began to suffer depended on the number of nodes used. The
25,000,000 window size that caused Pucks to behave poorly on 16
nodes had little effect on 8 nodes. Pucks on 8 nodes only began to
perform poorly when the window size was cut to 10,000,000.

Generally, with fewer nodes, the window size could be set lower
without damaging performance. Low window sizes limit
parallelism by preventing events beyond the window from
executing, even if they have no causal links to events within the
window. On fewer nodes, the application may have more
parallelism available than nodes, even with the window’s
restrictions. On more nodes, the disqualification of events outside
the window that could be executed in paralle]l may cause some nodes
to idle unnecessarily, thereby hurting performance.

A quick examination of the window sizes in Table 1 shows that
these three applications have widely differing ranges of simulation
time scales. Warpnet runs up to simulation time 400, STB88 up to
simulation time 500,000, and Pucks up to simulation time
400,000,000. The choices of simulation time scales for these
applications were made by the designers for good reasons relating to
the models they were simulating. Clearly, no single value of
window size would work for all of these applications, and forcing
users to fit all applications into a predetermined range of simulation
times is unattractive. Even if users were forced to write their
applications to span all of a particular interval, each user might
spread the work across that interval in a different way, which would
profoundly change the effect of a fixed window size.

There is no noticeable relationship between the ratio of window
size to simulation length for windows that perform relatively well
for these three applications. On Pucks, both on 8 and 16 nodes,
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window sizes that are one sixteenth of the overall simulation length
cause problems. On STB88, window sizes that are one one
hundredth of the length of the run still perform well. STB88 seems
to have more events clustered into shorter spans of simulation time
than Pucks. Thus, cutting down the window size drastically relative
to the total simulation time of the run harms STB88 much less than
either Pucks or Warpnet.

Window sizes, then, would have to be set by the individual user,
who would have to customize them for his application. Not only
must they be customized to fit the simulation length of the
application, but they would also have to fit the number of nodes to
be used and the spread of events across the simulation length of the
application. A different window size might be needed on each
number of nodes. Also, each application may have a different
degree of tolerance to how low its window size is set, relative to its
length.

3. PENALTY-BASED THROTTLING

Another method of limiting optimism in TWOS is to keep track of
which objects are doing good, committed work and which are doing
bad, discarded work. The former should then be given more cycles
to work with and the latter should be given fewer cycles. Assuming
that their behavior persists for the near future, less bad work may be
done, with a possible improvement in performance. This method is
called penalty-based thronling.

This approach does not have the same theoretical problems as
window-based schemes. It should have the same behavior without
regard for simulation time relabellings. It should not require users
to make determinations about how much to throttle their programs.
If done correctly, it should not chop off good work far in the future,
but only work that is destined to be undone. This approach is
therefore more promising.

There are many ways that penalty-based throttling might be
implemented. In the method tested in TWOS, every object that
sends a negative message is penalized. Negative messages are sent
when an object has sent an incorrect message to another object, and
later realizes that the message must be cancelled. Therefore, nega-
tive messages are only sent when an object has been discovered to
have done incorrect work.

When penalty-based throttling is used, penalized objects are not
permitted to run when unpenalized objects have work to do on the
same node. Penalized objects work off their penalties when they are
passed over in favor of another object. Normally, objects are run
strictly on the basis of the simulation time of their next piece of
work, earliest first. Under this form of penalty-based throttling, this
order may be changed due to penalization. Thus, if a single node
hosts two objects that were working far into the simulation future,
one doing good work, the other repeatedly doing bad work, the
object doing bad work is penalized. The object doing good work is
permitted to run more often, presumably doing more good work and
avoiding the other object’s bad work.

