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ABSTRACT

We have successfully implemented a concurrent simulator and
we report initial speedup measurements for this technique. Our
algorithm requires a shared-memory multiprocessor and is ap-
propriate to any discrete-event simulation model. In addition,
our algorithm places no constraints on minimum service times
or the presence of cycles in the simulation model. Our experi-
mental simulator runs on an Encore Multimax computer and is
applicable to closed product-form queueing networks. We have
observed speedups of 2.3 for a central-server queueing model
using our simulator.

1. INTRODUCTION

We have successfully implemented the concurrent simulation
paradigm first introduced by Jones (1986b). Concurrent sim-
ulation allows parallel execution of discrete-event simulation
models on shared-memory multiprocessors. It is insensitive to
the topology of the model, and it can be applied to any discrete-
event model, even cyclic models with no lower bound on the
delay around a cycle.

Concurrent simulation is event-centered and it relies on a
new shared abstract data type, the concurrent pending-event
set. We have implemented this type using both a linear list
and a skew heap. We have observed speed-ups of 2.3 using 4
processors on a 5 node central server queueing network model
with our linear-list implementation.

In the following sections, we describe our approach, con-
current simulation, and contrast it with other approaches to
discrete-event simulation (Section 2), our implementation (Sec-
tion 3), and our initial empirical results (Section 4). Following
this, we comment on the issue of correctness of parallel simula-
tions (Section 5) and draw conclusions (Section 6).

2. DISCRETE-EVENT SIMULATION

A physical system is subject to discrete-event simulation if its
abstract state can be described in terms of a set of variables
that change discontinuously at discrete instants in time. These
variables are the state variables of the discrete-event model,
and the instants at which they change are the events in the
model. At any point during the simulation of such a model,
there is a pending-event set consisting of events that will occur
at specific future times as consequences of events that have
already occurred.

Events in the pending-event set can be described algorith-
mically. As input, they take the values of the state variables
of the model prior to the event, and they deliver, as output,
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updated values of the state variables and new pending events.
In an event-centered simulation model, pending events are rep-
resented by records containing parameters to one of a fixed set
of event service routines.

In addition to the event-centered view of discrete-event sim-
ulation, there are two other views, the process-centered view
and the activity-centered view (Overstreet, 1982, 1986). In both
of these views, pending events are represented by records of
suspended processes. In the process-centered view, many state
variables are represented by local variables of cyclic processes,
while in the activity-centered view, all processes are non-cyclic
and are created in response to conditions detected in global
state variables.

To run a discrete-event simulation model, one must provide
an initial set of pending events and initial values for the state
variables. Deterministic discrete-event models are said to be
correct if the actual events in the simulated model occur at the
same simulated times as the corresponding events in the phys-
ical system. Correctness of nondeterministic models is harder
to define, but a reasonable criterion is that the distribution of
observed outcomes after a number of runs starting from the
same initial state match the distribution of outcomes observed
for the physical system.

2.1. Sequential Simulation

Any discrete-event simulator must assure that events are sim-
ulated in the right order. The simplest way to do this is to
simulate events sequentially in the same order they occur in
the physical system. This order can be obtained by implement-
ing the pending-event set as a priority queue, ordered by the
simulated time at which the events are to occur. The simula-
tion program repeatedly removes the head event from the queue
and simulates it, possibly adding new events to the queue each
time.

A significant amount of research has gone into finding fast
implementations of the pending-event set for sequential sim-
ulation (Kingston, 1984, 1985; Jones et al, 1986), but further
speedup is possible if events can be simulated in parallel. A par-
allel execution schedule for a deterministic discrete-event simu-
lation run is correct if it simulates the same events at the same
simulated times as would be obtained by a sequential schedule.
Correctness is harder to define for the nondeterministic case,
but asking for a similar distribution of outcomes after numer-
ous runs is reasonable.

2.2. Distributed Simulation

All distributed simulation algorithms with which we are familiar
are characterized by a process-centered view of discrete-event



simulation. No state variables are allowed except the local vari-
ables of logical processes in the simulation model. Logical pro-
cesses each maintain a local record of the simulated time, and
they communicate by passing messages, where each message
contains, in addition to any other contents, the simulated time
at which it is to be received (Chandy, 1981; Peacock, Wong and
Manning, 1979a).

