Proceedings of the 1989 Winter Simulation Conference
E.A. MacNair, K.J. Musselman, P. Heidelberger (eds)

ON ANALYZING EVENTS TO ESTIMATE
THE POSSIBLE SPEEDUP OF PARALLEL DISCRETE
EVENT SIMULATION

Tapas K.
Bruce A. Cota

Robert G.

Som

Sargent

Simulation Research Group
Syracuse University

Syracuse,

ABSTRACT

We describe in this paper a new event based
approach for estimating the possible speed up in
parallel discrete event simulation which is similar
to Berry and Jefferson's method. This method
calculates a critical path through a graph
developed from a trace of a simulation and from
constraints on the order of processing of event

instances that ensure correctness of the
simulation. Different ways of classifying event
instances to determine required constraints are
presented. A software system that wuses this

approach is described and examples are presented.

1. INTRODUCTION

Two basic approaches to parallel discrete event

simulation based on model decomposition have
evcolved: conservative [Misra 1986] and optimistic
(Jefferson 1985]. Recently many variants of these
two approaches have been proposed in the
literature. These wvariants try to use model
specific knowledge to achieve maximum speed up.

Their success should be measured by comparing the

speed up actually achieved with the possible speed
up for a given model, where possible speed up is
the least uppsr bound on the amount of speed up

that is possible in a given model.

To date, tws methods have been suggested for
estimating the possible speed up for a given model.
The first method (Berry and Jefferson 1985] employs
a critical path analysis of a trace from a given
simulation. In the second method (Wagner and
Lazowska 198%), the network of logical processes is
viewed as a queueing network model. This queueing
network model is then analytically solved.

Berry (1986) demonstrated that the first
approach can underestimate the possible speed up.
The second approach is limited in scope since

queueing network models are analytically tractable
only for a limited class of models.

describe a new event based
estimate possible speed up which is
similar to Berry and Jefferson's. This new
approach can give a better estimate of the possible
speed up than Berry and Jefferson's method. We
also descrike a software system to estimate the
possible speed up based on this new approach.

In this
approach to

paper we

2., AN EXAMPLE OF THE NEW EVENT BASED APPROACH

We adopt the event world view
in modelling the behavior of a

[Zeigler 1976)
system in this

729

NY

13244

paper. In this world view the behavior of a system
is described by specifying a set of ‘'event types'
and then describing how occurrences of one event
type may lead to occurrences of other event types.
In the subsequent discussion we distinguish between
an event type 'e', and an occurrence of event type
e at time t. The latter will be referred to as an
instance of event type e and will be denoted by the
tuple (e,t). (This notation assumes that multiple
instances of the same event type do not occur at
the same time.)

To illustrate our method we use the following
example of three interacting objects. This example
is similar to the one presented by Berry. Consider
a physical system comprised of three objects 0_,

02, and 0,. Each of these objects has an internal
counter, i.e. object 0, has an internal counter C,,
and C, is initialized to some numeric value. These

objec%s interact by sending messages.
can send a message to itself. A message is one of
two types - True or False. A True message carries
an instruction which is either Increment or Square.

An object

An object does not do anything when it receives

a False message. When an object 0, receives a True

message it takes the following actions Al, AZ’ and
A_:
3

Al: If the instruction is

object increments
C, « C,+1. If the
1 1

Increment then the
its counter by 1, i.e.
instruction 1is Square

then the object squares its counter, i.e.
2

C, «C, .
1 1

A2: The following probabilistic decisions are

made :

i) Whether or not to send new messages.

ii) If new messages are to be sent, then
how many of them are to be sent.

iii) Where these messages are to be sent.
iv) Contents of these messages, i.e.
True/False and Increment/Square.

A3: Send the messages decided on in A2.

Actions Al, A2 and A3 are instantaneous, i.e. the
receipt of a True message and the completion of
actions Al, A2 and A3 triggered by this message
take place at the same instant of time. The delay
between the time a message is sent and the time it
is received is a random variable.

