Proceedings of the 1989 Winter Simulation Conference
E.A. MacNair, K.J. Musselman, P. Heidelberger (eds.)

CONTRASTING DISTRIBUTED SIMULATION WITH PARALLEL REPLICATION:
A CASE STUDY OF A QUEUING SIMULATION ON A
NETWORK OF TRANSPUTERS

R. Rajagopal
Late of the
School of Computer Science
Florida International University
Miami FL 33199

1. ABSTRACT

As discrete event simulation programs
become larger and more complex, the amount of
computing power required for their execution
is rapidly increasing. One way achieve
this power 1is by a employing multiple
processor network to run the simulation
programs.

to
a

to
to

Two approaches
assigning tasks
described--environment partitioning
distributed simulation, in which the tasks
required to perform a simulation are assigned
to processors in the network; and parallel
replication, in which copies of the
simulation program are assigned to
processors, and the results of their
execution aggregated. A simulation of an
M/M/c queuing system has been implemented on
networks of two and three transputers, using
each approach. Heidelberger'’s statistical
efficiency and the stabilization time of the
system are wused as metrics. The parallel
replications tended to stabilize faster, but
the statistical efficiencies were not
significantly different.

the problem of
processors are

2. INTRODUCTION.

The availability of inexpensive
microprocessors offers the ©possibility of
significantly reducing run-times by applying
more processors to the task of executing
discrete event simulation programs.
Determining strategies for distributing the
tasks entailed by discrete event simulation
over the set of available processors has been

a subject of interest to the simulation
community for the last several vyears. At
least two primary approaches to distributed
simulation have emerged: Model partitioning
and Environment partitioning. In model
partitioning, processing tasks associated
with (related) functions of the system being

modeled are assigned to individual processing

elements; the inter-relationships between the
processes is realized by communication among
the processors through messages passed among
them. In environment partitioning, those
CPU-intensive functions required to support
the simulation are analyzed and assigned a
priori to processors ancillary to the main
simulation processor [2].

The usual measures of effectiveness
distributed simulations are SPEED-UP
EFFICIENCY.If a simulation model executes
time tl on a single processor and in time
on a network of p identical processors,
the speed-up 1is defined as tl/tp,

of
and
in
tp
then
while

746

John Craig Comfort
School of Computer Science
Florida International University
Miami FL 33199
(305) 554-2015

efficiency is defined as the

divided by p.

speed-up

Heidelberger [2] suggests an approach,
applicable to simulations of the steady state
behavior of systems, different from both
model and environment partitioning. Instead
of having all the available processors
cooperate on a single realization of the
simulation, each processor runs a copy of the
simulation model (PARALLEL REPLICATION), and
results are aggregated. The only
synchronization overhead is in loading the
model into each processor at the beginning of
runs, and averaging results together at the
end of runs. This overhead 1is negligible
resulting in near perfect efficiency. A
theoretical model is formulated to contrast
distributed simulation (model partitioning or

environment partitioning) with parallel
replications. Heidelberger defines an
approach to simulation as having a higher
STATISTICAL EFFICIENCY if it produces
estimates with a smaller mean squared error

for a given amount of computing resources.

3. THE PARALLEL ENVIRONMENT.

The goal of our research was to
implement a prototype system employing both
environment partitioned distributed
simulation and parallel replications, to
compare and contrast the two approaches, and
to provide raw data to be wused in the
simulation of larger systems to investigate
this question further. To implement a
prototype requires a parallel computer
environment on which to execute the
simulation programs. For reasons of
flexibility, <cost, local availability, and
prior experience, we chose to perform our
research wusing the INMOS Transputer as the
basis for the network and computing

environment.

) The Transputer 1is a new generation
microprocessor specifically designed to serve
as a network component. They are moderately
fast processors with four bidirectional point
to point links which may be connected to
other processors in the Transputer family and
local memory. T414 Transputers have a 32 bit
multiplexed data and address bus. They
execute approximately 7 million arithmetic /
da;a move instructions per second. Floating
point .operations are done in software. The
four links can operate at a (switchable) rate
of 10 or 20 Million bits per second. Links,
which provide point to point communication,
have some advantages over often used bus
communication scheme. There is no contention
for the communication mechanism, regardless
of aumber of Transputers in the network.