In effect, each logical process has its own pending-event set.
This contains messages from other logical processes to which
it may respond, and it contains messages to itself posted as a
result of earlier events at that process.

A distributed simulation algorithm must prevent a logical
process from processing received messages out of order. If the
head message in the local message queue is to be processed at
simulated time t, the logical process may not simulate it until
it can be guaranteed that no new messages will be enqueued
at times prior to t. Optimistic approaches to this have been
proposed by Jefferson (1985); in these, logical processes are
rolled back to a previous state if this constraint is violated. The
problem with this approach is that it requires a large amount
of memory to hold prior states of processes in case rollback is
needed, and the problem of garbage collecting old states when
they are no longer needed is not trivial.

Most solutions to the problem of synchronizing distributed
simulations have been pessimistic; among these, Chandy and
Misra’s null-message algorithm (Chandy and Misra, 1979, 1981;
Misra, 1986) and the link-time algorithm developed by Peacock,
Wong and Manning (1979a, 1979b, 1979¢) are perhaps the best
known. Peacock, Wong and Manning (19792) also described
a blocking table algorithm that is, in a sense, optimal, and
Lubachevsky (1988) has devised an interesting alternative for
SIMD machines.

There are two primary problems with the pessimistic ap-
proaches. First, they are not universally applicable. They can-
not handle cyclic models where a message sent out by one logical
process could possibly circulate through a series of other logical
processes and arrive back at the original sender at the time it
was sent. Many systems are modelled using exponential service
times, and because these have a minimum delay of zero, they
must be modified for use on distributed simulators. A second
problem is that, in addition to passing messages relevant to the
model, most distributed simulators pass a significant number of
additional synchronization messages.

2.3. Concurrent Simulation

In our approach to concurrent simulation, we take an event-
centered view. There is no fixed binding between the processes
in the simulator and any logical processes or other compo-
nents of the simulation model. Simulation processes are servers,
each of which repeatedly waits for a pending event to become
available for simulation and then simulates it. The concur-
rent pending-event set is central to this approach. As with the
conventional pending-event set, it organizes pending events in
chronological order. In addition, it must prevent events from
being removed for simulation until there is an assurance that
no events will be scheduled at earlier times.

The fact that multiple processes may simulate events in par-
allel requires mutual exclusion for access to the state variables
of the simulation model. In the simplest formulations, we as-
sume that there is only one state variable, a record containing
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the entire state of the model. The result of this is the divi-
sion of the process of simulating an event into a state-variable
phase, during which the process has exclusive use of the state
variables, and a (possibly empty) event-scheduling phase during
which the event schedules other events.

The event-scheduling phases of simulation processes must
not only insert events in the pending-event set, but it must help
the event set determine which events are ready to be simulated.
An event is ready to simulate if it is at the head of the pending-
event set and if the process that scheduled it can guarantee that
it will never schedule additional events ahead of it. As a result
of these considerations, we identify the following operations as
characterizing the concurrent pending-event set.

get-nezt — returns the head event from the pending-event set,
possibly after waiting for it to be released; does not re-
move head event from set, but leaves it in place to ensure
mutual exclusion during the state-variable phase.

tnsert — schedules a new pending event, but does not allow
get-nezt to remove that event for simulation.

release — if applied to an event newly scheduled by insert, this
operation allows get-nezt to return that event for simu-
lation; if applied to the head event after that event was
returned by get-nezxt, this operation removes the event
from the pending-event set.

The release operation is deliberately overloaded to simplify
the specification of a simulation process by eliminating the need
to make a special case of the end of the state-variable phase of
each event. Jones (1986b) called the get-nezt and insert op-
erations by the names dequeue and enqueue, respectively; we
changed the name when we realized that get-nezt should not
remove events from the pending-event set.

The concurrent pending-event set, the state variables of the
simulation model, and the model itself are shared between all
of the simulation processes. All other variables are local to each
simulation process. In its most general form, the structure of a
simulation process is outlined in Figure 1.