Since the receipt of a message by an object and
the completion of resulting actions taken by the
receiving object occur at the same instant of time,
one can consider the receipt and resulting actions

Table 1: Messages for Example in Section 2
Received Message Sent Message
Message | Object At Message Content To Feceive Message Content Messag
D # Time | Type Instruction Object Time Type Instruction D #
1 01 0 True Increment 2 1 False — 2
3 1 True Square 3
1 1 True Increment 4
2 O2 1 False — - - - - -
3 03 1 True Square . 4.5 True Increment 5
2
4 O1 1 True — 3 2 True Increment 6
1 2 True Square 7
6 03 2 True Increment — - - - —
7 O1 2 True Square 1 3 True Square 8
8 0, 3 True Square - 4 False _— 9
9 02 4 False — — — — — —
5 02 4.5 | True Increment . 5.5 True Increment 10
10 02 5.5 | True Increment 3 6 True Increment 11
11 03 6 True Increment 3 7 False i 12
12 03 7 False — — — —_ — —_
as a single event. It is therefore possible to occurrence, e.g.

describe the behavior of the above physical system
in terms of the following six event types:

et,, i=1,2,3 Receipt of True message by
* object 0, and completion of
resulting actions Al, A2 and

A3.
efi, i=1,2,3 Receipt of a False message by

object Oi' (Note that there is
no resulting action.)

Now consider a simulation of the three object
physical system. The simulation generated the
behavior shown in Table 1. Using the six event
types defined above and our convention of denoting
an instance of event type e at time t by the tuple

(e, t), we can say that the following event
instances occurred during the simulation:

(etl,O), (ef ,1), (et_,1), (et ,1), (et3,2),

(et],2), (etl,3), (efl,4), (et,,4.5),

(et2,5.5)' (et3,6), (ef3,7) (1
(et.,0) in (1) <corresponds to the receipt of

message ID #1 of Table 1 and actions taken by
object 0. . Similar correspondences exist for other
event instances in (1).

In a sequential simulation these event
instances are processed in order of their time of

730

(etl,O) must be processed before

(ef2,1), etc. Event instances having the same time

of occurrence e.g. (ef2,1), (et3,1), (etl,l), etc.

must be processed in an order prespecified by the
modeller whenever the order of processing matters.
Otherwise they can be processed in any order.

A parallel simulation does not follow the above
order of processing of event instances. However,
some other (weaker) ordering constraints need to be
observed to guarantee correctness of the
simulation. It is obvious that (etl,O) must be

processed before (et_,1) since the former causes

3
(schedules) the latter. Therefore our first
constraint on the ordering in which event instances

are processed is that if event instance (el,tl)

schedules event instance (e, ,t,), t, 2t then
2' 72

(el,tl) must be processed before (e2,t2).

Constraints of this type will be
scheduling constraints.

referred to as

It is
sequential
Figure

noted that this is identical to
constraint 2 in Berry and Jefferson.
1 shows the scheduling constraints imposed
on the processing of the event instances in (1).
Nodes in Figure 1 represent event instances and
there is a directed arc from (e, t)) to (ey0t,) if

and 1 i
only if (el,tl) schedules (ez,tz).

7 F
6 -
5 —
=
E 4 F efo,4)
[
z
S
= -
E 3 k- et),3
5
=
—
w
2 L
1 -
0 |
Figure 1: Graph of a Trace for Section 2

Example

What other constraints do we need to impose on
the order of the processing of event instances?
Assume for example that C is initialized to 1

(i.e., the counter of object 0_ is initialized to 1
at the start of the simulatiodn). It is evident
that to obtain the correct value of C_, at the end

of simulation one order of
processing (et_,1) = (et_,2) - (et ,6). We shall
use the term” safety constraint to denote the
constraints of this type. Constraints on the order
of processing of event instances required by the
safety constraints and not by the scheduling
constraints are added as dotted arcs to the graph
in Figure 1. The resultant graph is shown in
Figure 2.

must impose the

We shall use the term Constrained Execution
Graph (CEG) to describe graphs like Figure 2. 1In a
CEG nodes denote event instances and directed arcs
denote constraints on the order of processing of
events (in this example scheduling and safety
constraints) .

After a CEG has been constructed, an estimate
for the possible cpeed up can be made in the
following way:

i) Assume a constant processing time for each
event instances (= t_, say) and assign the
weight 't ' to each node in the CEG
representing the computation time for that

node. Also assign a zero weight to each
arc in the CEG.
ii) Estimate the execution time for a
sequential simulation as T = Nt , where
seq c

N = total number of nodes in the CEG.