Communication bandwidth does not saturate
the size of the system increases [6],
increases
system.

as
rather
with number of Transputers in the

Transputers are available in a
of configurations. Two such configurations
(INMOS BO004 and INMOS BO003) are employed
here. The INMOS B004 board contains one T414
Transputer, 2 megabytes of memory, and one
INMOS C002 link adaptor. The B004 is an IBM
PC XT or AT add-in board. The INMOS (002
interfaces the PC 1I/0 channel to one of
T414's link. This permits the Transputer
network to use the IBM PC XT or AT both as an
input/output device and as a file server.
The INMOS BO003 board contains four T414
Transputers each with 256 kilobytes of
memory. Two links of each T414 Transputer
are connected to its neighbor T414’'s, and the
remaining two 1links are routed to an edge
connector on the board, so that they are user
assignable.

variety

Transputers are reduced instruction
microprocessors, causing assembly
programming on them to be unusually
and annoying. OCCAM, a language of
the same level as C, is provided
native language for Transputers. As
described in [51, OCCAM provides a
straightforward means of specifying
parallelism, and for the creation and
replication of processes. It also
facilitates inter-process communication
through user defined channels. oCCAM
contains most of the «control and data
specification features present in more
conventional programming languages. It views
a program as a coordinated set of processes,
communicating only through logical channels.
Sharing resources (especially memory) among
processes is not supported. Processes defined
in OCCAM can be mapped to available proces-
sors by using the configuration wutilities
provided by the Transputer Development
System. OCCAM allows programs containing a
set of processes to be developed on a single
processor. This program may then be
recompiled and mapped on to any valid logical

set
language
tedious
about

as the

channel/hardware link, process/processor
configuration. The multi-processor version
of a program should work correctly if the
uni-processor version did.

4. THE BENCHMARK PROGRAM.

The benchmark program throughout this
investigation is a simulation model of an
M/M/c queuing system, implemented in OCCAM.
The M/M/c simulation model is realized both

and as a
single

as a classical uni=process program,
set of multi-process programs using
and multiple processors.

The OCCAM language essentially forces an
object oriented approach upon the programmer.
The programs are composed of processes, each
with its local storage, and connected to
calling process by channels of relatively
narrow bandwidth. To make efficient use of
such a programming facility, it is necessary
to implement all related processing
activities within a process, wusing the
channels to control their activation and to
pass parametric information.

747

Two generic and two specific
that could consume a significant amount of
computing time were identified in the
simulation model of the M/M/c queuing system.
The two generic objects are the priority
queue processor, which was instantiated as
the event set (future events list) processor,
the (customer) wait queue processor, and the
(server) idle queue processor; and the random

number
the

objects

generator, which was instantiated as
(customer) inter-arrival times generator
and the (server) service times generator.
These generic objects and their activation
points are as described below.

PRIORITY QUEUE PROCESSOR
{ Instances:Event set,
Wait queue,
Idle queue }

Initialize
Initialize the local queue
structures.
Initiate the appropriate
priority queue process.

data

Schedule (

IN identifier, priority)
Create

an EVENT NOTICE

containing the identifier
its specified
Schedule this notice
queue in order of
priority.

NOTE -- Equal priorities are
to be scheduled in the order
in which they are received.

and
priority.

in the
increasing

Next (OUT identifier, priority)
Extract the notice with lowest
priority from the queue.
Return its identifier and
priority.

Terminate

RANDOM NUMBER GENERATOR
{Instances:Inter-arrival
times,
Service times }

Initialize (IN type, seed, mean)
Accept the type of the stream to

be generated (negative
exponential, uniform, or
constant), its initial seed,

and its mean, initialize local
data structures. Initiate the
appropriate random number
generator process.

Generate (OUT random number)
Return next value from specified
stream.

Terminate

Two specific objects are the statistical
a~cumulator and the simulation administrator.
They are as described below.

STATISTICAL ACCUMULATOR

Initialize
Set all entity times of creation
and times of change to zero.
Set all the facility times of
creation and times of last
change to zero.

state, time)

Accrue (IN entity,
and sums of

Accumulate the sums
squares necessary to compute
first and second order time
and utilization statistics.