In this code, we make no assumptions about the values as-
signed to the time fields of each event. As a result, the event
scheduling phase may overlap the state-variable phase arbitrar-
ily. As a result, it is difficult to determine when it is safe to
release an event. This difficulty leads to a direct statement of
the conditions under which the release operation is appropriate
The arguments that lead to this approach are detailed more
fully by Jones (1986b).

This approach will achieve its maximum potential for par-
allelism if the event scheduling phase of each event schedules
new events in chronological order. In this case, it will be legal
to release each event immediately after the following event, and
there is no need for additional computation to determine when
the release operation is legal. In this case, we get the structure
shown in Figure 2.

Here, the state-variable phase ends as soon as the first new
event (if any) is scheduled, and new events are released for
simulation as soon as the following event is scheduled. Ideally,
no computation should occur in the state-variable phase other
than update of state variables of the simulation model and the



var el, e2 ... en: eventref;

repeat { body of each simulation process }
get_nezt(el) { enter state—variable phase };

{ body of state—variable phase }
{ start event scheduling phase }

for 1 := 2 to n do begin
insert(er);
for j:= 1 to n do begin
ok := false;
{ is at least one event inserted at a later time? }
for k := 2 to n do begin
if (ek.state # free) and (ek.time > ej.time)
then ok := true;
end;

{ and are all events at prior times inserted? }

for k:= 2 to n do begin
if (ek.state = free) and (ek.time < ej.time)
then ok := false;

end;

if ok then release(ej);

end;
end;
until simulation—completed;

Figure 1: Basic structure of a simulation process.

var el, e2 ... en: eventref;

repeat { body of each simulation process }
getnert(el) { enter state—variable phase };

{ body of state—variable phase }

{ start event scheduling phase }
for + = 2 to n do begin
Ji=1-1;
{ assert ei.time > ej.time }
insert(er);
release(ey);
end;
release(en);

until simulation—completed;

Figure 2: Modified structure of a simulation process.

determination of the time at which the first new event is to be
scheduled.

Effective exploitation of concurrent simulation requires an
event-set implementation that allows multiple processes to con-
currently schedule new events. Furthermore, because the state-
variable phases of all events execute sequentially, it is necessary
to move as much computational work out of them as possible.
Specifically, computation devoted to actually getting the next
event should be outside of the state-variable phase if at all pos-
sible.
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3. OUR IMPLEMENTATION

Our implementation of concurrent simulation proceeded by a
systematic sequence of steps, starting with the abstract ideas
outlined by Jones (1986b) and resulting in the development of
efficient executable code. Before attempting an implementa-
tion, we divided the problem into two subproblems: the con-
current simulation algorithm itself and the concurrent pending-
event set abstract data type needed to support the simulation.

3.1. Algebraic Specification

We began our implementation efforts with a formal algebraic
definition of the tnsert, get-nezt and release operations. Alge-
braic methods have traditionally been applied to defining ab-
stract data types in the context of sequential programs, and we
had to modify this approach for use in the context of concurrent
programming.

We augmented the algebraic rules epplying to the opera-
tions on the concurrent pending-event set by adding rules that
reduced illegal sequences of operations to an error state. For ex-
ample, we introduced rules that stated that applying get-nezt to
an event-set where the head element had not been released was
an error. In effect, each of these added rules documents a syn-
chronization constraint. The constraint corresponding to the
above example is that the get-nezt operation must be blocked
until release is applied to the head element.

Our formal definition helped us to understand that an event
record may be in one of four states: free, inserted, released, and
current. Events outside the event set are free. When an insert
operation is applied to an event record, its state changes to
inserted. The release operation changes the state of an inserted
event to released, and the get-nezt operation changes the state of
a released event to current. Finally, when the release operation
is applied to a current event, the state changes to free. This
cycle is illustrated in Figure 3.

( free }——————=( inserted
insert

release
release

get-nezt
current }+~—————/( released

Figure 3: The states of an event record

It is worth noting that get-nezt, as specified here, is almost
entirely a synchronization and state-change operation. The
bulk of the work involved in managing the pending-event set
is associated with insert and with release applied to the cur-
rent event. There can never be more than one current event
because the presence of a current event in the pending-event
set will block additional get-nezt operations.