731

6 r

5 F
£
a4
=
zZ
o
—
<

-

=
2 3
=
= .
%)

Figure 2: CEG for the Example in Section 2

iii) The weight of the longest weighted path
(the critical path) through the CEG is an
estimate for the minimum parallel
simulation time T (Berry and

par
Jefferson]. The critical path and its

weight can be standard

algorithms [Even

found by many
(1979)).
iv) An estimate for the maximum speed up 'Su'
is gi Su =T T .
is given by Su seq/ par
It is easily seen from Figure 2 that for the three
object example T = 12t . The critical path in
seq c

-

Figure 2 is (etl,O) -

6) -

ety 1) o (et ,4.5) =

(et,,5.5) = (et3, (et3,7) and has a weight
Therefore T = 6t
par c

speed up is

equal to GtC. and our estimate

for possible Su = 12tc/6tc = 2.

3. SAFETY CONSTRAINTS

In the last section we described a method for
estimating the possible speed up that can be
achieved by parallelizing a particular simulation.
To automate this method we need a general method
for developing safety constraints. That 1is, we
need a method for finding constraints on the order
of simulation of event instances that will ensure
the correctness of the simulation. Note that the
weaker these constraints are, (that is, the fewer
constraints that exist) the greater the estimate of
the possible speed up. We will assume that it is
computationally infeasible to decide for each pair
of event instances whether a safety constraint is
necessary. Instead, we will consider ways of

classifying event instances and use those

classifications to develop safety constraints.
3.1. sSafety Constraints Based on Event Types

Event instances can first be classified
according to their event types and then pairs of
event types can be identified that "interfere" with
one another. Whenever two event instances belong
to types that interfere with one another, a safety
constraint can be defined between those two event
instances.

It is easy to determine when two event types
interfere with one another ([Cota and Sargent 1989].
Suppose X is a state variable ([Zeigler]. X is an
input variable of event type e if the effect of
processing some instance of e depends on any way on
the value of X. If the processing of some instance
of e changes the value of X, then X is an output
variable of event type e. Two event types, e, and

e2, are said to interfere with one another if there

is a state variable that is an output variable of
e, and is either an input variable or an output

variable of e2 or vice versa. For example, it is

easy to see that in section 2, Ci is both an input

and output variable for eti. Thus eti interferes
with itself.

It is not always necessary for a CEG to contain
an edge between two event instances whenever those
two instances belong to types that interfere with
one another (e.g. there is no edge between (et_,1)
and (et_,6) in Figure 2, even though et_ interféres
with itself). Whenever every arc in” a CEG has
equal weight (possibly zero) it is unnecessary to
have an arc between nodes (e,t) and (e',t') if
there already exists a path from (e,t) to (e',t').
This simplifies the CEG and the critical path
computation without affecting the weight of the
critical path.

3.2. Safety Constraints Based on Objects

An alternate classification of event instances
is used by Berry and Jefferson to study object
oriented simulations. Here a system is modelled as
a collection of "objects"™, and each event instance
in a simulation is associated with exactly one
object. Every state variable is also associated
with exactly one object and an event instance
associated with a particular object can only access
state variables that are associated with that
object. However, it can schedule other event
instances associated with different objects. To
ensure the correctness of the simulation wunder
these circumstances it is sufficient to ensure that
any two event instances associated with the same
object are simulated in correct order. That is, it
is sufficient to ensure that whenever two event
instances are associated with the same object, the
earlier of the two instances 1is processed before
the later of the two. Thus, event instances are
classified according to the objects with which they
are associated, and safety constraints are defined
between all event instances belonging to the same
class.

Note that the classification of event instances
based on event

types gives a strictly finer
classification of event instances than the
classification based on objects. That is, the set
of event instances associated with a particular

object can be partitioned into a number of event

732

SIMULATION TIME

01 02 03

Figure 3: CEG Based on Objects

types, so that it is possible to weaken the safety
constraints based on objects and obtain a better
estimate on possible speed up.

