Proceedings of the 1989 Winter Simulation Conference
E.A. MacNair, K.J. Musselman, P. Heidelberger (eds.)

SIMULATION GRAPH DUALITY:
A WORLD VIEW TRANSFORMATION FOR SIMPLE QUEUEING MODELS

Lee Schruben

School of Operations Research

and Industrial Engineering
Cornell University

Ithaca, New York 14853, USA

ABSTRACT

Planar graphs play an important role in real
world applications, partly due to the fact that
some practical problems can be efficiently solved
for planar graphs while they are intractable for
general graphs. Simulation Graph Models of simple
queueing systems are planar graphs. Their geometric
duals can then be constructed. In the context of
queueing models, this dualization process
represents a transformation from the event
scheduling to the activity scanning world view in
discrete event simulation. The so-called primal-
dual pair of models provides an alternative but
equivalent representation of these stochastic
systems.

1. INTRODUCTION

A graph is said to be planar if it can be
drawn on the plane so that no two edges intersect
except possibly at a vertex. A property of planar
graphs is that they have geometric duals. In this
paper, we show how this property can be used
together with Simulation Graphs to define a
transformation between two world views in discrete
event simulation. A Simulation Graph is a network
used to construct and analyze discrete event
simulation models [Schruben and Yucesan, 1987]. On
this network, each vertex represents state changes
associated with a system event, while each directed
edge depicts the logical and temporal relationships
between these events. World views refer to system
structuring approaches commonly used in discrete
event simulation modeling [Schruben, 1983].

£. WORLD YIEVWS

In discrete event simulations, world views
provide alternate approaches to organizing a

specification of model behavior. These modeling

738

Enver Yucesan

INSEAD

Boulevard de Constance
77305 Fontainebleau Cedex
FRANCE

perspectives are commonly called event scheduling,
activity scanning and process interaction. Even
though each of these world views is supported by
one or more simulation programming languages, no
generally accepted definitions exist for any of the
approaches. This is partly due to the fact that
this classification scheme is neither mutually
exclusive nor collectively exhaustive. A
comprehensive discussion of world views can be
found in [Nance, 1981], [Overstreet, 1987] and
[Balci, 1988].

We next discuss the event scheduling and
activity scanning world views in more detail. Our

exposition is based on [Balci, 1988].

2.1 Event Scheduling Approach

In this world view, an event is the major
focus for modeling a system. Within this approach,
the objects in a system are identified first and
described through state variables. Next, what
causes changes in the values of state variables are
defined as an event. Each event is usually
implemented as a separate subroutine or procedure in
the computer program.

The execution of such a model is carried out
using an events list, a list of events scheduled to
occur in the simulated future, and a global
simulation clock. Each entity of the events list is
called an event record, which contains information
about the event type, event time and other
attributes associated with the particular event.

The execution starts with initialization. The
process continues by advancing the simulation clock
to the time of the next (most imminent) event and
the execution of the associated event routine. The
latter may alter the values of state variables and

may schedule further events by inserting

START

LgilNITIALIZATIONS

|

(SELECT NEXT EVENT

EVENT EVENT EVENT

ROUTINE ROUTINE ROUTINE
#1 #2 #n
- I T

NO
YES

GU -S I [¢H | W

appropriate event notices into the events list. The
logic of the event scheduling approach is summarized

in Figure 1.

2.2 Activity Scanning Approach

This approach is attractive for models where
the number of possible events is small, but the
conditions under which the events occur are very
complex. Within this world view, the modeler
describes an activity in two parts: (i) a condition
which must be satisfied for the activity to take
place, (ii) the operations of the activity
performed upon the satisfaction of the activity's
condition.

The logic of execution is as follows: the
initializations include the assignment of initial
values to state variables. The simulation clock is
updated in fixed increments. That is, in Phase 1,
time is advanced from t to (t+&t). Phase 2 is then
conducted with a clock time of (t+&t). At that

point, the conditions of activities are tested in

739

the order of activity priorities. If an activity's
condition is satisfied, the associated operations
are performed. All the conditions must be
repeatedly tested until no condition is satisfied
at the current clock time. The activity scanning
approach is summarized in Figure 2. Various
modifications have been incorporated into this
world view to enhance its execution efficiency. Due
to space limitations, those modifications will not

be discussed here.