The size of the penalty represents the number of times per negative
message sent that the TWOS scheduler passes over an object in
favor of a non-penalized object. Thus, a penalty size of 8 means
that an object sending two negative messages is passed over 16
times in the scheduler queue before TWOS executes it. If the
penalized object were the only object ready to run on its node, and
its penalty was N units, it would be considered for execution and
passed over N times in succession before being scheduled. If there
were non-penalized objects on the node that normally would execute
after the penalized object, they would be permitted to run up to N
times before the penalized object executes.

Figure 5 shows two curves for STB88, one for 8 nodes and
another for 16 nodes. The value of the penalty was varied, from
zero (which corresponds to the normal TWOS case of no limitation
of optimism) up to 64. Unlike the window curves, the right hand



side of these curves shows the maximum limitation of optimism. As
with the window curves, each point is the average of four run times
for identical situations.
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Figure 5: STB88 Timing Curves, Varying Penalties

Table 2 shows the relative speeds of all three applications for
varying penalties. The relative speeds are shown as percentages of
the speed obtained when no penalty was assessed. Since penalty
values are not related to simulation times, the same set of penalty
values was used for all three applications. As in Table 1, speeds
less than one indicate runs that were slower than unpenalized runs,
while speeds greater than one indicate runs that were faster.

Table 2: Relative Speed of Penalty Runs
Application| Peanlty Size 8 node 16 node
Speed speed
1 1.00 1.00
2 1.00 1.00
4 1.00 1.00
STB88 8 1.00 1.00
16 .99 .99
32 .97 .96
64 .93 .67
1 .99 1.02
2 .99 1.01
4 .99 .99
Warpnet 8 1.00 1.01
16 1.00 .97
32 .99 .92
64 .99 .58
1 1.00 1.06
‘21 1.00 1.05
Pucks 8 55 | 5
16 .79 .78
32 .54 .62
64 41 .49

Small penalties have small, or no, effect. A penalty of one gave a
2% improvement in the speed of Warpnet on 16 nodes, a 5-6%
improvement in the performance of Pucks on 16 nodes, and an
insignificant loss of one second in the speed of STB88 on 16 nodes.
A penalty of one had no noticeable effect on any of the applications
on 8 nodes.

Higher penalties never significantly improved these results. For
each application, a penalty value was eventually reached that caused
performance to become very poor. For Pucks, this penalty value
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was around 8 for both 8 and 16 nodes. For STB88, a penalty of 16
was too high. For Warpnet, a penalty of sixteen began to slow
down the 16 node case, but no penalty value tested slowed down
Warpnet’s eight node case.

As in the case of window-based throttling, lower numbers of
nodes could typically withstand more limitation of optimism than
higher numbers of nodes. A penalty of 64 made STB88 run at 63%
of its unpenalized speed on 16 nodes, but at 93% of that speed on 8
nodes. Most of the other measurements in Table 2 match the same
pattern. The reason is the same as in the window-based throttling
case. With fewer nodes, each node hosts more objects, thereby
giving the system a greater ability to find a runnable object despite
the limitations of the penalties.

The penalty method does not show much promise, based on these
results. Further testing would be necessary to validate that it rarely
does much good, but in only one case did this method provide
significant improvement. In that case, the overall run time of the
application was short, so the actual significance of the improvement
is questionable.

The reason for the failure of this method is not entirely clear.
Possibly, limitation of optimism is simply a bad idea, and this
method, or any other method, cannot gain from it. Possibly this
method fails to capture those objects that are causing problems by
being too optimistic. Some other way of identifying troublesome
objects and preventing them from running might do better.
Possibly, the method tested could be penalizing the wrong objects,
or it could be penalizing them at the wrong time, or it could be
penalizing them in the wrong way.

Merely sending negative messages is not necessarily a problem.
One object could work for many milliseconds, yet send only one
bad message. Another object could work for only a fraction of a
millisecond, yet send several bad messages. Perhaps the bad
messages are all cancelled before they cause any other object to
process in error. If the system’s problem is that an object doing a
lot of bad work is getting in the way of other objects, rather than the
costs of delivering and processing messages that will later be
cancelled, then number of negative messages may be an
inappropriate basis for throttling. Perhaps the real problem is doing
too much work that will be discarded, regardless of how many
negative messages result. Penalizing on this metric might work
better. A method of doing so is under consideration in the TWQOS
project.