Aggregate (OUT
accumulated statistics)

Using the raw statistical
information accumulated by
Accrue, compute the aggregated
second order time and
utilization statistics, and
transmit them to the

requesting process.
Reset
Reset the accumulators for time
and utilization statistics.

Terminate

SIMULATION ADMINISTRATOR

Initialize
Place all objects in simulation
in their designated initial
states.

Run a block (IN block-length;

OUT clock,
accumulated
statistics)

Start the execution of next

block. Run the block until the
specified block length. Upon
completion, transmit the
aggregated statistics to the
control program.

Terminate

A connection diagram for these
is shown in Figure 1. There are
objects identified in the queuing system
simulation model, such as the report
generator object and the object which queries
user for queuing system parameters. They
were not separated from the main simulation
control procedure, either because there would
be no apparent gain in execution time through
parallelism, or because the objects would be
activated for a relatively small amount of
the total execution time.

objects
other

748

The adaptive linked list algorithm
is used to manage the priority queues,
set, idle, wait). It employs an
doubly linked list to maintain queue entries
in order of increasing priority. Algorithm
AL has been shown to be more efficient than
the more conventional non-indexed doubly
linked 1list, No attempt is made to
optimize the performance of any of the
objects described above. The objects are
designed with the goals of modularity,
program clarity and information hiding in
mind.

(AL)
(event
indexed

5. PARALLEL REPLICATION OF THE QUEUING SYSTEM
SIMULATOR.

In order to implement
replication, the «classical program
M/M/c queuing system was considered.
specific objects were extracted from that
program; a simulation controller, and a
simulation user interface. If parallel
replication is done using n processors, then
there will be n copies of simulation
controller objects, each running on one
processor. One simulation wuser interface
object will be coordinating these simulation
controller objects. A diagram of one three
processor parallel replication is shown in
Figure 2.

parallel
of an
Two

The
contains
mentioned
processor,
statistical

simulation controller

and coordinates the

objects the priority queue
the random number generator, the

accumulator, and the simulation

object
previously

Statislics object
Report
generalor

Event sel

Statistical

N

Simulation

Wait queve exacutive

Idle queue administralor

Priority queue
object

/

Inter-arrival

Service time

slream stream

Random number generator object

Figure 1. Objects in a M/M/c queueing system.

administrator. The simulation controller
object receives all relevant user input data
from the simulation user interface object,
then initiates and runs the simulation for
the specified number of blocks, and each
block for the specified block length. At the
end of each block, the simulation controller
object sends the accumulated statistics to
the simulation user interface object.

The simulation wuser interface object
queries user for the parameters necessary to
carry out the simulation. It sends relevant
data to each copy of the simulation
controller object. At the end of each
execution block, each simulation controller
object will send batch statistics, which will

be aggregated by the simulation user
interface object, then displayed to user.
The simulation controller and the

simulation user interface object’s activation
points are as described below.

SIMULATION CONTROLLER
Initialize (IN queuing system
parameters,

block length,
number of blocks)

Accept data needed to run the
queuing system, of blocks to
run, each block length.

OUT accumulated batch
statistics)
Output accumulated statistics
for each batch to simulation
user interface object.

Generate (

Terminate

SIMULATION USER INTERFACE

Query ()
Query
system
simulation
length,
point.

the wuser for
parameters, number of
blocks, block
data aggregation

queuing

Initialize Simulation Controller
(OUT queuing system
parameters,
block length,
number of blocks)
Send relevant data to the
simulation controller.

IN accumulated

Aggregate (2
statistics)

Receive accumulated statistics
from all the simulation
controllers. Aggregate them
and display the aggregate

statistics.

Terminate.

749

6. Investigations.

First, an M/M/c gueuing system
simulation model was implemented in a
classical manner on a Transputer system.

This configuration is here referred to as the

HOST. The objects described earlier
(priority gqueue, random number generator,
statistics accumulator, simulation
administrator) were separated from the host
and implemented in nine distinct
configurations.