Consider for example the physical system
described in section 2 which consists of three
objects 0., O and 0 Behavior of individual
objects can be described by the following event

. . . ; s t
types: 01 : etl, efl, 02 etz, ef2 and 03 e 3

ef_. Figure 3 shows the CEG for event instances in

3
(1) using safety constraints based on object
decomposition. Scheduling constraints are the same
as in Figure 2 but safety constraints are based on
objects as discussed here.

Assigning, as in section 2, a weight 't ' to
each node in Figure 3 (and zero weight to each
arc), one can easily calculate the maximum weighted
path (critical path) which in this case is (et1,0)
- (etl,l) - (etl,2) - (et1,3) - (ef2,4) - (et2,4.5)

t,,6
(e 3)
Therefore, Su =

24 (et 5.5) =9 - (et3,7) having a weight =

9t =T 12t /9t = 1.33. Thus,
c par c c

for this example, Berry and Jefferson's method

underestimates the possible speed up. (This 1is

consistent with an observation made by Berry.)

It is quite easy to see how an actual
implementation may exceed the speed up predicted by
Berry and Jefferson's method. Suppose object 0, is
simulated on processor i. Consider the folloﬁing
scenario in a Time Warp [Jefferson] implementation.
(See Figure 3.) Processor 2 receives the message
corresponding to arc (et3,1) - (et2,4,5) before it

receives the message corresponding to arc (et1,3) -5

(ef2,4). It processes (et2,4.5) and then (et2,5.5)
and sends the message corresponding to arc
(et2,5.5) - (et3,6). While processor 3 is busy
processing (et3,6) and then (et3,7), processor 2

receives the message corresponding to arc (et1,3) -

(ef,4), processes (ef2,4), and finding no reason
to nullify the earlier message to processor 3, does
not send any antimessage. Thus processor 3's

completion time is not affected by the unnecessary
constraint (ef2,4) - (et2,4A5). This constraint is

unnecessary since ef2 do not interfere with

and et2
one another.

3.3. Dynamically Computed Safety Constraints

In many cases, event type based constraints are

also stronger than necessary. Consider, for
example, a simple, closed queueing network
consisting of three servers with FIFO queueing
disciplines. Suppose that the service time at each

server 1s a random variable, and that after a
service is completed, a customer randomly selects
the server that it will require service from next.
We can model this system by using three integer
variables to represent the length of each queue and
three boolean variables to indicate whether each
server 1is idle. Letting 'q(i]' denote the length
of the i'th queue (for i between one and three),
and letting 'idle[i]' denote the boolean variable
that indicates whether the i'th server is idle we
can describe the behavior of the i'th server by the
following event types:

arrival(i)

(arrival of new customer to server 'i'):
if idle(i)
then do

idle(i] « false
generate a random variate 't'
schedule end[i) after t
else g(i] « q(i]+1
end[i] (end of a service period at server 'i'):
select server 'j'
schedule arrival(j] after O
if gq(i) = 0
then idle(i] « true
else do
qli) « qli)-1
generate a random variate 't'
schedule end[i] after t

'q(il' and 'idle(i]'
both 'arrival (i]' and
'q(i)! is an input
'idle (i)' 4is an input
Therefore event type

are output variables of
‘end(i]"'. Furthermore,
variable of ‘'end[i]' and
variable of ‘'arrival(i)'.
arrival(i] interfers with
event type end(i]. However, it is not always
necessary to enforce safety constraints between
events of type 'arrival[i)' and type 'end[i]'. To
see this suppose that 'g(i)' is greater than zero
and that ‘'idle[i]' is false. A pair of event
instances of type ‘'arrival(i)' and ‘'end(i]' can
then be processed in any order or in parallel
(assuming that incrementing and decrementing gqfi)
is done atomically). No matter in which order the
event instances are processed, the resulting value
of 'gq(i)' and 'idle(i]' will be the same, and the
'end(i]' event instance will schedule a new 'end([i)
event instance. However, if g[i] is zero, then the
order in which two such events are processed
decides which of the two event instances schedules

733

a new 'end(i)' event instance.
time of occurrence of the new
it is necessary to

This can affect the
'end (i)' event. Thus,
process instances of
‘arrival[i]' and ‘'end[i] in correct sequential
order if 'qg[i)' is zero. Unfortunately, there is
no way to express this constraint by identifying
pairs of event types, as described in the
subsection 3.1.