3.2. Linear-List Implementation

Our first implementation of the concurrent pending-event set
was based on a trivial linear-list implementation. The purpose
of this implementation was to obtain a correct implementa-
tion, allowing early experiments with the structure of concur-
rent simulation applications. Our only other performance goal
was that our implementation allow operations initiated on the
pending-event set by different simulation processes to take place
in parallel.

The data structures required by the linear-list implementa-
tion are described in Figure 4. The event-set is implemented as
a linear linked list of records, each containing the time of some
pending event and other data needed to simulate that event.
The final event-record in the list has an infinite time, or some
time value larger than the time of any legitimate event encoun-
tered in the course of simulation. This eliminates the need for
code to handle the empty list or the end of the list.

head nexrt nil
head-lock lock lock
get-lock time [e%)
released released
model model
dependent dependent

Figure 4: Linear-list event-set data structures

Locks protect head, the pointer to the head of the list, and
nezt, the pointer in each list element to the following element.
Get-lock, the second lock in the head of the list, is used to block
get-nezt until the head event in the pending-event set has been
released. This is locked by get-nezt and unlocked by any event-
set operation that leaves the head of the event set in the released
state.

The state of an event record is partly determined by the
released field in each record. If this field is false, the record is
inserted; if it is true, the record is either released or current.
A correct simulation program will never attempt to release an
inserted event more than once, so we take any attempt to release
an already released event as an attempt to release the current
event.

In the following code, we will assume that the operations
wait and signal apply to locks. Logically, a lock is a binary
semaphore, but the frequency with which this code makes re-
quests for lock operations suggests using a spin-lock or busy
waiting implementation. The code for tnsert, get-nezt, and re-
lease is given in Pascal in Figures 5, 6 and 7.

Note in this code that no operation on the concurrent
pending-event set holds more than a small number of locks at a
time. The insert operation holds locks in a clearly defined pat-
tern we call the bubble of mutual exclusion. This bubble enters
the list at the head and moves down the list until it encloses
the point where the next insertion will be made.
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procedure insert(e: event_ref)
var i, j: event_ref;
begin
assert ef.lock := unlocked;
assert el.released := false;
wait(head_lock);
if ef.time < head?.time then begin
ef.next := head;
head := e;
signal (head_lock);
end else begin
1 := head,
wait(i1.lock);
signal(head_lock);
7= il.next;
while el.time > j1.time do begin
wait(571.lock);
signal (i1.lock);

k]

=7,

7= iT.nezt;
end;
el.nezt := j;

iT.nezt := e;
signal (17.lock);
end;
end;

Figure 5: Code for insert.

procedure get_nezt(var e: event_ref);
begin

lock(get_lock);

e := head;
end;

Figure 6: Code for get-nexzt.

procedure release(e: event_ref);
begin
lock(head_lock);
if e = head then begin
if ef.released then begin
{ it is release(current event) }
lock(et.lock);
head := el.nezt;
if head?.released then unlock(get_lock);
unlock(head_lock);
end else begin
{ it is release(inserted event) }
el.released := true;
unlock(get_lock);
unlock(head_lock);
end;
end else begin
ef.released := true;
unlock(head_lock);
end;
end;

Figure 7: Code for release.



3.3. Improved Performance

The basic code presented here was sufficient to allow us to test
concurrent simulation, but the performance was not very im-
pressive. We have found two productive ways to improve the
performance of this code. Both rest on the observation that
the state-variable phase of the simulation is the bottleneck in
concurrent simulation.

Combining Insert and Release: Our first improvement
involves a change to the basic operations on the concurrent
pending-event set. This was motivated by the observation that
the end of the state-variable phase occurs when the current
event is released. The sooner this release operation can be done,
the sooner some other process can begin simulating the next
event.

All of our applications of concurrent simulation have the
structure shown in Figure 2. As a result, every call to tnsert is
followed immediately by a call to release, and the last call to
insert is followed by two calls to release.

As a result, concurrent simulation programs can be com-
pactly expressed in terms of the operations insert-release and
tnsert-release-release. The semantics of these are defined as fol-
lows:

Insert-release(el, e2) has the same semantics as insert(el)
followed by release(e2).

Insert-release-release(el, e2) has the same semantics as the
sequence insert(el) followed by release(e2) followed by re-
lease(el).