The tested method may be either too quick or too slow to penalize
objects that send negative messages. The penalty is assessed
immediately upon sending the negative message. Slight variances in
performance are immediately penalized. A method that waited some
period of time before reacting might smooth out transients in the
system’s performance. On the other hand, sending out a negative
message is an indication that bad work has been done at some point
in the past. Most often, the message that was cancelled will
eventually be replaced by a better message. It may even be replaced
immediately before the penalization. The object could be in the
process of recovering from doing bad work and starting on a good
path, in which case penalizing it at this point will only slow the
simulation down. If this latter effect is the actual cause of poor
performance of the penalty method, there is little hope for any
history-based mechanism.

The penalty method works by passing over a penalized object in
favor of some other object on the same node. Clearly, the method
will only work, if it can work at all, if there are a reasonable number
of objects on each node of the parallel processor. If there are few
objects, or if most of them have no work to do at the moment that
one of them is penalized, then the penalty would be worked off very
rapidly. Essentially, the node would simply run through several
scheduling cycles without running any user object, then it would
schedule the penalized object. The only effect of the penalty, in
such cases, would be a slight increase in overhead. Some method
of assuring that a given amount of bad work resulted in a definite
amount of penalization of the bad object might work better. For



instance, a penalized object could be forced to remain idle for some
number of milliseconds, whether or not its node had other work to
do.

Penalizing objects may be the wrong approach. Perhaps the right
approach is to penalize nodes. Only those nodes doing a high
proportion of bad work might be forced to limit optimism. A node
doing a little bad work, with resulting negative messages, but a lot
of good work, should perhaps be allowed to continue unimpeded,
while a node doing a lot of bad work should be slowed down. By
analogy, this method would be like allowing the system to adjust a
switch on each node, increasing or decreasing the processor speed
of the node based on the quality of work it was doing.

Penalty-based throttling seems to have enough possible variations
that further study is indicated before discarding the method totally,
despite initial results that are no more promising than those for
window-based throttling.

4. CONCLUSIONS

The results obtained here do not show much promise for limitation
of optimism in the Time Warp Operating System. The two methods
used do not cover the entire universe of methods of limiting
optimism, nor do the applications tested cover the entire universe of
important simulations suitable for TWOS. However, the results do
show that on some typical applications, some simple methods of
limiting optimism have little or no positive effect, and can have very
bad negative effects if applied too strenuously. The best
performance improvement observed was on the order of 7%, and
few of the tested cases approached that improvement. On the other
hand, slight missettings of window values could cause the
performance to drop by 20-30%.

Window schemes suffer built-in disadvantages, in that the
window value must be customized for each application, or the
system designers must force users to handle simulation times in very
structured ways. Either alternative would greatly constrain
programmers, who ideally should not have to worry about
parallelism issues. Given that the evidence suggests that no great
benefit arises from window schemes, any further burden on the
users to support it is hard to justify. Methods of automatically
setting the window value based on dynamically measured system
values are less onerous, but are not likely to perform much better.

History-based schemes, while not suffering from the theoretical
disadvantages of window-based schemes, nevertheless offer little
promise of substantial performance improvement. The poor
performance of the penalty method may be caused by penalizing
objects improperly, by penalizing the wrong objects, or by
penalizing objects at the wrong time. Only further testing can
determine whether the whole approach is flawed, or whether the
particular method is at fault.

The evidence presented here suggests that limitation of optimism
in optimistic systems does not greatly improve such systems.
Further studies on different systems and different methods may yet
show cases and ways in which limiting optimism allows major
performance improvements, but the prospects do not seem
especially promising.
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