To maintain a high degree of
compatibility among the different

configurations, code for the main process and
the object to be separated was not modified.
Pairs of interface procedures were written.
For example, consider the event set
processing instance of the priority queue
processor object. In any of the
implementations, if the simulation
administrator requires the scheduling of an
event at a particular time it would execute a
call to the appropriate (interface)
procedure. In those implementations where
the priority queue object has been separated,
the interface procedure would then send, on a

dedicated channel, the function code
"schedule”, and other parameters needed to.
schedule the event. As soon as the
parameters are sent the interface procedure

was free to continue. On the priority queue
object side of the interface, the controlling

procedure would initialize the data
structure, and wait for channel input. When
such input was received, it would be
analyzed, and resulting local procedure
invoked.

O0f the nine different implementations
mentioned above, three are realized on two
Transputer configurations, four on three
Transputer configurations and remaining two
on four Transputer configurations. The two
processor (host plus one network processor)
implementations tested are called "3p", in
which all three priority gqueue instances
(priority queue processor object) are
assigned to a network processor; "r", in
which the random number generating object is
assigned to a network processor; and "s", in
which only the statistics object 1is so
assigned.

The three processor (host plus two
network processors) implementations are
called "p+2p", in which the event set in-
stance of the priority gqueue object is
assigned to one network processor, wait and
idle queue instance to another; "3p+r", in
which the three priority queue instances are
assigned to one processor in the network and
the random number generator object to
another; "3p+s", in which the three priority

queue instances are assigned to one processor
in the network, statistics accumulator object

to another; and "r+s", in which the random
number generator object is assigned to one
network processor and the statistics object

is assigned to another network processor.

The four processor (host plus three
network processors) implementations are
.alled "p+2p+s" and "3p+r+s". The same tech-
nigque 1is followed here in assigning objects
to network processors as in the two and three
prccessor implementations.

Simulation Simulation Simulation

’ controller (1} controller (2) conlroller (3)

|

Simulaton

usor interface

I

Figure 2. Three processor parallel replication

All the different implementations query
the user for the same set of parameters. The
parameters are:

The mean and distribution of the
inter-arrival times
The mean and distribution of the

service times

The number of servers

The number of blocks to be run

The simulation time interval for each
block (block length)

The data aggregation block,
which data were accumulated

A trace vector, used for debugging
purposes.

after

The nine different implementations,
described above, and the host program were
run with the same set of parameter values.
In this experiment, each batch was specified
to run for a definite length of simulated
time. The real time required to run each
batch was noted for all runs. These run
times were compared with the run time of the
host configuration to find the speed-up and
efficiencies of different implementations.

In
simulation

the
user

the next investigation,
controller and simulation
interface objects were defined for the same
simulation model. Two configurations (two
and three processor) of parallel replications
were implemented. These will be referred to
as 2-parallel and 3-parallel replications.

In the two (host processor plus two
network processors) and three (host processor
plus three network processors) processor
implementations, one simulation user
interface object was assigned to the host
processor, and two and three simulation con-
troller objects were assigned to the network
processors. The user interface object was
initiated, and aggregated the block results
produced by the simulation controller
objects.

These two implementations
user for the same set of parameters (which
are listed above) as did the environment
partitioned distributed simulation models.

gueried the

750

The two and three processor replications
compared with the best two ("s") and

("r+s") processor environment parti-
tioned models. For this comparison, the
block 1length parameter was changed from a
simulated to a real time value, as suggested
by Heidelberger.

were
three

For every run of an n-parallel
replications model, there were performed n
runs of an equivalent environment partitioned
model. For example, if the three processor
replication model was simulated for n batches

using three different random seed pairs (one
for inter-arrival time distribution, other
for service time distribution), then a three
processor environment partitioned model

should be run three times, each time with one
of the random seed pairs used for the three
processor replications, and each run was for
n blocks.