We can obtain safety constraints that are weaker
than those obtained by analyzing event types by
using information given by the modeller to classify
event instances in a different way. To do this, we
allow an event instance to belong to any number of
classes, and we define a safety constraint between
every pair of event instances only when they belong
to a common class. The modeller would have to

supply a procedure to determine the classes to
which each event instance belongs. As a
(sequential) simulation is being carried out, the

procedure would be used before the processing of
each event instance to determine the classes to
which that event instance belongs. This
information can be recorded in the trace. It would
probably be convenient for the modeller to supply a
different procedure for each event type. The major
disadvantage of this approach is the reliance on
the modeller to identify all necessary
classifications.

For example, consider the queueing network
described above. For each possible value of 'i‘',
we would provide a class for events of type
'arrival(i]' and a class for events of type
‘end([i]"'. This would define safety constraints
between event instances of the same type. (It
might be possible to weaken these constraints.) In
addition, we would provide an additional class for
each 'i'. An event instance would belong to this
additional class whenever the value of 'q[i]l' is
zero immediately before or immediately after the
simulation of that event instance. This defines
safety constraints between some event instances of
type 'arrival(i)' and some event instances of type
'‘end[i]' but not between all such instances.

Allowing events to be processed in an order not
corresponding to their time of occurence, even when
it is "safe" to do so, may make data collection
more difficult in some situations. Consider for
example q[i]. The sequence of successive values
assigned to q(i] during the parallel
would not necessarily reflect how gfi)
respect to time. We will not discuss this issue
further, except to observe that the ease with which
a simulation can be parallelized depends, in part,
on the data to be collected by that simulation.

simulation
changes with

4. SOME RELATED ISSUES
4.1 Assigning Weights to Nodes in the CEG

It has been implicitly assumed in the last two

sections, that an identical amount of time is
required to process each event instance. This may
not be true. It might therefore be wuseful to

assign different weights to different nodes of a
CEG to reflect the amount of time required for the
processing of each event instance and to use these

. T T .
weights to compute seq and par One way of doing

this would be to assign a weight to each event
type. All instances of a given type would then be
assigned the same weight. This seems reasonable,
since events of a given type are simulated by

carrying out a particular procedure. The weight
assigned to that event type then reflects an
estimate of the amount of time required to execute
that procedure.

4.2. Event Granularity

Franta [1977] defines an event as an
"instantaneous change in the values of one or more
state variables". This allows a number of
different interpretations of what exactly an event
consists of in a given simulation. For example, in
the queueing network model discussed in subsection
3.3, event types were defined for the end of a
service at each server and for the arrival of a
customer to each server. However, each end service
event instance is immediately followed by an
arrival event instance, and each arrival event
instance is immediately preceded by an end service
event instance. We can therefore consider each
pair of end service and arrival event instances to
be a single event instance, which we will refer to

as a "departure" event instance. We can describe
departure events as instances of the following
type:

departure (i)

select server 'j'

if qi) =0

then idle(i) ¢ true

else do
qli)] « qli)-1
generate a random variate 't'
schedule end([i] after t

if idle(j)

then do
idle[j] « false
generate a random variate 't'
schedule end(j] after 't'

else g(j) « qlj)+l

The event type

'‘departure(i]' has been defined

by simply appending the code for event type
‘arrival[j]' to the code for event type 'end[i]'
and modifying the scheduling of event instances.

Each departure event instance 1is the result of
aggregating an end service instance and an arrival

instance. (See Sargent [1988) for methods of
combining event types.) We will say that a
departure event instance is of "higher granularity"
than the corresponding end service instance and

arrival instance.

Whenever there is a directed path in the CEG
from one event instance to another, we will say
that the first event instance precedes the second
event instance and that the second event instance
succeeds the first event instance. Note that
"precedes" and "succeeds" are transitive in the
sense that if (el,tl) precedes (e2,t2), which

precedes (e3,t3), then (el,tl) also precedes

(e, t

3 3) and (e3,t3) succeeds (el,t).