3, SIMULATION GRAPHS

A Simulation Graph is a structure of the
objects in a discrete event system that facilitates
the development of correct simulation models. Events
are represented on the graph as vertices. Each
vertex is associated with a set of changes to state
variables. The latter are used to describe various
components of the system under study. Relationships
between events, on the other hand, are represented
as directed edges between pairs of vertices. Each

edge depicts under what conditions and after how

< START)

INITIALIZATIONS 41

——
TIME SCAN (Phase 1)
ACTIVITY SCAN (Phase 2)
Condition Condition Condition
ACTIONS ACTIONS ACTIONS
P
|
YES
NO
g G _WORL ol

much of a time delay an event will schedule or
cancel another event.

A simple example is presented next to
illustrate the involved concepts. For a complete
treatment of Simulation Graphs, the reader is
referred to [Schruben and Yucesan, 1987].

¥e will develop a Simulation Graph Model of a
single server queueing system. Suppose that
customers arrive into the system every tA time units

and it takes the server ts time units to attend to

740

each customer. The state variables used in this
model are:

Q, the number of customers waiting for
service, and

S, the status of the server (0 = busy, 1 =
idle).

The edge conditions for the model are:

(i) (The server is idle) S =1,

(ii) (Customers waiting to be served) Q > 0.
The event descriptions are presented in Table 1.

The associated Simulation Graph is presented in
Figure 3.

TABLE 1

Event Type Event Description State Changes
ARV Customer arrival Q=Q+1
BGN Beginning of service S=0

Q=Q-1
END End of service S=1

(i

BH——E0D

o

(ii)

©

4. GEOMETRIC DUALITY

Recall that a graph is said to be planar if it

can be drawn on the plane so that its edges
intersect only at their ends. A planar graph

embedded in the plane is referred to as the plane

graph. The ''regions' defined by a plane graph G are

called the faces of G, the unbounded region being
the exterior face. Given a plane graph G, the
geometric dual G‘ is constructed as follows: Place
a vertex in each face of G, including the exterior
face. If two faces of G have an edge e in their
common boundary, join the vertices of the
corresponding faces by an edge e. crossing only e.
Note that the exterior face can have a boundary
with itself. In digraphs, the direction of the
edges in the dual graph can be assigned using the
right hand rule.

The result may be a plane graph with loops or
multiple edges. The graph GO for which G is a
plane graph is said to be the dual of G. The plane

graph G is not unique; hence, its dual is not
unique either. Figure 4 illustrates the dualization
procedure.

¥hen G is connected, the dual of the dual of G
is isomorphic to G, that is G'. = G [Nishizeki and

Chiba, 1987].

5.1 Planarity

The following is a Simulation Graph for a

generic queueing system such as a G/G/s model:

)
<EE> —('B > E

This generic Simulation Graph can represent many
simple queueing systems. For example, different

customer classes can be handled through the use of

event attributes [Schruben and Yucesan, 1987]. That
is, the arrival of a customer of type j can be
represented by the event vertex A(j). The reader
can easily verify that balking and blocking can
also be incorporated without losing planarity. A
proof of the foregoing assertions is presented in
[Schruben and Yucesan, 1989].

Furthermore, it is possible to determine
whether a given Simulation Graph is planar. There
are a number of algorithms for establishing the
planarity of graphs. For instance, one such
algorithm is presented in [Hopcroft and Tarjan,
1974].

From this point on, we will only consider

planar Simulation Graph Models.

5.2 Simulation Graph Duality
Since Simulation Graphs are planar, their dual
can be constructed. As we will see shortly, the

dual of a Simulation Graph is also a Simulation

Graph. We will refer to 9 as the primal Simulation
Graph or, simply, the primal; and 9D will be
referred to as the dual Simulation Graph or,
simply, the dual.

In this section, we will establish the fact
that the primal Simulation Graph represents the
event scheduling world view whereas the dual
Simulation Graph represents the activity scanning
world view. Hence, the process of constructing 9D
from ¢ really represents a transformation from

event scheduling to activity scanning.