Each batch run
statistical quantities:
deviation of the server utilization and the
mean and standard deviation of the wait time
of entities waiting in the queue. From these
quantities, a ninety five per cent confidence
interval was computed for both server-
utilization and wait time.

produces important
the mean and standard

Theoretical mean server-utilization and
wait time were computed for an ideal

queuing system from formulas provided
[16]. During the run, ninety five per
cent confidence intervals were computed on
the statistics generated by simulation models
and these confidence intervals contained the
theoretical means, after the models were
simulated beyond transient state.

mean

To compare
environment
replication --

the two different approaches
partitioning and parallel
mean squared errors were
computed for the statistical quantities
mentioned above. The approach which produced

a lesser mean squared error is considered to
be statistically more efficient [3]. Mean
squared error is a criterion that combines
the variance and the bias associated with a
statistic of interest [4]. Bias 1is the
difference between simulated mean and
theoretical mean.

7. RESULTS.

For the environment partitioned
distributed simulation experiments, there are
two independent variables: event set size and
object/network configuration. Each run was
made for a simulation of a gqueuing system
very close to saturation (0.99 load factor),
so that the event set size 1is effectively
equal to the number of servers. The

parameter values used were, for n servers, a
mean inter-arrival time of 10 and service
time of 10*n. The negative exponential
Cistribution was used for both inter-arrival
and service times. FIFO discipline was used
for (server) idle gqueues and (entity) wait
queues. Block length of each run was 10000
units simulated time, thus yielding
zoughly 1000 <clients per block. Each
tunfiguration was run for eight such blocks
7 a time. The run times computed was the
~veérage oi run times from third block to

of

eighth block. Runs were conducted for
set sizes of 25, 50, 100, 200, 400, 600,
1000, and 1200.

event
800,

Speed-up factors and processor
efficiencies for different configurations
were computed from the observed run times.
speed-up factors ranged from 0.96 to 1.3 for
two processor systems, 0.96 to 1.6 for three
processor systems, and 1.2 to 1.6 for four
processor systems. Speed-up increased with
event set size for those systems in which the
priority queue object was assigned to a
network processor. For event set size less
than 400, the "r+s" configuration showed the
best speed-up of all configurations tested.
For event set sizes beyond 400, the "r+s+3p"
configuration showed better speed-up. In
case of the "r+s+3p" configuration, the
speed-up was nearly independent of event set
size, showing a total variation of four per
cent when the event set size varied from 25
to 1200. The lowest processor efficiency
observed among all configurations was 0.31
for "p+2p+s", and the highest was 0.64 for

"S".

The
described

from the

are shown

results
above

experiments
in Tables la
through 1c, and graphically in Figures 3
through 5. The run times, speed-up, and
processor efficiencies are tabulated for each
configuration. Separate graphs are plotted
for two, three and four processor
configurations.

Mean run-times
two processor configurations

razones 5- e3-—

= {

' i

‘ :

35 - {

| a

3 ! L 1 1 1 L 1 1 '
25 50 100 200 400 600 800 1000 1200

.
—— host —t host+3p —¥— host+r —B- host+s

distributed simulation

FIGURE 3.

Mean run-times
three processor configurations

sa3zones 3- @3-- 3cC~

1

600

800

1000 1

3 | I | |
50 100 200 400

ovont set size

—_—

—+= host+p+2p
—X— host+r+s

host —¥= host+3p+r

—5- host+3p+s

distributed simulation

FIGURE 4.

Mean run-times
four processor configurations

ea3z0nem 3- e3--~ 3€-=

|
|

| L 1 1 1 1 L

50 100 200 400 600 800 1000

oveni sal szo

1200

—— host 1 host+p+2p+s —¥— host+3p+r+s
distributed simulation

FIGURE 5.

751

In the next experiment, 2- and 3-

parallel replication configurations were
contrasted against the "s" and "r+s"
environment partitioned configurations. All
configurations were run for 80 blocks of 5

seconds (real time) each. They were run with
three different load factors (if mean inter-
arrival time is 10, mean service time is 189,
number of servers is 20 then load factor 1s
0.9) i.e. 0.9, 0.75, and 0.5. The simulation
runs were conducted for three different
number of server values -- 20, 100, and 200.
(The event set size was limited by the
relatively small amount of memory (32K Bytes)

to each network processor). For all the
simulation runs the data aggregation was
started beginning at block six. These

configurations were run with different random
seed pairs (inter-arrival time, service
time). :

As mentioned above, the data gathered in
these experiments were mean and standard
deviation of server-utilization, mean and

standard deviation of wait time. From these
factors ninety five per cent confidence
interval was computed and compared with the
theoretical values and mean squared errors
for the respective configurations were
computed.