These combined operations can improve performance be-
cause the release operation can be carried out during the insert
operation. Specifically, once it has been determined that the
newly inserted item will not be the head item in the pending-
event set, a release of the head item becomes possible. Thus, it
is possible to end the state-variable phase of an event before the
first insert operation has been completed. In fact, as soon as it
is determined that an insert does not apply to the head element,
the following release can be safely applied to any element of the
event set without changing the outcome of the simulation.

The code for insert-release can be constructed by moving
most of the code from Figure 7 into Figure 5 immediately after
the else clause. The code for insert-release-release differs from
insert-release in that it inserts the new event record with the
released field set to true and it must check to see if get-lock
should be unlocked.

Moving Work out of the State-Variable Phase: In
examining the code for our initial applications of concurrent
simulation, we found that there were a number of expensive op-
erations being carried out in the state-variable phases of many
of our event service routines. Among these were random num-
ber generation, allocation of event records, and accumulation
of statistics. It turned out that many of these can be moved
out of the state-variable phase.

Our original focus was on random number generation. Gen-
erating uniformly distributed pseudo-random numbers is rela-
tively easy, but the computations needed to convert from the
uniform distribution to other distributions can be time consum-
ing. One solution we considered was to dedicate a process to
random number generation; this process would feed a stream of
random numbers to the simulation processes.
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Our final solution was to add a resource acquisstion phase to
the cycle of each simulation process. This phase takes place be-
fore the simulation process calls get-nezt to begin the simulation
of an event. During the resource acquisition phase, the process
acquires any consumable resources it might need to simulate
the next event. This includes generating a collection of ran-
dom numbers and allocating a collection of free pending-event
records.

For an example of the resources that may be acquired in the
resource acquisition phase, consider the simulation of a product-
form queueing network. Each event in such a simulation sig-
nifies the end of service at some server. The simulation of an
event may involve scheduling as many as two new events, one
at the current server, and one at the next server that services
the current customer. Each of these events requires an event
record and a simulated time, so the simulator can acquire two
event records and two appropriately distributed random num-
bers during the resource acquisition phase. If some of these
resources are not used during the simulation of the next event,
they may be saved for use with future events.

We also observed that many of the computations made dur-
ing the state-variable phase had to do with integration, for
example, integrating to determine average queue lengths in a
queueing network. These computations could be done in any
order, without reference to the synchronization constraints of
concurrent simulation, and we found we could move them to
a cleanup phase after the event-scheduling phase. Other op-
erations appropriate to the cleanup phase include deallocating
resources freed by the simulation of an event and deallocating
the event-record itself.

The pipelined execution of a concurrent simulation aug-
mented by the addition of these new phases is illustrated in
Figure 8. Processes p; and p, in Figure 8 start immediately,
but p; enters it’s state-variable phase first, thus forcing p; to
wait. The start of p; and ps has been delayed sufficiently that
no process is ready to enter its state-variable phase when p; is
done.

time
r - resource-acquisition phase
s - state-variable phase
e — event-scheduling phase
¢ - cleanup phase

Figure 8: Pipelined view of concurrent simulation



3.4. Heap Implementations

In parallel with our development of improved versions of the
linear-list implementation of the concurrent pending-event set,
we have begun to explore the use of more interesting data struc-
tures. Specifically, we have been working with the concurrent
skew-heaps developed by Jones (1989) and the concurrent heaps
developed by Rao and Kumar (1988). Preliminary indications
are that these data structures can fully support both the ba-
sic operations insert, release and get-nezt and also the efficient
combined operations insert-release and insert-release-release.

In the concurrent simulation environment with n events in
the pending-event set, our linear list implementation takes O(1)
time for get-nezt and release and O(n) time for insert, but insert
holds exclusive use of the event set for only O(1) time. Thus,
we expect to be able to make effective use of O(n) processors
in parallel.

Skew-heaps and concurrent heaps should allow get-nezt and
release (applied to enqueued events) in O(1) time, but insert
and release (applied to the current event) should take O(log n)
time, again holding exclusive use of the event set for only O(1)
time. This should lead to effective use of O(log n) processors.