In this procedure, we will assume that the
Simulation Graph does not contain any loops; that
is, there are no edges that originate and terminate
at the same event vertex. This is not a restrictive
assumption since any loop can be replaced by a
directed cycle. Figure 5 shows the single server
queueing model under this convention. The

dualization procedure is discussed next.

Step Q: Replace all the loops, if any, in the
Simulation Graph with a directed cycle as described
above.

Step 1: Ignore the directions on the edges and
construct the geometric dual as before. The vertex
in 9D. corresponding to the exterior face of 9, is
a special vertex. Label it "ESF'" for "Event
Scheduling Function."

(ii)

qu GLE-

: There must be

one edge directed from the ESF vertex to every
other vertex in 9D. All of the remaining edges
should point in the opposite direction; that is,
from a given vertex to ESF. Also note that the ESF
vertex will always have a self-scheduling edge.
Step 3: Edge Copnditions: In a Simulation Graph

Model, there are two basic types of events. Events
that are scheduled to occur unconditionally at
specific instants in simulated time will be called
time-dependent events or t-events. There are also
those events which are scheduled only if the
associated conditions are satisfied. These will be
referred to as conditional events or c-events.

In 9D, a new state variable is defined to
condition the actions associated with a t-event in
Q. The new state variable will basically denote the
execution time of the associated activity. (An
example will soon follow.)

No new state variables are defined in 9D for
activities corresponding to c-events in 9. A
condition, however, is assigned to the edge that is
directed from ESF to the particular vertex. This
condition is a complex one constructed by combining
the edge conditions on the boundary of the
corresponding face in § as well as those on any

incoming edges through the Boolean operator AND.

Step 4: Edge Delay Times: All edges directed
from ESF to other vertices have zero delay times.
The delay times in 9D will be assigned to those
edges incident into the ESF vertex from a vertex
that corresponds to a face defined by c-events in
9. The delay time will be equal to the sum of the
delay times on the edges comprising the boundary of
the corresponding face. For t-events, on the other
hand, see Step 5.

Step 5: State Changes: The state changes
associated with c-events in ¢ directly carry over
to the corresponding activities in 9D. For the
activities in 9D corresponding to t-events of 9,
there is one additional state variable change: the

update of the activity's execution time.

Step 6: Attribute Passing; The values of state
variables are altered upon the execution of an
activity. The new values of the state variables
should be transmitted back to the ESF vertex using
the attribute lists of the edges directed into ESF.

Step 7: Priorities: Priorities must be
assigned by the modeler for activity execution
(that is, for condition checking).

Step 8: Subdivision of ESF: The ESF vertex is
subdivided into two vertices connected by a
directed edge of zero delay time. The new vertices
are called '"Phase 1' and ''Phase 2, respectively.
The ESF vertex subdivided in this manner to conform
to the activity scanning logic. More specifically,
the ESF vertex

&t

is replaced by:

&t

Ph.1 Ph.2

Here, &t represents the fixed time increment that
updates the simulation clock. Both of these
vertices are always scheduled with the highest
execution priority in QD.

This transformation is illustrated on the

single server queueing model.

743

Figure 6 depicts the Simulation Graph for the
single server queueing model along with its

geometric dual. In the original (primal) model,
since the arrival event (ARV) is a t-event, a new
state variable, ARVT, is defined to denote the
execution time of the arrival activity in QD. The
edge conditions used in the dual are as follows:

(i) (Time for an arrival) ARVT = 7 (7 denotes
the simulation clock),

(ii) (Customers are waiting AND the server is
idle) (Q>0) & (s=1).

The associated activities are described in
Table 2.

9 is presented in Figure 7. Note that the execution
of the dual model directly follows the activity

scanning logic depicted in Figure 2.