Parallel replication configurations have

near perfect speed-up because there 1is no
overhead involved, except for the initial
loading of the processors and at the end of
Wait time mean squared error
servers=20 load=0.9 processors=3
35000 -
!
30000 |
!
I
25000 i
|
20000 [
15000
10000 ft
5000
o 1 1 1 1 1 L 1

0 50 100 150 200 250 300 350 400

event sat sze

—— replicated — distributed

replicated VS distributed simulation

each block collecting the data. In case of
environment partitioned configurations, the
highest speed-up observed was 1.6.

In general,
configurations

parallel replication
reached steady state earlier
compared to their counterpart environment
partitioned configurations. But
surprisingly, the mean squared errors
produced by both the approaches in all
configurations were not significantly
different from each other.

Figures & through 8 contain selected
graphs for mean squared error of server-
utilization and mean squared error of wait
time for the 3-parallel replication and the
"r+s" configuration. The load factors and
number of servers (event set size) wused to
achieve these results are listed. Comparison
of the two processor configurations produce
results similar to that of the three
processor configurations, so they are not
shown. Server-utilization does not show much
variation wunder heavy 1load conditions so
graphs were not presented for that attribute.

8. CONCLUSIONS.

Environment partitioned simulation has
shown promise as an effective way to reduce
the cost of performing large, complex, time
consuming simulations. The Transputer shows
great potential for wuse in distributed
simulation. However, the 1limited physical
links (four per processor) impose relatively

Wait time mean squared error
servers=100 load=0.9 processors=3

10000

8000 -

6000

4000

2000

0 50 100 150 200 250 300 350 400

ovent sat sz0

— replicated — distributed

replicated VS distributed simulation

FIGURE 6.

752

low connectivity. This limitation will be
overcome by the addition of link multiplexors
to the system. These link multiplexors
provide thirty two virtual links for each
processor which can be switched by software.
These multiplexors will be essential in
creating environment partitioned simulations
for larger systems.

Statistics produced by parallel
replication configurations stabilize sooner
than those of their corresponding environment
partitioned configurations. After comparing
the environment partitioning with parallel
replication it cannot be decisively concluded
which approach is statistically more
efficient. This may be due to the fact that
a small number of processors were involved.

REFERENCES.

[1] Heidelberger, P., "Statistical Analysis
of Parallel Simulations", Proceedings of
the 1986 Winter Simulation Conference,
December 1986, pp 290-295.

[2] comfort, J.C. and Raja Gopal, R., "Envi-
ronment Partitioned Distributed Simula-
tion with Transputers", i

’

h
Feb 1988, pp 103-108.

[3] Pritsker, A., Introduction to Simulation
and__Slam II, New York: John Wiley and
Sons, 1984.

Wait time mean squared error
servers=200 load=0.9 processors=3

6000

5000 -

0 50 100 150 200 250 300 350 400

ovent sol w70

—— replicated — distributed

replicated VS distributed simulation

FIGURE 7.

753

{4] Allen, A., Probabilit Statistics and

Queuing Theory, New York: Academic
Press, 1978.

[5] Pountain, D., A Tutorial Introduction _to
Qccam Programming, Inmos, 1986.

[6] Transputer Development System Manual,

INMOS,
Wait time mean squared error
servers=20 load=0.75 processors=3

1400

1200 -
1000 |
800 [
600

400

200

0 1 L 1 1 " 1 I

0 50 100 150 200 250 300 350 400

Server-utilization mean squared error
servers=20 load=0.9 processors=3

4 1 L 1 1 ! !

0 50 100 150 200 250 300 350 400

event set 320

—— replicated — distributed

replicated VS distributed simulation

FIGURE 8.