1

Now consider the effects of event aggregation
and event granularity on a CEG. The aggregation of
two events will change a CEG by merging the nodes
in the CEG corresponding to instances of these two
event types. The single node resulting from this
combination will have every arc entering and
leaving it that either of the original two nodes
had. Suppose that (e_,t) and (ez,t) are aggregated
to form (e,t). Then every event instance that
precedes (el,t) or (e.,t) will also preceed (e,t).
Similarly, “every event instance that succeeds

734

..
©

(a) (b)

Figure 4: Event Aggregation

(e.,t) or (e,,t) will also succeed (e,t). Thus,
evéry event instance that preceeds (e ,t) will also
precede any event instance that succeeds (e, ,t),
and vice versa. This means that the aggregation of
(e.,t) and (e,,t) may have introduced many more
possible paths through the CEG, and so may have
increased the length of the critical path through
the CEG.

For example, in Figure d4a,
an arbitrary CEG 1is shown.
precedes event instance ‘a2',
'bl' precedes event instance 'b2'. We have used
solid arcs to denote scheduling constraints and
dotted arcs to denote safety constraints. We have
also assumed that 'al' schedules 'b2', so that 'al'
precedes 'b2'. Now suppose that the time delay on
this scheduling operation is zero, so that 'al' and
'b2' occur at the same point in (simulated) time.
Assume that we can aggregate 'al' and 'b2' to form,

a small portion of
Event instance 'al'
and event instance

say, event instance ‘'c'. The new configuration of
constraints is shown in Figure 4b. The point is
that since 'bl' must precede ‘b2 to ensure

correctness of the simulation, a safety constraint
is required between 'bl' and 'c'. Because of this,
'bl' now precedes ‘'a2', and so a new path has been
added to the CEG that could form part of the
critical path.

In general,
to equal the

if the weight of
sum of the

is defined
(el,t) and

(e, t)
weights of

(ez,t), then the weight of the critical path of the

CEG after aggregation will be greater than or equal

to the weight of the critical path of the CEG
before aggregation. This effect will be
illustrated by an example in section 5.
4.3. Computer Architecture

We can study the effects of computer

architecture on the possible speed up obtained by a
parallel simulation by assigning each event
instance to a specific processor. The result of
processing some event instance on one processor may
have to be communicated to some other processor
before some other event instance can be processed
on the second processor. In this case there will

be a safety constraint between
instances. The arc in the CEG that represents this
constraint can be given a positive weight that
reflects the cost of communication between the two
processors involved. This weight would be used
when computing the weight of the critical path.
Also when a number of event instances are assigned
to the same processor there has to be a total
ordering on the sequence of processing of these
event instances. One possible ordering corresponds
to the time of occurrences of event instances.
Additional arcs may have to be added to the CEG to
reflect this total ordering and they may have a
weight of zero. These additional arcs will be
called "computer architecture arcs".

those two event

5.0 SOFTWARE SYSTEM

In this section we first describe a software
system that runs on a SUN Workstation. This
software creates a CEG from inputs given to it and
then finds the CEG's critical path(s). Then an
example is presented to illustrate the use of this
software and to demonstrate that event granularity
can affect the possible speed up in discrete event
simulations.

5.1. Description of Software System

Our software system consists of two parts and
is used in two stages. An event-oriented simulator
is first used to obtain an execution trace by
running a simulation model. Then this trace, along
with other appropriate information, is input into a

software package that produces the CEG and
calculates the critical path(s).

The event-oriented simulator {Chacko and
Sargent 1989] is a simulator developed by our

research group for research and teaching purposes.
It uses event graphs [Sargent 1988, Schruben 1983]
for model specification. One of the output options
of this simulator allows one to obtain an execution
which trace contains the information required to
create the nodes and scheduling arcs in a CEG.
Thus it is straightforward to obtain the execution
trace and requires no additional work (except to
puild a sirulation model if one does not exist).

simulator 1is
along with
computer
and weights
software
definition

event graph
package
constraints,

The trace from our
input into a software
information on safety

architecture constraints (if desired),
for the nodes and arcs. Our current
package allows only the following: (1)

of safety constraints based on event types per
subsection 3.1, (ii) one option for computer
architecture arcs, and (iii) weights for different
event types and different types of edges (e.g.
scheduling, safety, or architecture) . For the
safety constraints based on event types, the user
must list the pairs of event types that interfere
with each other. The only option currently
available to model the effects of computer
architecture is to assign event instances of each
event type to a separate processor. The software
package then uses these inputs to create a CEG and
calculate the critical path(s). The output
consists of the critical path(s) and the
corresponding weight which is an estimate of T

par’
We note that the software package can easily be
extended, e.g. to allow alternative ways of

calculating safety constraints such as Berry and
Jefferson's object based approach.