TABLE 2

Activity T Activity D ipti State CI
PH.1 Phase 1: Time Scan
PH.2 Phase 2: Condition Scan Attribute List:
Q, S, ARVT
ARV Arrival Process Q=Q+ 1
ARVT = 7 + t
A
SVC Service Process Ss=0
Q=Q-1

ar
D

8. CONCLUDING REMARKS

Within the context of simple queueing models,

Our procedure has several shortcomings. The
first one is a direct consequence of the definition
of the geometric dual. For instance, it is possible
for different drawings of the same graph to result
in different duals. Moreover, different graphs may
have the same dual. More importantly, however, the
dual of the dual model may not necessarily be
isomorphic to the primal (original) model. This is
because the transformation used in the dualization
procedure is a one-to-many mapping.

As Hooper (1986) notes: 'for more than a
quarter of a century, simulationists in the U.S.
and in Britain have been on ‘divergent paths' as to
world views (i.e., strategies). It does not appear
that we are likely to alter these courses in the
forseeable future. However, we can certainly
benefit from a good understanding of the strategies
that are in use.' It is hoped that the construction
presented in this paper provide a useful first step
in bridging these paths. A potential benefit of
this cooperation would be the new perspective it
provides researchers, who have been studying
simulation problems from a single point of view.

Currently, research is under way for implementing

some of the output analysis techniques, that have
traditionally been studied in an event scheduling

environment, using the activity scanning approach.

the dualization of Simulation Graphs represents a

transformation from the event scheduling to the

activity scanning world view. Hence, the primal-dual

pair provides the modeler with alternative

but

equivalent representations of queueing systems.

We conjecture that this primal-dual

relationship is valid not only for simple queueing

systems, but for any discrete event dynamical

systems in general.

744

REFERENCES

[1] Balei, 0. (1988) The Implementation of
Four Conceptual Frameworks For Simulation Modeling
in High-Level Languages Proceedings of the 1988
Winter Simulation Conference (Abrams, Haigh and
Comfort, eds.) San Diego, CA.

[2] Hooper, J.¥. (1986) Activity Scanning and
the Three-Phase Approach Simulation Vo0l.47.5

[3] Hoperoft, J. and Tarjan, R. (1974)
Efficient Planarity Testing Journal of the ACM
Vol. 21.4 pp. 549-568

[4] Nance, R.E. (1981) The Time and State
Relationships in Simulation Modeling
Vol. 24.4

[5] Nishizeki, T. and Chiba, N. (1987) Planar
Graphs: Theory and Algorithms North-Holland
Mathematics Studies #140

[6] Overstreet, C.M. (1987) Using Graphs to
Translate Between World Views Proceedings of the

Communications of the ACM

1987 Winter Simulation Conference (Thesen, Grant
and Kelton, eds.) Atlanta, GA.

[7] Schruben, L.W. (1983) Simulation Modeling
with Event Graphs Communications of the ACM.
Vol.26.11

[8] Schruben, L.¥. and Yucesan, E. On the
Generality of Simulation Graphs Technical Report
#773, School of OR&IE, Cornell University. Ithaca,
New York.

[9] Schruben, L.¥. and Yucesan, E. (1989)
Simulation Graph Duality: A World View
Transformation for Simple Queueing Models Technical
Report #842, School of OR&IE, Cornell University.
Ithaca, New York.

745

AUTHORS' BIOGRAPHIES

LEE W. SCHRUBEN is a professor in the School of
Operations Research and Industrial Engineering at
Cornell University. He received his undegraduate
degree from Cornell University, a Masters degree
from the University of North Carolina, and a PhD
from Yale University. Prior to coming to Cornell he
was the Associate Director of the Health Systems
Research Division of the Medical School at the
University of Florida. His research interests are
in the statistical design and analysis of large
scale simulation experiments. His consulting
activities have been primarily in the area of
manufacturing systems simulation.

Lee W. Schruben

S.0.R.I.E

Upson Hall

Cornell University

Ithaca, New York 14853, USA
(607) 255 9128

ENVER YUCESAN is an assistant professor of
Operations Management at the European Institute of
Business Administration. He received his
undergraduate degree in Industrial Engineering from
Purdue University, a Masters degree and a PhD in
Operations Research from Cornell University. His
research interests include issues related to
construction and structural analysis of discrete
event models as well as statistical analysis of
simulation output.

Enver Yucesan

INSEAD

Boulevard de Constance

77305 Fontainebleau Cedex, FRANCE
(33 1) 60 72 40 00