Mean Run Times (in seconds) for the M/M/c Simulation

P
in Different Configurations. rogram
Event Network Configurations
set
size Host 3p R S P+2P 3P+R 3P+S R+S P+2P+S 3P+R+S
25 5.16 5.41 4.15 4.04 5.36 4.40 4.29 3.08 4.24 3.32
50 5.21 5.42 4.20 4.10 5.35 4.41 4.32 3.13 4.25 3.34
100 5.34 5.49 4.33 4.23 5.38 4.48 4.38 3.26 4.28 3.41
200 5.50 5.59 4.49 4.39 5.43 4.58 4.48 3.42 4.32 3.50
400 5.81 5.77 4.77 4.70 5.52 4.73 4.67 3.70 4.41 3.67
600 6.03 5.89 4.98 4.94 5.56 4.83 4.79 3.92 4.47 3.77
800 6.27 6.05 5.21 5.16 5.64 4.99 4.94 4.14 4.54 3.92
1000 6.48 6.15 5.42 5.36 5.69 5.09 5.03 4.34 4.58 4.01
1200 6.68 6.25 5.62 5.56 5.73 5.19 5.14 4.54 4.61 4.11
Table la. Results of Environment Partitioned Distributed
Simulation of an M/M/c Queuing System
Event Network Configurations
set
size Host 3P R s P+2P 3P+R 3P+S R+S P+2P+S 3P+R+S
25 1.00 0.96 1.24 1.28 0.96 1.20 1.20 1.68 1.22 1.56
50 1.00 0.96 1.24 1.27 0.97 1.18 1.21 1.66 1.23 1.56
100 1.00 0.97 1.23 1.26 0.99 1.19 1.22 1.64 1.25 1.57
200 1.00 0.99 1.23 1.25 1.01 1.20 1.23 1.61 1.27 1.57
400 1.00 1.01 1.22 1.24 1.05 1.23 1.24 1.57 1.32 1.58
600 1.00 1.02 1.21 1.22 1.08 1.25 1.26 1.54 1.35 1.60
800 1.00 1.04 1.20 1.21 1.11 1.26 1.27 1.51 1.38 1.60
1000 1.00 1.06 1.20 1.21 1.14 1.27 1.29 1.49 1.42 1.62
1200 1.00 1.07 1.19 1.20 1.17 1.29 1.30 1.47 1.45 1.62

Table lb. Processor Speed-up for the M/M/c Simulation Program
in Different Configurations.

Event Network Configurations

set

size Host 3P R S P+2P 3P+R 3P+S R+S P+2P+S 3P+R+S
25 1.00 0.48 0.62 0.64 0.32 0.39 0.40 0.56 0.30 0.39
50 1.00 0.48 0.62 0.64 0.32 0.39 0.40 0.56 0.31 0.39
100 1.00 0.49 0.62 0.63 0.33 0.40 0.41 0.55 0.31 0.39
200 1.00 0.49 0.61 0.63 0.34 0.40 0.41 0.54 0.32 0.39
400 1.00 0.50 0.61 0.62 0.35 0.41 0.42 0.52 0.33 0.40
600 1.00 0.51 0.61 0.61 0.36 0.42 0.42 0.51 0.34 0.40
800 1.00 0.52 0.60 0.61 0.37 0.42 0.42 0.51 0.35 0.40

1000 1.00 0.53 0.60 0.60 0.38 0.42 0.43 0.50 0.35 0.40

1200 1.00 0.53 0.59 0.60 0.39 0.43 0.43 0.49 0.36 0.41

Table lc. Processor Efficiency for the M/M/c Simulation Program
in nifferent Configurations.

754

R. Rajagopal received his Master of Science
degree from the School of Computer Science
of Florida International University in 1989.
He has been employed by Logica Technical
Systems and the IBM Corporation.

John Craig Comfort received his Ph.D. degree
in 1974 from Case Western Reserve University.
He then joined the faculty of the School of
Computer Science of Florida International
University, where he currently holds the

rank of Professor. He has been active in
Simulation since 1976, having presented many
papers at simulation conferences. He has been
the President of the Annual Simulation
symposium, and was last year’s (hooray!)
Program Chairperson for the Winter
Simulation Conference.

He may be contacted
at the following address:

John C. Comfort

School of Computer Science
Florida International University
Miami FL 33199

(305)554-2015
COMFORT@SERVAX.BITNET

755