Finally, we are interested in experimenting with splay trees
(Jones, 1986a) and with calendar queues (Brown, 1988). The
former may be faster than the heap implementations, with 0o(1)
expected times for get-nezt and release and O(log n) expected
times for insert. The latter has worst-case times of O(n) for
some operations but may well have average case times of O(1)
for all operations.

3.5. Debugging Support

We feel that we were able to code and debug our concurrent sim-
ulator so easily because we first developed the algebraic spec-
ification described previously. Moving from this specification
to working code was straightforward, but we found that it was
hard to visualize what the resulting code was doing.

We implemented a program to graphically display an execu-
tion trace of the concurrent simulator to help us visualize what
was actually happening. We modified one of our concurrent
simulators to produce a trace indicating what each process was
doing at each instant, and then used this as input to our display
program.

The display program displays each record in the concurrent
pending-event set as a small rectangle when the element has
not been released. The release operation enlarges the rectan-
gle, and the color of the rectangle is used to indicate which
process, if any, has claimed the lock on that record. We did not
uncover any errors using this tool, but we feel that the effort
expended was justified because it gave us a clear picture of how
our algorithm works.

4. EMPIRICAL RESULTS

We have decided to run our initial tests of concurrent simulation
on discrete-event models of closed queueing networks. We have
chosen this area because queueing networks are relatively easy
to simulate and because the possibility of analytical solution
allows an independent check on the results of our simulations.

All of the queueing networks we have explored were closed,
and thus contained cycles, and all of the servers had exponen-
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tially distributed service times. As such, our models have no
minimum service time; in the presence of cycles, this implies
our models are not suited for many approaches to distributed
simulation (Reed, Malony and McCredie, 1988).

It should be noted that no event in this type of queueing
network can ever schedule more than two new events. As such,
the event-scheduling phase of a concurrent simulator for such a
model will be very modest, leading to only limited possibilities
for parallelism. As a result, we feel that our results understate
the potential speedup to be obtained from concurrent simula-
tion.

All of our speedup figures are reported by comparison with a
simulation program written for a uniprocessor. This sequential
program is based on the code in Figures 7.7 and 7.11 of Sauer
and Chandy (1981), which uses a linear list to represent the
pending-event set. For small models, where the maximum size
of the pending-event set is less than about 20, linear list im-
plementations should be optimal. Had we measured speedups
relative to the concurrent simulation algorithm running with
only one process, we would have reported larger speedups.

All of our code is written in Pascal and tested on Encore
Multimax computers running the UMAX 4.2 operating system,
a variant of BSD 4.2 UNIX. (The general architecture of this
class of machine was described by Bell (1985).) We use the
spin-lock primitives provided by Encore to implement the locks
required by our algorithm, and we use the UNIX fork primitive
for creating multiple processes. The Encore machine for which
we have presented results has 56 Mbytes of memory shared by
18 NS32332 processors with Witek floating point accelerators.

4.1. Initial Experiments

Initially, we built a special purpose queueing network simulator
that could simulate queueing networks consisting of a single
cycle of single-server queues. Such a network with three servers
is illustrated in Figure 9. All stations had a mean service time
of one, and the model was parameterized by the number of
servers and the population.

Preliminary measurements of a 40 server cyclic network with
80 customers showed a speedup of 1.3 using two processes.
This measurement was made before we moved work out of the
state-variable phase into the resource acquisition phase and the
cleanup phase.

T

Figure 9: A three station cyclic queueing network.

4.2. A General Program

We found that it was very easy to merge our concurrent simu-
lator for cyclic queueing networks with an existing general pur-
pose queueing network package developed by Bruell, Balbo and
Ghanta (1984). This package allows arbitrary closed queueing
networks to be described and solved analytically or by simula-
tion.



We have used the resulting general purpose simulator to run
experiments with the queueing model previously used by Wag-
ner, Lazowska and Bershad (1988) and Reed, Malony and Mec-
Credie (1988); this is shown in Figure 10. The numbers shown
inside the servers are the mean service times and those shown
on the arcs out of the fork server are transition probabilities.
For our initial tests of this network, we used 40 customers.

Q]: 1/3

DISKS
1/3
7 /
MERGE CPU FORK
1/3

Figure 10: A five node central server model.