735

5.2. Example

Let us consider a two server cyclic queueing
system where customers always go to the other
server for service when they complete service at a
server. The queue disciplines are FIFO and the
service times are exponential. Let us specify a
simulation model of this system by using different
event types for an arrival to the queue, begin
service, and end service for each of the two
servers. These six different event types are given
in Table 2 along with the input and output
variables for each event type (we assume different
random number generators are used for B(l) and
B(2)) and the pairs of event type interferences
required for the safety constraints per subsection
3.1.

We ran a simulation model of this queueing
system with two customers and with the mean equal
to one for the service times of each server on our
event graph simulator. The execution trace of this
simulation was input into our software package with
a weight of one for each node type along with the
list of pairs of event types that interface with
each other. (We did not assign any weights to the
arcs or use any computer architecture constraints.)

We obtained an estimate of possible speedup of
approximately 1.41 for this model.

We discussed in subsection 4.2 that event
granularity can affect the estimate of possible

speed up. If one modelled the above queueing

Table 2: Event Types and Interferences

for Example in Section 5.2

event type A[(i],
Arrival([i]:
qli) « qlil+1
if s[i] = idle
then do
schedule Begin(i] after delay 0
s(i] ¢ busy

i=1,2:

event type B[i},
Begin (i)
qli] + qli)-1
generate service time, ST[i)
schedule End[i] after delay ST[i]

i=1,2:

event type E(i],
End (i)
if g(i) > 0
then do
schedule Begin[i] after delay 0
s(i) « busy
else s[i] « idle
select j
schedule Arrival(j] after delay 0

i=1,2:

Event Input Output
Type Variables Variables
A1) ql(i),s(i) qli), s(i)
B(i] qli] qli), ST[i)
E[i) qli) s(i)
Event Type Interferences
(A[i),A[i)), (B[i],B(i]), (A[i],B[i)),

(A[i),E[i]), (B[i),E[i])

system using only two event types, one for the end
of each service as in subsection 4.2, these two
event types would interfere with each other as well
as with themselves. Thus there would be arcs
between each instance of each event type and
between instances of the two different event types.
This requires all event instances to be processed
sequentially. Thus, there would be no parallelism
and the speed up would be one.

6.0 SUMMARY

We described a new event based approach for
estimating the possible speed up for a given
simulation model which is similar to Berry and
Jefferson's approach. The estimate of the possible
speed up is determined by the constraints imposed
on the order of processing event instances. For
the simulation to be correct the order of
processing must satisfy both scheduling and safety
constraints. Scheduling constraints can be easily
identified from the trace of a given simulation
run. Identification of safety constraints is more
difficult. Berry and Jefferson used an object
based model decomposition to identify constraints
which are stronger than necessary. We discussed an
event type based approach that is capable of
identifying safety constraints which, even though
stronger than necessary, are strictly weaker than
those identifiable by Berry and Jefferson's method.
Consequently both Berry and Jefferson's method and
our event type based method underestimate the
maximum possible speed up but the latter gives a
better estimate. We also discussed that a modeller
may be able to define classifications of event
instances other than those based on event types or
objects. This can further improve the estimate of
the possible speed up.

We described how definitions of event types
used by the modeller can affect the possible speed

up. We concluded that event types of smaller
granularity are generally better for identifying
possible speed up. Also, we pointed out that

interprocessor communication costs and the effects
of a specific computer architecture on speed up
could possibly be addressed.

A simple software system to obtain the critical
path and an estimate of the possible speed up was
described. This system first uses an event graph
simulator to obtain the trace of a simulation.
Then, this trace along with other user defined
inputs are processed by a software package to
estimate the possible speed up. The current
version of our software package contains only a few
alternatives; however, it can be easily extended to
provide for others.

ACKNOWLEDGMENTS
This work was supported in part by the CASE
(Computer Applications and Software Engineering)
Center of Syracuse University. Scott Marcotte
wrote the software package described in Section 5.

REFERENCES

Berry, ©O., and Jefferson, D. (1985). "Critical
Path Analysis of Distributed Simulation",
Distributed Simulation, 1985 (Paul Reynolds, ed.)
Simulation Series, 15, 2, 57-60, Society for

Computer Simulation.

736

Berry, O. (1986). Ph.D. Thesis, Department of
Computer Science, University of Southern
California.

Chacko, J. and Sargent, R.G. (1989). BUBBLES, The

Event Graph Simulator.
441 Link Hall,
13244.

Simulation Research Group,
Syracuse University, Syracuse, NY

Cota, B.A. and Sargent, R.G. (1989). "An Algorithm
for Parallel Discrete Event Simulation Using Common

Memory", Proceedings of 22nd Annual Simulation
Symposium, (A.H. Raton, ed.), 23-31, March 1989,
Tampa, FL.

Even, S. (1979) . Graph Algorithms. Computer
Science Press, Potomac, MD.

Franta, W.R. (1977) . The Process View of
Simulation. North-Holland, New York.

Jefferson, D. (1985). "Virtual Time", ACM TOPLAS,
7, 3, July 1985, 404-425.

Misra, J. (1986) . "Distributed Discrete-Event

Simulation", ACM Computer Surveys, 18, 1, 39-65.

Sargent, R.G. (1988). "Event Graph Modelling for
Simulation with an Application to Flexible
Manufacturing Systems", Management Science, 34, 10,
1231-51.

Schruben, L.
Event Graphs",
963.

(1983) . "Simulation Modeling with
Communications of the ACM, 26, 957-

Wagner, D.B. and Lazowska, E.D.
Simulation of Queueing Networks: Limitations and
Potentials," Proceedings of the International
Conference on Measurement and Modeling of Computer
Systems, 146-155, May 1989, Berkeley, CA.

(1989) . "Parallel

Zeigler, B.P.
Simulation.

(1976) . Theory of Modelling and
John Wiley and Sons, New York.

AUTHORS' BIBLIOGRAPHY

BRUCE A. COTA is a Ph.D. candidate in the
School of Computer and Information Science at
Syracuse University. He has a B.S. degree in
mathematics from Buffalo State College and an M.S.
in mathematics from Syracuse University. His
current research interests are in parallel

processing and in discrete event simulation.

Bruce A. Cota

441 Link Hall

Syracuse University
Syracuse, NY 13244-1240
(315) 443-2820

ROBERT G. SARGENT is a Professor at Syracuse
University. He received his education at the
University of Michigan. Dr. Sargent has served his
profession in many ways. This includes being
Department Editor of Simulation Modelling and
Statistical Computer for the Communications of the
ACM for five years; being chairman of the TIMS
College on Simulation and Gaming; serving the
Winter Simulation Conferences in several capacities
such as being a member of the Board of Directors
for ten years, Board Chairman for two years,
General Chairman of the 1977 Conference, and co-
editor of the 1976 and 1977 Conference Proceedings;

being a Director-at-large of the Society for
Computer Simulation; serving as an ACM National
Lecturer; and being a member of the Executive
Committee of the IEEE Computer Society Technical
Committee on Simulation. He has received four
service awards, including one for long-standing
exceptional service to the Simulation Community.
Professor Sargent is the author of over seventy-

five publications. His current research interests
include methodology research in modelling and
discrete event simulation, model validation,

performance evaluation, and applied operations
research. Dr. Sargent is a member of the AnM, New
York Academy of Sciences, Sigma Xi, ACM, IIE, ORSA,
SCS, and TIMS, and is 1listed in Who's Who in
America.

Professor Robert G. Sargent
Simulation Research Group
441 Link Hall

Syracuse University
Syracuse, NY 13244-1240
(315)443-4348

TAPAS K. SOM is a Ph.D. candidate in the
Computer and Information Science Program at
Syracuse University. He holds a Bachelors degree
in Mechanical Engineering from the University of
Calcutta, India and a Masters degree in Industrial
Engineering and Operations Research from Syracuse
University. Before coming to graduate school, he
worked as a Senior Project Engineer and was
involved in the design and construction of fossil
fired power stations. His current research
interests are simulation modelling concepts and
parallel discrete event simulation.

Tapas K. Som

441 Link Hall

Syracuse University
Syracuse, NY 13244-1240
(315) 443-2820

737