We chose this model because empirical results suggest very
small speedups, never better than 1.25, using a number of
approaches to distributed simulation (Reed, Malony and Mec-
Credie, 1988), and there is a theoretical proof that no conser-
vative distributed simulation algorithm can excede speedups
of 3.67 on this model due to Wagner, Lazowska and Ber-
shad (1988). In addition, Wagner and Lazowska (1988) report
speedups of about 2.8 on this model using “highly optomized
simulation implementations”.

As shown in Figure 11, we have achieved a speedup on this
model of just over 2.3, using 3 or 4 processors, measured relative
to clean uniprocessor code. We ran the simulation for 10,000
simulated time units, which comes to about 105,000 events per
run. The maximum pending-event set size for this model is
5 events, one per server when that server is busy. The fork
and merge servers each have service times of zero, so we expect
pending-event set sizes on the order of 3.

Both Reed, Malony and McCredie (1988) and Wagner La-
zowska and Bershad (1988) measured their speedups relative to
their distributed simulation code running on a single processor.
If we measure our speedups this way, we get a speedup of just
under 2.8, almost identical to the speedup reported by Wagner
Lazowska and Bershad (1988).

o

50 41
+ — sequential code
401

301 o

seconds \

201 e~y

o

o

101

0 T r T T
0 1 2 3 4 5 6
processors

Figure 11: Run-times for the five node central server model.

5. CORRECTNESS ISSUES

If we define a concurrent simulation as being correct if it pro-
duces the same results as a conventional sequential simulation
for the same model, our concurrent simulation algorithm can-
not be considered to be correct! The problem does not lie in
our algorithm as much as it lies in the -onventional notion of
correctness.

One reason for this lies in the generation of random num-
bers. In a conventional simulator, there is usually a single
stream of pseudo-random numbers serving the entire simula-
tor. In our concurrent simulators, each simulation process uses
its own stream of pseudo-random numbers. This avoids con-
tention for a single random-number generator but changes the
outcome of the simulation.

Even if we shared the random number generator, we would
get a different outcome once we separated the state-variable
phase of the simulation from the resource acquisition phase.
This is because resources need not be acquired in the order they
are actually used. An important result of this is that two runs
of the same simulation model with the same random number
seeds will not necessarily give the same output because inter-
rupts or other outside events may delay processors at random
times, causing them to permute the random number stream in
different ways.

Use of concurrent heaps or skew heaps will complicate the
situation even more because these data structures are unstable.
Unlike a linear list, these data structures do not guarantee that
events scheduled at the same simulated time will be simulated
in the order they are inserted.

As a result of such considerations, we must content ourselves
with considering a simulation to be correct if the output it pro-
duces is statistically reasonable. In fact, this should not be a
surprise, this is how we judge the correctness of sequential sim-
ulators, but we usually introduce a degree of artificial stability
into sequential simulators to simplify debugging.

6. CONCLUSIONS

We conjecture that we will achieve the greatest speed-up when
using concurrent simulation on models in which there is a wide
variance in the number of new events scheduled by an event.
In these cases the event scheduling phases of some events will
be quite long and may effectively utilize a simulation processor
for some time while other events are being simulated on other
processors. If the variance is small (for example, if each event
schedules exactly one new event), the only speed-up we expect
will be the result of being able to release the current event
before completing the scheduling of the next event.

Unlike distributed simulation, we do not expect speed-up
to depend on the uniformity of the distribution of activity over
the simulation model. Thus, if the pending-event set is large
and there is a wide variance in event scheduling, then we expect
good speed-up even in models for which distributed simulation
would perform poorly.

We must emphasize that the speedups we have measured
at this point are only preliminary. We do not believe that we
have fully exploited the potential of concurrent simulation, and
we have put only minimal efforts into code tuning and other
refinements.



A natural idea to pursue is the combination of the best
features of distributed and concurrent simulation. In the dis-
tributed simulation algorithm developed by Peacock, Wong,
and Manning (1979a), each communication link between logical
processes had an associated link-time. This is the simulation
time before which the sending process guarantees that it will
never send a message. The receiving process is free to simulate
any event at simulated times less than all incoming link times.
It may be possible to implement link times in a mixed con-
current/distributed model by associating a dummy event with
each link; this event would never be released and would have as
its time the link time of that link.
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